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1. Introduction

In this paper, we construct singular triangulations [1] of all orientable Seifert manifolds
[2]. Especially, we consider singular triangulations with only one vertex, called one-vertex
triangulation. Our construction is useful to calculate the state sum type invariant, for exam-
ple, Turaev-Viro invariant, Turaev-Viro-Ocneanu invariant or Dijkgraaf-Witten invariant; this
subject will be seen in forthcoming paper [3]. Also our work is made use of the introduction
of a new complexity invariant of closed 3-manifold, see [4].

Let M be a Seifert manifold and P be a special spine [5] of M. Considering a dual
complex for M relative to P , we obtain a one-vertex triangulation of M. Now, how to
construct a special spine P of M? Our construction is based on the fact that any orientable

Seifert manifold is obtained by gluing Mn, J and Vp,q , which are homeomorphic to (S2 −∐n
i=1 D2

i ) × S1, (S1 × S1 − D2) × S1 and (p, q)-type fibered solid torus respectively.
The first step is to make special spines PMn , PJ , PVp,q of three compact manifolds Mn,

J and Vp,q satisfying the following conditions: each connected component of ∂ Mn ∩ PMn ,
∂ J ∩ PJ and ∂ Vp,q ∩ PVp,q is the theta-curve shown in Figure 1 and the loop γ ᾱ is a fiber,
where ᾱ means the reverse direction of the edge labeled α. As an example, the solid torus V1,1

FIGURE 1. A theta-curve θ .
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and a special spine PV1,1 is shown in Figure 5. The second step is to define fiber preserving
homeomorphisms ϕi : { ∂ J, ∂ Vp,q} → ∂ Mn, see § 5.4. Then, we construct any orientable
Seifert manifold M by gluing J , Vp,q and Mn. Furthermore, we show that the polyhedron
PM obtained by gluing PJ , PVp,q and PMn by { ϕi } is a special spine of M. Thus, the dual
complex for M concerning PM is a one-vertex triangulation of M.

2. Word diagram of a solid torus

Let w = X1X2 · · · Xn be a sequence of elements Xi ∈ {L,R, L̄, R̄}, i = 1, 2, · · · , n.
We call such a sequence w = w(L,R) as a word on the letters {L,R}. In this section, for a
word w(L,R), we will define a word diagram, denoted by w(L,R)-diagram. Then, we show

that w(L,R)-diagram induces an identification map fw(L,R) on ∂B3 such that B3/fw(L,R) is
homeomorphic to a solid torus.

In § 2.1, we consider the case when the word w(L,R) is the empty word. We use the
notation φ for the empty word. The φ-diagram plays a role of a pit of w(L,R)-diagram of a
solid torus. In § 2.2, we consider the case when the word w(L,R) is not the empty word.

2.1. The case w(L,R) = φ. Let Dφ be the 2-disc with labels P , A, Q, α, β, γ , u,
v, w shown in Figure 2. We call Dφ the φ - disc. It may become clear for the role of labels in
Dφ , see Remark 2.1.

Suppose the φ - disc is embedded in S2, see Figure 3. Then, the 2-sphere S2 is separated

into two discs by the circle αβγαβγ (= ∂Dφ), where X means the reverse direction of the

edge labeled X. We denote by Eφ the closed dics S2 \ Int(Dφ).

The φ - disc gives a natural pasting information fφ on S2(= ∂B3) to obtain a compact

3-manifold B3/fφ . The φ - disc consists of Z0, Z1 and Z2, where Z0, Z1 and Z2 are sets of
0-cells, oriented 1-cells and oriented 2-cells respectively. Now, we will explain Z0, Z1 and

FIGURE 2. φ - disc Dφ . FIGURE 3. Eφ .
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Z2 and define a pasting information fφ on S2. Although it is only an example, but it must
give a suggestion of a general method to obtain a pasting information.

In the φ-disc, there are some 0-cells with the labels u, v,w. We call a 0-cell a vertex.
Thus, the set Z0 consists of ten vertices {u(i), v(i), w(j) | i = 1, 2, 3 and j = 1, 2, 3, 4}, where
X(i) is the vertex with the label X. Then, the map fφ |Z0 is defined by satisfying the following
conditions:

1. For any X ∈ {u, v} and i ∈ {1, 2, 3}, fφ(X(i)) = X;

2. For any j ∈ {1, 2, 3, 4}, fφ(w(j)) = w,
Now, we observe Z1. In the φ - disc, there are some 1-cells with the labels A, P , Q, α,

β, γ , where we mean that a 1-cell is an open arcs. We call a 1-cell an edge. We denote the

edges in the φ - disc with the labels A, P , Q, α, β, γ by A(i), P (i), Q(i), α(j), β(j), γ (j) re-

spectively. Thus, the set Z1 consists of fifteen edges {A(i), P (i), Q(i), α(j), β(j), γ (j) | i =
1, 2, 3 and j = 1, 2}. Then, the map fφ |Z0 is extended continuously on Z0 ∪ Z1 satisfying
the following conditions.

1. For any X ∈ {A, P, Q} and i ∈ {1, 2, 3}, fφ(X(i)) = X;

2. For any X ∈ {α, β, γ } and j ∈ {1, 2}, fφ(X(j)) = X;
3. fφ is a homeomorphism on each cell in Z0 ∪ Z1.
At last, we consider Z2. Let ρ+, σ+, τ+ be oriented 2-cells ( open 2-discs) in the up-

per half disc of Dφ with the boundary ∂ (cl(ρ+)) = A, ∂ (cl(σ+)) = PQα, ∂ (cl(τ+)) =
AQγPAP β Q respectively, see Figure 2, where cl(X) means the closure of X. Similarly,
let ρ−, σ−, τ− be oriented 2-cells in the under half disc in Dφ such that ∂ (cl(ρ−)) = A,

∂ (cl(σ−)) = PQα, ∂ (cl(τ−)) = AQγPAP β Q respectively. We call a 2-cell a face. Then,
the set Z2 consists of the faces {ρ+, ρ−, σ+, σ−, τ+, τ−, Int(Eφ)}. Then, the map fφ |Z0∪Z1

is extended continuously on Z0 ∪ Z1 ∪ Z2 (∼= S2) satisfying the following conditions:
1. For any X ∈ {ρ, σ, τ }, fφ(X+) = fφ(X−) = X;

2. fφ is a homeomorphism on each cell in Z0 ∪ Z1 ∪ Z2. Thereby, fφ : S2 → S2/fφ

is determined by the φ - disc up to isotopy. We call the pasting information an identification
map fφ of the φ - disc.

REMARK 2.1. Note that the label X of each cell in φ - disc is the name of the cell in
S2/fφ .

Let Gφ be the connected 3-regular graph with labels on S2 associated with the underling

space of Z0 ∪ Z1. Note that each of S2 \Gφ is an open 2 - disc. Thus, Dφ , Eφ , Dφ/fφ and

Eφ/fφ have cell structure. We call the triple (S2, Gφ, fφ) as φ-diagram.

Since fφ is a map on S2(= ∂B3), the quotient space Vφ := B3/fφ is defined. We can
confirm that the quotient space Vφ is a compact 3-manifold by examining a neighborhood

of each point of B3. Note that the boundary of the 3-manifold Vφ is Eφ/fφ , and the image

fφ(∂Dφ) = fφ

(
∂Eφ

)
is the theta-curve θ (Figure 1) embedded in ∂ Vφ such that ∂ Vφ \ θ ∼=

Int(Eφ).
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FIGURE 4. D′
φ . FIGURE 5. The solid torus Vφ .

THEOREM 2.2. The manifold Vφ is homeomorphic to a solid torus.

PROOF. By the definition of fφ , Eφ/fφ is the boundary of the manifold Vφ , which is
a free face of Vφ . Thus, the manifold Vφ collapses to the cell complex Dφ/fφ . And the cell
complex Dφ/fφ collapses to the cell complex D′

φ/fφ , where D′
φ is shown in Figure 4.

The cell complex D′
φ/fφ collapses to the loop C/fφ , where C is the edge shown in

Figure 4. Thus, the manifold Vφ collapses to S1.
Thereby, Vφ is homeomorphic to either a solid torus or a solid Klein bottle. By the

definition of the map fφ , the manifold Vφ is orientable. Thus, it must be homeomorphic to a
solid torus. �

The solid torus Vφ is shown in Figure 5. The bold lines α, β and γ are embedded in ∂Vφ ,
and the others are embedded in Int(Vφ). And shaded faces are Dφ/fφ embedded in Int(Vφ).

2.2. The case w(L,R) �= φ. In the previous subsection, we observed the case when
w(L,R) is the empty word. In this subsection, we consider the case when w(L,R) is not the

empty word. For a word w, we will define w-disc Dw , and show that B3/fw is homeomorphic
to a solid torus, where fw is an identification map on ∂ B3 induced by Dw .

Now, we define the two discs Dw and D∗
w for a word w. Denote by HL, HL̄, HR , HR̄

the annuli shown in Figure 6, 7, 8, 9 respectively. At first, we consider the case that the length

of the word w is 1, that is, w = X, where X ∈ {L,R, L̄, R̄}.
DEFINITION 2.3. The disc D∗

X is defined by the following steps.
Step 1. Rename the label µ of the vertices and the edges in Dφ into µφ , where µ =

u, v,w,A,P,Q, α β, γ .

Step 2. Rename the label µ of the vertices and the edges in HX into µX, where µ =
u, v,w,A,P,B,Q, α β, γ .

Step 3. Rename the label α′, β ′ and γ ′ of the edges in HX into αφ , βφ and γφ respectively.
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Step 4. Glue the φ - disc Dφ and the annulus HX by identifying the corresponding circle

αφβφγφαφβφγφ .

See, for example, Figure 10 for D∗
L.

DEFINITION 2.4. The disc DX is obtained by the more two steps in addition to Defi-
nition 2.3.

Step 5. Delete the edges αφ , βφ and γφ .
Step 6. Change the label µφνX (or νXµφ) into νX. For example, in the case when X = L,

there are arcs with label QφBL, see Figure 10. Then, rename it into BL. Similarly,
change the label ALPφ into AL.

FIGURE 6. HL. FIGURE 7. HL̄.

FIGURE 8. HR . FIGURE 9. HR̄ .
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See, for example, Figure 11 for DL.
Now, we define two discs D∗

w and Dw in the case when the length of the word w is
greater than 1. Our definition is given by the induction with respect to the length of the word
w.

Suppose that two discs D∗
w and Dw are already defined for w = X1X2 · · · Xn, where

Xi ∈ {L,R, L̄, R̄}. Then, let wX be the word X1X2 · · · XnX, where X ∈ {L,R, L̄, R̄}.
DEFINITION 2.5. The disc D∗

wX is defined by the following steps.
Step 1. Rename the label µ of the vertices and the edges in HX into µwX , where µ =

u, v,w,A,P,B,Q, α β, γ .

Step 2. Rename the label α′, β ′ and γ ′ of the edges in HX into αw , βw and γw respectively.
Step 3. Glue the disc D∗

w and the annulus HX by identifying the corresponding circle

αwβwγwαwβwγw.

DEFINITION 2.6. The disc DwX is defined by the following steps.
Step 1. The same with Step 1 in Definition 2.5.
Step 2. The same with Step 2 in Definition 2.5.
Step 3. Glue the disc Dw and the annulus HX by identifying the corresponding circle

αwβwγwαwβwγw.
Step 4. Delete the edges αw , βw and γw.
Step 5. Change the label µwνwX (or νwXµw) into νwX.

Now, we consider an identification map fw . Assume that the disc Dw is embedded in S2(=
∂B3) as the case w = φ. Denote by Ew the disc S2 \ Int(Dw). As the case of φ - disc, we

can define an identification map fw : S2 → S2/fw and a 3 - manifold Vw = B3/fw . Then,

FIGURE 10. D∗
L

. FIGURE 11. DL.
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the image fw(∂Dw) = fw(∂Ew) is the theta-curve θ (Figure 1) embedded in ∂ Vw such that
∂ Vw \ θ ∼= Int(Ew).

THEOREM 2.7. The manifold Vw is a homeomorphic to a solid torus.

PROOF. At first, we prove that the manifold Vw collapses to S1 inductively. Since the

manifold Vφ collapses to S1 by the proof of Theorem 2.2, it is enough to show that if Vw

collapses to S1 then VwX collapses to S1 for each X ∈ {L,R, L̄, R̄}.
We consider the case X = L. Then, the manifold VwL collapses to the cell complex

DwL/fwL (Figure 12).
It collapses to the cell complex D′

wL/fwL (Figure 13). Furthermore, the cell complex
D′

wL/fwL collapses to the cell complex D′′
wL/fwL, (Figure 14). At last, the cell complex

D′′
wL/fwL collapses to the cell complex D′′′

wL/fwL (Figure 15). By the definition of fw,
the cell complex D′′′

wL/fwL coincides with the cell complex D′′′
w /fw . By the assumption of

induction, the cell complex D′′′
w /fw collapses to S1. So, VwL collapses to S1. Thus, for any

word w, the 3-manifold Vw collapses to S1. In the case X = R, L̄, R̄, we can prove similar to
the case X = L. Since the manifold Vw is orientable, we conclude that Vw is homeomorphic
to a solid torus. �

FIGURE 12. D∗
L

. FIGURE 13. D′
wL

.
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FIGURE 14. D′′
w(L,R)L

. FIGURE 15. D′′′
w(L,R)L

.

3. Meridian, longitude and fiber structure of Vw(L,R)

In this section, we consider a meridian-longitude system (mw, lw) of the solid torus
Vw, where a meridian-longitude system (mw, lw) is a pair of loops mw and lw satisfying the
following conditions:

1. mw and lw are essential loops embedded in ∂ Vw

2. mw and lw intersect at a point.
3. 	 mw 
= 1 and 	 lw 
�= 1 in π1(Vw), where 	
 is a homotopy class.

In § 3.1, we give a presentation of loops embedded in ∂ Vw, that is, we define two generators
	 xw 
 and 	 yw 
 of π1(∂ Vw) for each word w. Then, any loop embedded in ∂ Vw

is presented by an element aw[xw] + bw[yw] in H1(∂ Vw) uniquely, where aw and bw are
coprime integers and [ ] is the homology class. In § 3.2 and § 3.3, we consider the coefficients
aw and bw of the meridian and a longitude of Vw.

3.1. Loops embedded in ∂ Vw(L,R). In § 2, we showed that Ew/fw is the boundary

of the solid torus Vw. Thus, three loops αwβw, γwβw and γwαw are embedded in ∂ Vw. We
denote them by xw, yw and zw respectively.

PROPOSITION 3.1. For any word w, the two elements 	 xw 
 and 	 yw 
 forms
a basis of the fundamental group π1(∂ Vw), where 	xw 
 and 	yw 
 are the homotopy
classes of the loops xw and yw respectively.

PROOF. Consider the loop Aw embedded in ∂ Vw, where the loop Aw is shown in Fig-
ure 16.

Two loops Aw and γwβw are homotopic in ∂ Vw . By the method of cut and paste, we

know two loops Aw and αwβw are essential loops and intersect at one point in ∂ Vw. �

By Proposition 3.1, any loop embedded in ∂ Vw is presented by an element aw[ xw ] +
bw[ yw ] in H1(∂ Vw) uniquely, where aw and bw is coprime integers.

3.2. The case w(L,R) = φ. In this subsection, we consider a meridian-longitude
system of the solid torus Vφ .
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FIGURE 16. Ew .

THEOREM 3.2. A pair of the loops (yφ, xφ) is a meridian-longitude system of the solid
torus Vφ .

PROOF. According to the proof of Proposition 3.1, loops xφ and yφ are essential loops in
∂ Vφ . Furthermore, we can regard xφ and yφ as loops intersecting at a point with the argument
of general position. Thus, all we have to do is to show that 	 xφ 
�= 1 and 	 yφ 
= 1
in π1(Vφ). We consider the fundamental group π1(Vφ). Since Vφ collapses to Dφ/fφ , the
fundamental group π1(Vφ) is isomorphic to π1(Dφ/fφ). So, we consider π1(Dφ/fφ). We

choose a base point of Dφ/fφ as the vertex u = fφ(u(i)), see Figure 2.
The fundamental group π1(Dφ/fφ) is obtained by the following two steps. First, we

consider a maximal tree Qβ of Gφ , where Gφ := |Z0 ∪ Z1| and Z0 and Z1 was defined
in § 2.1. Then, any loop embedded in Dφ/fφ is homotopic to some loop which is a finite

product of the loops αβ, γβ, PQβ and β QAQβ. That is, π1(Dφ/fφ) is generated by the

homotopy classes of the loops αβ, γβ, PQβ and β QAQβ.We denote them by α̂, γ̂ , P̂ , Â

respectively. And, any relator of π1(Dφ/fφ) is a sequence of {P̂ α̂−1, Âγ̂ −1, Â} which are
homotopy classes of the loops each of which bounds a face of Dφ/fφ . Thus, we get

π1(Vφ) = π1(Dφ/fφ, u)

=< α̂, γ̂ , P̂ , Â | P̂ α̂−1, Âγ̂ −1, Â >

=< α̂, γ̂ , P̂ | P̂ α̂−1, γ̂ −1 >

=< α̂, P̂ | P̂ α̂−1 >

=< α̂ | − > .

And the generator of π1(Vφ) is α̂. Since α̂ is the homotopy class of the loop xφ = αφβφ , we

get 	 xφ 
�= 1. And γ̂ −1 is a relator of π1(Vφ). Since γ̂ is the homotopy class of a loop
yφ = γφβφ , we have 	 yφ 
= 1. �

Now, we consider the loop zφ = γφαφ in ∂ Vφ .

DEFINITION 3.3. Let V be a solid torus with the meridian-longitude system (m, l).
Then, a loop λ in ∂ V is the (p,q) - type if the condition [λ] = p [l] + q [m] holds in H1(∂ V ).
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Then, we consider the type of the loop zφ for a solid torus Vφ with the meridian-longitude
system (yφ, xφ) given in Theorem 3.2.

THEOREM 3.4. The loop zφ is the (1, 1)-type.

PROOF. By the definition, the homotopy class of the loops xφ , yφ and xφ satisfy the
following condition in π1(∂ Vφ).

	 zφ 
 =	 γφαφ 

=	 γφβφβφαφ 

=	 γφβφ 
	 αφβφ 
 .

Thus, the loop zφ satisfies the condition [zφ] = [xφ] + [yφ] in H1(∂ Vφ). �

3.3. The case w(L,R) is not the empty. In this subsection, we consider a meridian-
longitude system of the solid torus Vw is the case when the word w is not the empty word.
In §3.3.1, we give two theorems about meridian-longitude systems of the solid torus Vw. In
§3.3.2, we prepare lemmas. In §3.3.3, we give the proofs of the theorems.

3.3.1. Theorems. For a word w = X1X2 . . . Xn, where Xi ∈ {L,R, L̄, R̄}, we define

the matrix Mw = UX1UX2 · · ·UXn , where UL =
(

1 1
0 1

)
, UR =

(
1 0
1 1

)
, UL̄ = UL

−1 and

UR̄ = UR
−1.

THEOREM 3.5. There is a meridian-longitude system (mw, lw) of Vw satisfying the
following equations in H1(∂ Vw) :

[mw] = −M1,2[xw] + M1,1[yw] ;
[ lw] = M2,2[xw] − M2,1[yw] ,

where Mi,j is the (i, j)-element of the matrix Mw .

Now, we will see another theorem. We use the following notation for the expansion into
continued fraction:

[a1, a2, · · · , an−1, an] := 1

a1 + 1

a2 + 1

. . . + 1

an

.

For a pair of natural numbers p, q such that p > q , we define an alternative word A(p, q) as
follows:

A(p, q) =
{

La1 Ra2 La3 · · · Lan−2Ran−1 Lan (n : odd)

La1 Ra2 La3 · · · Ran−2Lan−1 Ran (n : even)
,
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where the natural numbers ai are defined by q/p = [a1, a2, · · · , an, 1].
THEOREM 3.6. For the solid torus VA(p,q) with the meridian-longitude system

(mA(p,q), lA(p,q)) given by Theorem 3.5, the loop zA(p,q) is the (p, q)-type.

NOTATION 3.7. We call VA(p,q) as (p,q)-type solid torus and denote it by Vp,q .

3.3.2. Lemmas. In this subsection, we show two lemmas. The first one is concerned
with the fundamental group of the solid torus Vw. The second one is the calculation of the
matrices UL, UR , UL̄ and UR̄ .

Now, we see the first one. At first, we consider the solid torus VL, where VL is the
solid torus Vw in the case w = L. Since the solid torus VL collapses to DL/fL, the funda-
mental group π1(VL) is isomorphic to π1(DL/fL). By the definition, the fundamental group
π1(DL/fL) is isomorphic to π1(D

∗
L/fL). Thereby, the fundamental group π1(VL) is isomor-

phic to π1(D
∗
L/fL).

Thus, we consider π1(D
∗
L/fL). We take a base point uL of D∗

L/fL and a maximal tree
βLPLALβφPφ of D∗

L/fL, see Figure 10, where βLPLALβφPφ means the union of the edges
βL, PL, AL, βφ and Pφ . And we consider the generators and relators similar to the case

w = φ. Also we use the same notations X̂ in § 3.2. For convenience, we denote XL and Xφ

by X and X′ respectively. Then, we have

π1(VL)

= π1(D
∗
L/fL, uL)

=< α̂′, γ̂ ′, Q̂′, Â′, B̂−1, Q̂, α̂, γ̂

| Q̂′α̂′−1
, Q̂′−1

Â′Q̂′γ̂ ′−1
Â′, Â′, α̂′B̂, Q̂α̂−1B̂−1, Q̂, γ̂ ′B̂Q̂γ̂ −1 >

=< α̂′, γ̂ ′, Q̂′, B̂−1, Q̂, α̂, γ̂ | Q̂′α̂′−1
, γ̂ ′−1

, α̂′B̂, Q̂α̂−1B̂−1, Q̂, γ̂ ′B̂Q̂γ̂ −1 >

=< α̂′, γ̂ ′, B̂−1, Q̂, α̂, γ̂ | γ̂ ′, α̂′B̂, Q̂α̂−1B̂−1, Q̂, γ̂ ′B̂Q̂γ̂ −1 >

=< α̂′, γ̂ ′, Q̂, α̂, γ̂ | γ̂ ′, Q̂α̂−1α̂′, Q̂, γ̂ ′α̂′−1
Q̂γ̂ −1 >

=< α̂′, γ̂ ′, α̂, γ̂ | γ̂ ′, α̂−1α̂′, γ̂ ′α̂′−1
γ̂ −1 >

=< α̂′ | − > .

And we get the two relations α̂−1α̂′ = 1 and γ̂ ′α̂′−1
γ̂ −1 = 1 in π1(VL). Since, the homology

class of the loops xφ , yφ , xL and yL are α̂′−1
, γ̂ ′, α̂−1 and γ̂ respectively, we get the following

relations in H1(VL):

{ [xL] = [xφ]
[ yL] = [xφ] + [yφ] ⇐⇒

t
( [xL]

[ yL]
)

=
t
( [ xφ]

[ yφ]
)

UL ,
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where t ( ) means the transposition and [ ] means the homology class and UL is defined in

§ 3.3.1. Since the generator of π1(VL) is α̂′, we get [xφ] �= 0 in H1(VL). And by the relation
of π1(VL), we have [yφ] = 0 in H1(VL).

In the case X = L̄, R, R̄, we take a base point uX of π1(D
∗
X/fX) and a maximal tree

βL̄PL̄AL̄βφPφ , βRQRARβφPφ and βR̄QR̄AR̄βφPφ respectively. Then, we get the relations
t
( [xX]

[ yX]
)

=
t
( [ xφ]

[ yφ]
)

UX , [xφ] �= 0 and [yφ] = 0 in H1(VX), where the matrix UL̄, UR

and UR̄ are defined in § 3.3.1.

At last, for any word w = X1X2 · · · Xn, where Xi ∈ {L,R, L̄, R̄}, we consider H1(Vw).
We take a base point uw of D∗

w/fw and a maximal tree (βφDφ) ∪ (
∐n

i=1 mi), where mi ={
βXi PXi AXi (Xi = L, L̄);
βXi QXi AXi (Xi = R, R̄).

Then, we get the equation
t
( [xwX]

[ ywX]
)

=
t
( [ xw]

[ yw]
)

UX for

any X = L,R, L̄, R̄. Thus, we have the following lemma.

LEMMA 3.8. The following two relations 1 and 2 hold in H1(Vw), where the loops xw

and yw are embedded in ∂ Vw and the loops xφ and yφ are embedded in Int (Vw).

1.
t
( [xw]

[ yw]
)

=
t
( [ xφ]

[ yφ]
)

Mw, where the matrix Mw is defined in Theorem 3.5 and [ ]
means a homology class.

2. [xφ] �= 0 and [yφ] = 0.

Now, we observe another lemma. For n natural numbers ai (1 ≤ i ≤ n), two matrices A
and B are defined as follows:

A=
{

U
a1
L U

a2
R U

a3
L · · · U

an−2
L U

an−1
R U

an

L (n : odd)

U
a1
L U

a2
R U

a3
L · · · U

an−2
R U

an−1
L U

an

R (n : even)
,

B=
{

U
a1
R U

a2
L U

a3
R · · · U

an−2
R U

an−1
L U

an

R (n : odd)

U
a1
R U

a2
L U

a3
R · · · U

an−2
L U

an−1
R U

an

L (n : even)
.

We denote by Ai,j and Bi,j the (i, j)-element of the matrix A and B respectively.

LEMMA 3.9. Two matrices A and B satisfy the following conditions:
1.

A2,1 + A2,2

A1,1 + A1,2
= B1,1 + B1,2

B2,1 + B2,2
= [a1, a2, · · · , an, 1], where [ ] means the expansion

into continued fraction defined in § 3.3.1;
2. (a) Two natural numbers A1,1 and A1,2 are coprime, and two non-negative integers

A2,1 and A2,2 are coprime.
(b) Two natural numbers A1,1 + A1,2 and A2,1 + A2,2 are coprime;

PROOF.
1. Let us consider a proof by induction on the length of the matrix A and B, where the

length is the natural number n in the matrix U
a1
X1

U
a2
X2

U
a3
X3

· · ·Uan

Xn
.
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If n = 1, then A =
(

1 a1

0 1

)
and B =

(
1 0
a1 1

)
. So, we have

A2,1 + A2,2

A1,1 + A1,2
=

B1,1 + B1,2

B2,1 + B2,2
= 1

a1 + 1
= [a1, 1]. Now, assume that the statement holds in the case

n − 1. Then, we will consider the case n.

(i) In the case n is odd

A = U
a1
L U

a2
R U

a3
L · · · U

an

L = U
a1
L B

=
(

1 a1

0 1

) (
B1,1 B1,2

B2,1 B2,2

)

=
(

B1,1 + a1B2,1 B1,2 + a1B2,2

B2,1 B2,2

)
,

where B is the matrix with respect to n − 1 natural numbers a2, a3, · · · , an, that is,
B = U

a2
R U

a3
L · · · Uan

L . Then, we obtain

A2,1 + A2,2

A1,1 + A1,2
= B2,1 + B2,2

B1,1 + a1B2,1 + (
B1,2 + a1B2,2

)
= 1

a1 + B1,1 + B1,2

B2,1 + B2,2

.

By the assumption of the induction, we have the following equation about the matrix
B.

B1,1 + B1,2

B2,1 + B2,2
= [a2, a3, · · · , an, 1] .

Thus, we have

1

a1 + B1,1 + B1,2

B2,1 + B2,2

= [a1, a2, · · · , an, 1] .

Also, we have that

B = U
a1
R U

a2
L U

a3
R · · · U

an

R = U
a1
R A

=
(

1 0
a1 1

) (
A1,1 A1,2

A2,1 A2,2

)

=
(

A1,1 A1,2

a1A1,1 + A2,1 a1A1,2 + A2,2

)

and
B1,1 + B1,2

B2,1 + B2,2
= A1,1 + A1,2

a1A1,1 + A2,1 + (
a1A1,2 + A2,2

)
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= 1

a1 + A2,1 + A2,2

A1,1 + A1,2

= [a1, a2, · · · , an, 1] .

(ii) In the case n is even
We can prove similar to the case (i).

2. (a) We have det UX = 1 for all X ∈ {L,R, L̄, R̄} by the definition of the matrix UX.
Since the property of the determinant: detAB = detA detB, we get detA=1. It
completes the proof.

2. (b) By the property of the determinant, we have detA = det

(
A1,1 + A1,2 A1,2

A2,1 + A2,2 A2,2

)
.

Since A1,1+A1,2, A1,2, A2,1+A2,2 and A2,2 are natural numbers and detA = 1,
we get A1,1 + A1,2 and A2,1 + A2,2 are coprime. �

3.3.3. Proof of main theorems.
PROOF OF THEOREM 3.5. There is a representative y of homology class [yw] such

that y is an essential loop on a solid torus Vw and y intersect with xw at one point each other,
where xw and yw are defined in § 3.1. Since detMw = 1 and two non-negative integers Mi,1

and Mi,2 are coprime for i = 1, 2, there are two essential loops mw and lw on ∂ Vw with one
common point such that

[mw] = −M1,2[xw] + M1,1[yw]; [ lw] = M2,2[xw] − M2,1[yw] .

Thus, the rest of the proof is to show [ lw] �= 0 and [ mw] = 0 in H1(Vw). By Lemma 3.8, we
get the following equation in H1(Vw):

t
( [xw]

[ yw]
)

=
t
( [ xφ]

[ yφ]
)

Mw

⇐⇒
t
( [xw]

[ yw]
) (

M2,2 −M1,2

−M2,1 M1,1

)
=

t
( [ xφ]

[ yφ]
)

⇐⇒
{ [ xφ] = M2,2[ xw] − M2,1[ yw]

[ yφ] = −M1,2[ xw] + M1,1[ yw] .

And we have [xφ] �= 0 and [yφ] = 0 in H1(Vw) by Lemma 3.8. Also we get [mw] = [yφ] and
[lw] = [xφ] in H1(Vw). It completes the proof. �

PROOF OF THEOREM 3.6. Recall that ai is defined by the equation q/p =
[a1, a2, · · · , an, 1]. Then, we define the matrix A(p,q) as follows:

A(p,q) =
{

U
a1
L U

a2
R U

a3
L · · · U

an−2
L U

an−1
R U

an

L (n : odd)

U
a1
L U

a2
R U

a3
L · · · U

an−2
R U

an−1
L U

an

R (n : even)
.
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For convenience, we denote the word A(p, q) by A. By Theorem 3.5, we have the following
relations in H1(∂ TA):

[mA] = −A1,2[xA] + A1,1[yA] ; [ lA] = A2,2[xA] − A2,1[yA] ,

where Ai,j is the (i, j)-element of the matrix A(p,q). Thus, we have

[xA] = A1,1[lA] + A2,1[mA] ; [ yA] = A1,2[lA] + A2,2[mA] .

Then, the following equation holds in H1(∂ TA):

[zA] = [xA] + [yA]
= A1,1[lA] + A2,1[mA] + A1,2[lA] + A2,2[mA]
= (

A1,1 + A1,2
) [lA] + (

A2,1 + A2,2
) [mA] .

By Lemma 3.9 and the definition of ai , we have

A2,1 + A2,2

A1,1 + A1,2
= [a1, a2, · · · , an, 1] = q

p
.

And, two natural numbers A2,1 + A2,2 and A1,1 + A1,2 are coprime by Lemma 3.9. Thus, we
have A1,1 + A1,2 = p and A2,1 + A2,2 = q . �

3.4. b-type solid torus. In this subsection, we define the b-type solid torus for an
integer b. In § 5, it will be appeared that b - type solid torus corresponds to an obstruction
class of Seifert manifold.

For an integer b, the word w(b) is defined as LRbL̄. Then, we consider a meridian-
longitude system of the solid torus Vw(b).

COROLLARY 3.10. For the solid torus Vw(b), there is a meridian-longitude system
(mw(b), lw(b)) satisfying the following conditions in H1(∂ Vw(b)):

[ mw(b)] = b [xw(b)] + (b + 1) [yw(b)] ;
[ lw(b)] = (−b + 1) [xw(b)] − b [yw(b)] .

PROOF. We have ULUb
RUL̄ =

( −b + 1 b

−b 1 + b

)
. Theorem 3.5 completes the

proof. �

THEOREM 3.11. For the solid torus Vw(b) with the meridian-longitude system
(mw(b), lw(b)) given by Corollary 3.10, the loop zw(b) is the (1, 1)-type.

PROOF. The following relation holds in H1(∂ Vw(b)):

[zw(b)] = [yw(b)] + [xw(b)]
= {b + (−b + 1)} [xw(b)] + {(b + 1) + (−b)} [yw(b)]
= b[xw(b)] + (b + 1)[yw(b)] + (−b + 1)[xw(b)] + (−b)[yw(b)]
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= [mw(b)] + [lw(b)] .

�

NOTATION 3.12. We call Vw(b) as the b-type solid torus and denote it by V1,b.

4. One-vertex triangulation of Lens spaces

In this section, we construct systematically one-vertex triangulations of lens spaces. In
§ 4.1, we will define a homeomorphism ϕ = ϕ(w,w′) : ∂ Vw → ∂ Vw′ for two words w and
w′, and consider the manifold obtained by gluing two solid tori Vw and Vw′ by ϕ, denoted by
Vw ∪ϕ Vw′ . In § 4.2, we will show the following fact: for any pair of coprime natural numbers
p and q such that p > q , we can choose two words w and w′ such that the lens space
L(p, q) is homeomorphic to the manifold Vw ∪ϕ Vw′ . Then, we will consider a one-vertex
triangulation of the lens space L(p, q).

4.1. Gluing map ϕ. For i = 1, 2, we denote by Ui the boundary tori S1 × S1. Let hi

be an embedding such that Ui \hi(θ) ∼= Int (D2), where θ is a theta-curve shown in Figure 1.

LEMMA 4.1. Two embedding h1 and h2 induces a homeomorphism ϕ1,2 : U1 → U2

such that ϕ1,2 (h1(X)) = h2(X) for any edge X ∈ {α, β, γ } of θ .

PROOF. We define the map ϕ′′ : h1(θ) → h2(θ) by identifying h1(X) and h2(X),
where X = α, β, γ . Denote by N(hi(θ)) a regular neighborhood of hi(θ) in Ui . Then,
the map ϕ′′ can be extended to a homeomorphism ϕ′ : N (h1(θ)) → N (h2(θ)) such that

ϕ′ (h1(X)) = h2(X), where X = α, β, γ . Since Ui \ϕi(θ) ∼= Int (D2), the homeomorphism
ϕ′ can be extended to a homeomorphism ϕ : U1 → U2 such that ϕ (h1(X)) = h2(X), where
X = α, β, γ . �

Now, we define a gluing map ϕ of solid torus Vw and Vw′ . Recall that for any solid torus

Vw, a theta-curve θ (Figure 1) is embedded in ∂ Vw such that ∂ Vw \ θ ∼= Int(D2). Thus, for
two words w and w′, a homeomorphism ϕ(w,w′) : ∂ Vw → ∂ Vw′ is given by Lemma 4.1. So,
we define the manifold obtained by gluing Vw and Vw′ by ϕ(w,w′), denoted by Vw ∪ϕ Vw′ .
In the following subsection, we consider the manifold Vw ∪ϕ Vw′ .

4.2. The manifold obtained by gluing 0 Vw and Vw′ by ϕ. Let p, q be a pair of
coprime natural numbers such that p > q . There are many pairs of two words (w,w′) such
that Vw ∪ϕ Vw′ ∼= L(p, q), where L(p, q) is a lens space. Then, the following theorem

gives us a pair (w,w′), say w = L̄ and w′ = A(p, q), where the word A(p, q) is defined in
Theorem 3.6.

THEOREM 4.2. The manifold VL̄ ∪ϕ VA(p,q) is homeomorphic to the lens space

L(p, q). In particular, VL̄ ∪ϕ Vφ
∼= S3 and VL̄ ∪ϕ VL̄

∼= S2 × S1.
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PROOF. For convenience, we denote the word A(p, q) by A. By Theorem 3.5, there are
meridian-longitude systems (mL̄, lL̄) and (mA, lA) of the solid tori VL̄ and VA satisfying the
following relations in H1(∂ VL) and H1(∂ VA) respectively:

[mL̄] = −[xL̄] + [yL̄] ; (1)

[mA] = −A1,2[xA] + A1,1[yA] ; (2)

[ lA] = A2,2[xA] − A2,1[yA] , (3)

where Ai,j is the (i, j)-element of the matrix A(p,q), where A(p,q) is defined in the proof of
Theorem 3.6. According to the definition of the gluing map ϕ : ∂ VL̄ → ∂ VA, we obtain

ϕ(xL̄) = xA ; ϕ(yL̄) = yA . (4)

Let ϕ# : H1(∂ VL̄) → H1(∂ VA) be the isomorphism induced from the homeomorphism ϕ.
Using the equations (1), (2), (3) and (4), we have the following relation in H1(∂ VA).

[ϕ(mL̄)] = ϕ#([mL̄]) = ϕ#([yL̄]) + ϕ#([xL̄]) = [ϕ(yL̄)] + [ϕ(xL̄)]
= [yA] + [xA] = A1,1[lA] + A2,1[mA] + (A1,2[lA] + A2,2[mA])
= (A1,1 + A1,2)[lA] + (A2,1 + A2,2)[mA] .

By Lemma 3.9, two natural numbers A1,1 + A1,2 and A2,1 + A2,2 are coprime and

A2,1 + A2,2

A1,1 + A1,2
= [a1, a2, · · · , an, 1] = q

p
.

Thereby, the manifold VL̄ ∪ϕ VA is homeomorphic to the lens space L(p, q).

At last, we will show VL̄ ∪ϕ Vφ
∼= S3 and VL̄ ∪ϕ VL̄

∼= S2 × S1. By theorem 3.5, we get
[ϕ(mL̄)] = [mφ] + [lφ] and [ϕ(mL̄)] = [mL̄]. It completes the proof. �

Recall the definition Dw , see § 2.1 and 2.2. Let P be the 2-manifold obtained by gluing
(DL̄/fL̄) and (DA(p,q)/fA(p,q)) with ϕ. Then, P is a special spine of the lens space L(p, q) ∼=
VL̄ ∪ϕ VA(p,q), Thus, the dual complex of P in VL̄ ∪ϕ VA(p,q) is a one-vertex triangulation of
L(p, q).

5. One-vertex triangulation of Seifert manifolds

In this section, we construct systematically one-vertex triangulations of all orientable
Seifert manifolds with orientable base. Our construction is based on the following fact: any
orientable Seifert manifold is obtained by gluing the compact manifolds Mn, J and Vp,q

which are homeomorphic to (S2 −∐n
i=1 Int (D2

i ))×S1, (S1 ×S1 − Int(D2))×S1 and (p, q)-
type fibered solid torus.

In § 5.2 and 5.3, we consider the manifolds J and Mn respectively. In § 5.4, we define
the manifold M obtained by gluing Vpi,qi , Vb, J and Mn, see Notation 3.7 and 3.12 about
Vpi,qi and Vb, and consider a fiber structure and a one-vertex triangulation of M.
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FIGURE 17. K.

FIGURE 18. E := ∂B3 ∩ {z = 0}, S := ∂B3 ∩ {z = 1√
2
}, N := ∂B3 ∩ {z = − 1√

2
}.

5.1. (S2 − ∐3
i=1 Int (D2

i )) × S1. We use the notation K for the labeled 3-regular

graph shown in Figure 17. Suppose that K is embedded in ∂B3. We denote by Di the 2-disc

bounded by the circle αiβiγiαiβiγi in S2(= ∂ B3). Then, by removing D1, D2 and D3 from

S2(= ∂ B3), we get a 2-sphere with three holes. We denote it by DK. Analyzing the notion
of an identification map for a word diagram in § 2, we can consider an identification map fK
on ∂B3 and a compact 3-manifold K = B3/fK.

PROPOSITION 5.1. The manifold K is homeomorphic to (S2 − ∐3
i=1 Int (D2

i )) × S1.
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PROOF. Without loss of generality, we assume the following three conditions (a),(b),(c)

about the embedding of the graph K in S2(= ∂ B3):

(a) B3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1 };
(b) ∂B3 ∩ {z = 0}, ∂B3 ∩ {z = 1√

2
} and ∂B3 ∩ {z = − 1√

2
} are the bold circles E, N

and S shown in Figure 18 respectively.
We denote by AN(a, b), AS(a, b) the arcs in ∂ B3 defined by

A+(a, b) :=
{
(x, y, z) | x = 1√

2
cos θ, y = 1√

2
sin θ, z = 1√

2
, a < θ < b

}

A−(a, b) :=
{
(x, y, z) | x = 1√

2
cos θ, y = 1√

2
sin θ, z = − 1√

2
, a < θ < b

}
.

(c) The edges in the circles S and N satisfy the following conditions:

Y1 = A±
(

0,
2

9
π

)
; Z3 = A±

(
2

9
π,

4

9
π

)
; β3 = A±

(
4

9
π,

6

9
π

)
;

X1 = A±
(

6

9
π,

8

9
π

)
; Y3 = A±

(
8

9
π,

10

9
π

)
; β2 = A±

(
10

9
π,

12

9
π

)
;

Z1 = A±
(

12

9
π,

14

9
π

)
; X3 = A±

(
14

9
π,

16

9
π

)
; β1 = E±

(
16

9
π, 2π

)
.

Consider the flow generated by the vector field ∂/∂z on B3. A point a0 in Figure 19 is mapped
by the identification map fK to a1. And it is moved by the flow ∂/∂z and arrives at a2. After
that, it is mapped to a3 by fK and it turns back to the same point a by the flow ∂/∂z. Also,
any point in Int(A1) turns back to the same point. Similarly, any point in Int(B1), Int(C1),
Int(D1) and Int(E1) turns back to the same point respectively.

Then, by the method shown in § 4 in [6], we know that D′
K/fK is the orbit space obtained

by fK and ∂/∂z, see Figure 20, and it is embedded in K . Since D′
K/fK is homeomorphic to

S2− ∐3
i=1 Int(D2

i ), we get the manifold (S2−∐3
i=1 Int (D2

i ))×I by cutting K along D′
K/fK,

Thus, the manifold K is homeomorphic to (S2 − ∐3
i=1 Int (D2

i )) × S1. �

We define a fiber structure of K by the vector field ∂/∂z. Thus, the loop {(x, y, z) |
x = y = 0, −1 ≤ z ≤ 1}/fK is a fiber of K . So, the loops γkαk are homotopic to fibers of
K , where k = 1, 2, 3.

5.2. (S1 ×S1 − Int(D2))×S1. We consider the manifold (S1 ×S1 − Int (D2))×S1.
We use the notation DJ for the disc shown in Figure 21. Assume that DJ is embedded in

S2(= ∂B3). Then, an identification map fJ on S2(= ∂B3) is induced by identifying the
directed labeled edges of the DJ similar to § 5.1. Then, we consider a compact 3-manifold

J = B3/fJ .

PROPOSITION 5.2. The manifold J is homeomorphic to (S1 × S1 − Int (D2)) × S1.
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FIGURE 19. A, B, C, D and E. FIGURE 20. D′
K.

FIGURE 21. DJ .

PROOF. The proof is similar to Proposition 5.1. Suppose that the DJ is embedded in
the boundary of the unit ball. We consider the orbit space generated by the flow ∂/∂z. Then,

we have D′
J /fJ is homeomorphic to S1 × S1 − Int (D2). Thus, J is homeomorphic to

(S1 × S1 − Int (D2)) × S1. �

5.3. (S2−∐n
i=1 Int ( D2

i ))×S1. For a natural number n ≥ 3, we define the manifold

Mn. We prepare (n − 2) - copies K(3), K(4), · · · , K(n) of K , where K is homeomorphic to

(S2 − ∐3
i=1 Int (D2

i )) × S1 defined in § 5.1. For j = 3, 4, · · · , n, (C
(j)

1 , θ1), (C
(j)

2 , θ2) and

(C
(j)

3 , θ3) are pairs of a boundary component C
(j)
i of K(j) and the theta-curve θi (Figure 22)

embedded in C
(j)
i , where C

(j)
i is homeomorphic to S1 × S1. Since the theta-curve θi is

embedded in C
(j)
i such that C

(j)
i \ θi

∼= Int(D2), we can define homeomorphisms ϕ(j) :
C

(j)
3 → C

(j+1)
1 by Lemma 4.1 for j = 3, 4, · · · , n − 1. By using ϕ(j), Mn is defined as

K(3) ∪ϕ(3) K(4) ∪ϕ(4) · · · ∪ϕ(n−1) K(n).
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FIGURE 22. θi .

FIGURE 23. Gluing maps {ϕi}.

Note that the homeomorphisms ϕ(j) satisfy the conditions ϕ(j)(α3) = α1, ϕ(j)(β3) = β1

and ϕ(j)(γ3) = γ1, where θi = αi ∪ βi ∪ γi . Thus, the homeomorphism ϕ(j) is a fiber

preserving, and the manifold Mn is homeomorphic to (S2 − ∐n
i=1 Int (D2

i )) × S1.

5.4. The manifold obtained by gluing J , Vb, Vp,q and Mn. Let g and n be integers
such that g ≥ 0 and n ≥ 3. Then, we consider the manifold Mn+g . As shown in § 5.3, a theta-
curve θi (Figure 22) is embedded in each boundary component Ci of Mn+g such that Ci \ θi

∼=
Int (D2), where i = 1, 2, · · · , n+g . Recall the manifold J , Vb and Vp,q defined in § 5.2, § 3.4
and § 3.3 respectively. The boundary of each manifolds J , Vb and Vp,q is homeomorphic to

S1 × S1 and the theta-curve θ (Figure 1) is embedded in such that ∂X \ θ ∼= Int(D2
i ), where

X = J, Vb, Vp,q . Thus, by Lemma 4.1 there are n + g homeomorphisms { ϕi }n+g
i=1

ϕi :=
{

∂ Vpi,qi → Ci (1 ≤ i ≤ n) ,

∂ J → Ci (n + 1 ≤ i ≤ n + g) ,

see Figure 23. Thus, we define the manifold obtained by gluing
∐n

i=1 Vpi,qi ,
∐n+g

i=n+1 J and
Mn+g , denoted by M(Fg , (p1, q1), · · · , (pn, qn)). Then, we consider fiber structure of it.

1. In the case 1 ≤ i ≤ n

(a) pi �= 1
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Recall Vpi,qi , see Notation 3.7. By the definition of the gluing map ϕi , we

get ϕ−1
i (γiαi) = γα. Since the loop γiαi is a fiber of the manifold Mn+g ,

we regard the loop γα in ∂Vpi,qi as a fiber of the solid torus Vpi,qi . That is,
we decide a fiber structure of Vpi,qi by the loop γα. By Theorem 3.6, we have
[γα] = pi [li]+qi[mi] in H1(∂Vpi,qi ). So, Vpi,qi is (pi, qi) - type fibered solid
torus. Thus, the core of the solid torus Vpi,qi is the (pi, qi)-type singular fiber.

(b) pi = 1
Recall V1,b, see Notation 3.12. We get the following equation in H1(Ci) by
Corollary 3.10, where Ci is a boundary component of the manifold Kn+g .

[ϕi (mw(b))] = ϕ#
i ([mw(b)])

= ϕ#
i (b [xw(b)] + (b + 1) [yw(b)])

= b ϕ#([xw(b)]) + (b + 1) ϕ#([ yw(b)])
= b ϕ# ([α β]) + (b + 1) ϕ# ([γ β])
= b ϕ# ([β γ γα]) + (b + 1) ϕ# ([γ β])
= ϕ# ([γ β]) + b ϕ# ([γ α])
= [γi βi] + b [γi αi ] .

Recall the following fact shown in the proof of Proposition 5.1: the loop γiβi

is the intersection of Ci and a cross section of Mn+g . Since the loop γiᾱi is a
fiber of Mn+g , the core of Vb is a regular fiber corresponding to the obstruction
class b.

2. In the case n + 1 ≤ i ≤ n + g
The intersection of cross sections of J and Mn+g and ∂J and ∂Mn+g are the loops
βγ and βiγi respectively. Since the conditions ϕi(γβ) = γiβi holds, the genus of
base space of M(Fg , (p1, q1), · · · , (pn, qn)) is equal to g .

A one-vertex triangulation of M := M(Fg , (p1, q1), · · · , (pn, qn)) is constructed similar to
the lens space in § 4.2. That is, a one-vertex triangulation of M is the dual complex of the

2-manifold obtained by gluing
∐n

i=1 Dw(pi ,qi)/fw(pi ,qi),
∐g

i=1 DJ /fJ and
∐n+g

i=3 D
(i)

K /fK.

EXAMPLE.
1. Quaternionic space

S(S2, −1 ; (2, 1), (2, 1), (2, 1)) ∼= M(F0, (2, 1), (2, 1), (2, 1))

2. Brieskorn manifold Σ(2, 3, 5)

S(S2, −1 ; (2, 1), (3, 1), (5, 1)) ∼= M(F0, (2, 1), (3, 1), (5, 1))

3. S(S2, −2 ; (2, 1), (5, 3), (7, 5)) ∼= M(F0, (2, 1), (5, 2), (7, 3))
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