π_{1}-Equivalent Weak Zariski Pairs

Christophe EYRAL and Mutsuo OKA

Tokyo Metropolitan University

Abstract

Consider a moduli space $\mathcal{M}(\Sigma, d)$ of reduced curves in $\mathbf{C P}^{2}$ with a given degree d and having a prescribed configuration of singularities Σ. Let $C, C^{\prime} \in \mathcal{M}(\Sigma, d)$. The pair of curves $\left(C, C^{\prime}\right)$ is called a weak Zariski pair if the pairs of spaces $\left(\mathbf{C P}^{2}, C\right)$ and $\left(\mathbf{C P}^{2}, C^{\prime}\right)$ are not homeomorphic. There exists two classical ways to detect weak Zariski pairs: (i) showing that the generic Alexander polynomials $\Delta_{C}(t)$ and $\Delta_{C^{\prime}}(t)$ of C and C^{\prime} are different; (ii) showing that the fundamental groups $\pi_{1}\left(\mathbf{C P}^{2}-C\right)$ and $\pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}\right)$ are not isomorphic. In this paper, we give the first example of a weak Zariski pair $\left(C, C^{\prime}\right)$ such that $\pi_{1}\left(\mathbf{C P}^{2}-C\right)$ and $\pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}\right)$ are isomorphic (notice that such an isomorphism automatically implies $\Delta_{C}(t)=\Delta_{C^{\prime}}(t)$). We shall call such a pair a π_{1}-equivalent weak Zariski pair. The members C and C^{\prime} of our pair are reducible sextics with the following configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$. By the way, we determine the fundamental group $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-D\right)$ for any curve D in the moduli space $\mathcal{M}\left(\left\{D_{10}+A_{5}+A_{4}\right\}, 6\right)$. As an application, we give a new weak Zariski 4-ple (we recall that a 4-ple $\left(D_{1}, D_{2}, D_{3}, D_{4}\right)$ of curves in $\mathcal{M}(\Sigma, d)$ is called a weak Zariski 4-ple if for any $1 \leq i<j \leq 4$ the pairs of spaces $\left(\mathbf{C P}^{2}, D_{i}\right)$ and $\left(\mathbf{C P}^{2}, D_{j}\right)$ are not homeomorphic).

Introduction

Consider a moduli space $\mathcal{M}(\Sigma, d)$ of reduced curves in $\mathbf{C P}{ }^{2}$ with a given degree d and having a prescribed configuration of singularities Σ. In general, it is not easy to see if $\mathcal{M}(\Sigma, d)$ can be endowed with an algebraic structure and, in the case where it has such a structure, if it is irreducible or not. There are very few examples for which the irreducibility or the numbers of irreducible components is known (for examples see [H$]$). If $\mathcal{M}(\Sigma, d)$ has a weak Zariski pair $\left(C, C^{\prime}\right)$, then it is not irreducible since in this case the curves C and C^{\prime} of the pair necessarily belong to different irreducible components.

The notion of weak Zariski pair is used, in particular, in $[\mathrm{P}]$ and [O7]. The precise definition is as follows.

DEFINITION 0.1. Let C, C^{\prime} be two curves in $\mathcal{M}(\Sigma, d)$. One says that the pair $\left(C, C^{\prime}\right)$ is a weak Zariski pair if the pairs of spaces $\left(\mathbf{C P}^{2}, C\right)$ and $\left(\mathbf{C P}^{2}, C^{\prime}\right)$ are not homeomorphic.

[^0]Key words and phrases: singular plane curves, weak Zariski pairs, pencils of lines, monodromies, fundamental groups, Zariski-van Kampen theorem.

This definition is weaker than the definition of Zariski pairs introduced by Artal Bartolo in [A]: a pair $\left(C, C^{\prime}\right)$ of curves in $\mathcal{M}(\Sigma, d)$ is called a Zariski pair if there exist regular neighbourhoods $T(C)$ and $T\left(C^{\prime}\right)$ of C and C^{\prime}, respectively, such that the pairs $(T(C), C)$ and $\left(T\left(C^{\prime}\right), C^{\prime}\right)$ are homeomorphic while the pairs $\left(\mathbf{C P}^{2}, C\right)$ and $\left(\mathbf{C P}^{2}, C^{\prime}\right)$ are not homeomorphic. A Zariski pair is always a weak Zariski pair. In the case of irreducible curves the two notions coincide. The first example of Zariski pair appears in the works by Zariski [Z1,2,3]; the members C and C^{\prime} of the pair are irreducible 6-cuspidal sextics such that the cusps of C are on a conic while those of C^{\prime} are not on a conic. Then, several other examples were found by Artal Bartolo [A], Artal Bartolo - Carmona Ruber [AC], Oka [O1,2,4,6], Shimada [Sh], Tokunaga [T], Pho [P] (Pho considered weak Zariski pairs).

Given two curves C and C^{\prime} in $\mathcal{M}(\Sigma, d)$, there are two classical ways to detect if $\left(C, C^{\prime}\right.$) is a weak Zariski pair: (i) showing that the generic Alexander polynomials $\Delta_{C}(t)$ and $\Delta_{C^{\prime}}(t)$ of C and C^{\prime} are different; (ii) showing that the fundamental groups $\pi_{1}\left(\mathbf{C P}^{2}-C\right)$ and $\pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}\right)$ are not isomorphic. The computation of the Alexander polynomials is generally easier than those of the fundamental groups. However, there exist weak Zariski pairs $\left(C, C^{\prime}\right)$ such that the Alexander polynomials $\Delta_{C}(t)$ and $\Delta_{C^{\prime}}(t)$ coincide. These pairs are called Alexander-equivalent weak Zariski pairs. The first example of such a pair for reducible curves was given by Artal Bartolo - Carmona Ruber in [AC] (although they work with reducible curves their example in fact provides an Alexander-equivalent Zariski pair). The first example with irreducible curves is due to Oka [O4]; the members C and C^{\prime} of the pair are curves of degree 12 with 27 cusps; C is a generic (3,3)-covering of a 3 -cuspidal quartic and C^{\prime} is constructed using a 6 -cuspidal non-conical sextic. Another example can be found in [O6]; here, the members C and C^{\prime} of the pair are irreducible curves of degree 8 with 12 cusps.

In this paper, we give the first example of a weak Zariski pair $\left(C, C^{\prime}\right)$ where C and C^{\prime} are reducible curves such that $\pi_{1}\left(\mathbf{C P}^{2}-C\right)$ and $\pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}\right)$ are isomorphic (notice that such an isomorphism automatically implies $\left.\Delta_{C}(t)=\Delta_{C^{\prime}}(t)\right)$. We shall call such a pair a π_{1}-equivalent weak Zariski pair. The members C and C^{\prime} of our pair are sextics with the following configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$ (cf. Theorem 2.1). By the way, we determine the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-D\right)$ for any curve D in the moduli space $\mathcal{M}\left(\left\{D_{10}+A_{5}+A_{4}\right\}, 6\right)$ (cf. Theorem 9.1). As an application, we give a new weak Zariski 4-ple (cf. Theorem 6.1); we recall that a weak Zariski k-ple is a k-ple (D_{1}, \cdots, D_{k}) of curves in $\mathcal{M}(\Sigma, d)$ such that for any $1 \leq i<j \leq k$ the pairs of spaces $\left(\mathbf{C P}^{2}, D_{i}\right)$ and $\left(\mathbf{C P}^{2}, D_{j}\right)$ are not homeomorphic (cf. [O7]).

In [GLS], Greuel-Lossen-Shustin gave an example of a moduli $\mathcal{M}(\Sigma, d)$ with at least two irreducible components such that $\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \mathbf{Z} / d \mathbf{Z}$ for any curve $D \in \mathcal{M}(\Sigma, d)$, but they do not discuss about the topology of the pair $\left(\mathbf{C P}^{2}, D\right)$.

This paper is organized as follows. In Section 1, we recall the Zariski-van Kampen pencil method which we use to compute the fundamental groups. In Section 2, we give an example of π_{1}-equivalent weak Zariski pair (cf. Theorem 2.1 and Corollary 2.2). In Sections 4, 5, 7, 8 and 9 , we compute the fundamental groups $\pi_{1}\left(\mathbf{C P}^{2}-D\right)$ for every curve D in the moduli
space $\mathcal{M}\left(\left\{D_{10}+A_{5}+A_{4}\right\}, 6\right)(\mathrm{cf}$. Theorems 4.1, 5.1, 7.1, 8.1, 9.1 and Corollaries 4.2, 5.2, $7.2,8.2)$. Section 9 also contains a discussion about the connected components of $\mathcal{M}\left(\left\{D_{10}+\right.\right.$ $\left.A_{5}+A_{4}\right\}, 6$). In Section 6, we give an example of weak Zariski 4-ple (cf. Theorem 6.1 and Corollary 6.2). Notice that the proof of Theorem 2.1 (resp. Theorem 6.1) is an immediate consequence of Theorems 3.1, 4.1 and 5.1 (resp. Theorems 3.1, 4.1, 5.1, 7.1 and 8.1).

1. Zariski-van Kampen pencil method

In this section, we recall the classical Zariski-van Kampen theorem, and we give a nongeneric version of it. We also recall a useful result on the first homology of the complement of a plane curve.
1.1. Classical Zariski-van Kampen theorem. Let $F(X, Y, Z)$ be a reduced homogeneous polynomial of degree d, and let

$$
C:=\left\{(X: Y: Z) \in \mathbf{C P}^{2} \mid F(X, Y, Z)=0\right\}
$$

be the corresponding projective curve in $\mathbf{C} \mathbf{P}^{2}$. We consider two independent linear forms $l_{1}(X, Y, Z)$ and $l_{2}(X, Y, Z)$, and for every point $\tau:=(S: T)$ in $\mathbf{C} \mathbf{P}^{1}$ we denote by L_{τ} the projective line of $\mathbf{C P}^{2}$ defined by

$$
L_{\tau}:=\left\{(X: Y: Z) \in \mathbf{C P}^{2} \mid T l_{1}(X, Y, Z)-S l_{2}(X, Y, Z)=0\right\}
$$

The family of lines $\mathcal{L}:=\left(L_{\tau}\right)_{\tau \in \mathbf{C}}{ }^{1}$ is called the pencil generated by the linear forms l_{1} and l_{2}. The point $b_{0}:=L_{(0: 1)} \cap L_{(1: 0)}$, which belongs to every line of the pencil, is called the axis of \mathcal{L}. The pencil is said generic with respect to C if $b_{0} \notin C$. Hereafter, in Section 1, we shall assume that \mathcal{L} is generic with respect to C.

A member L_{τ} of \mathcal{L} is called a generic line with respect to C if it avoids the singularities of C and if it is transverse to the non-singular part of C; otherwise, it is called a singular line. If L_{τ} is generic, then it intersects C at exactly d points. If it is singular, then it intersects C at a singular point or it is tangent to C at some simple point. Notice that the set of singular lines is finite. If necessary, one may consider some generic lines of \mathcal{L} as "singular" ones. Let Ξ be the set of parameters $\tau \in \mathbf{C} \mathbf{P}^{1}$ corresponding to the singular lines, and let $L_{\tau_{0}}$ be a generic line (which we have not decided to consider as "singular").

As the base point for the fundamental group $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-C\right)$ we take the point b_{0}. It is well-known that there is a canonical action, called monodromy action, of $\pi_{1}\left(\mathbf{C P}^{1}-\Xi, \tau_{0}\right)$ on $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$ (see e.g. $\left.[\mathrm{O} 2,5]\right)$. The relations $\xi=\xi^{\sigma}$, for $\sigma \in \pi_{1}\left(\mathbf{C} \mathbf{P}^{1}-\Xi, \tau_{0}\right)$ and $\xi \in \pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$, are called the monodromy relations, where ξ^{σ} is the image of (σ, ξ) by the monodromy action. The classical Zariski-van Kampen theorem is as follows.

THEOREM 1.1.1 (cf. [Z1], [vK] and [C]). The inclusion map $L_{\tau_{0}}-C \hookrightarrow \mathbf{C P}^{2}-C$ induces an isomorphism

$$
\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right) / N \xrightarrow{\sim} \pi_{1}\left(\mathbf{C P}^{2}-C, b_{0}\right),
$$

Figure 1. Generators of $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$.

Figure 2. Generators of $\pi_{1}\left(\mathbf{C} \mathbf{P}^{1}-\Xi, \tau_{0}\right)$.
where N is the normal subgroup of $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$ generated by

$$
\left\{\xi^{-1} \xi^{\sigma} \mid \sigma \in \pi_{1}\left(\mathbf{C P}^{1}-\Xi, \tau_{0}\right), \xi \in \pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)\right\} .
$$

Theorem 1.1.1 can be rephrased in terms of a presentation by generators and relations as follows. We give a natural presentation of $\pi_{1}\left(L_{\tau_{0}}-C, b_{0}\right)$ (resp. $\left.\pi_{1}\left(\mathbf{C P}{ }^{1}-\Xi, \tau_{0}\right)\right)$ by d generators ξ_{1}, \cdots, ξ_{d} as in Figure 1 and the relation $\xi_{d} \cdots \xi_{1}=1$ (resp. by s generators $\sigma_{1}, \cdots, \sigma_{s}$ as in Figure 2 and the relation $\sigma_{s} \cdots \sigma_{1}=1$, where s is the cardinality of Ξ); ξ_{1}, \cdots, ξ_{d} are lassos around the d intersection points of $L_{\tau_{0}}$ with $C ; \sigma_{1}, \cdots, \sigma_{s}$ are lassos around the s parameters corresponding to the singular lines of the pencil ${ }^{1}$. Then, the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C, b_{0}\right)$ is presented by the generators ξ_{1}, \cdots, ξ_{d} and the relations $\xi_{d} \cdots \xi_{1}=1$ and $\xi_{i}=\xi_{i}^{\sigma_{j}}$ for all i and j.
1.2. A non-generic version of the Zariski-van Kampen theorem. We still use the notation and hypotheses of Section 1.1.

Let $\tau_{e}:=\left(S_{e}: T_{e}\right) \in \mathbf{C P}{ }^{1}-\left\{\tau_{0}\right\}$. We consider the reduced homogeneous polynomial $F^{\prime}(X, Y, Z)$ defined by

$$
F^{\prime}(X, Y, Z):=\left(T_{e} l_{1}(X, Y, Z)-S_{e} l_{2}(X, Y, Z)\right) F(X, Y, Z),
$$

and we denote by

$$
C^{\prime}:=\left\{(X: Y: Z) \in \mathbf{C P}^{2} \mid F^{\prime}(X, Y, Z)=0\right\}
$$

the corresponding projective curve in $\mathbf{C P}^{2}$. We have $C^{\prime}=C \cup L_{\tau_{e}}$. Obviously, the pencil \mathcal{L} is not generic with respect to C^{\prime}. A line L_{τ} of \mathcal{L} is called a generic line with respect to C^{\prime} if it is generic with respect to C and different from the line $L_{\tau_{e}}$; otherwise, it is called a singular

[^1]

Figure 3. Generators of $\pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)$.

Figure 4. Generators of $\pi_{1}\left(\mathbf{C P}^{1}-\Xi^{\prime}, \tau_{0}\right)$ if $\tau_{e} \notin \Xi$.

FIGURE 4^{\prime}. Generators of $\pi_{1}\left(\mathbf{C P}^{1}-\Xi^{\prime}, \tau_{0}\right)$ if $\tau_{e} \in \Xi$.
line. As the base point for the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}\right)$ we take a point b_{0}^{\prime} on the generic line $L_{\tau_{0}}$ sufficiently close to b_{0} but $b_{0}^{\prime} \neq b_{0}$.

Let $\tau_{\infty} \in \mathbf{C P}^{1}-\left(\Xi \cup\left\{\tau_{e}, \tau_{0}\right\}\right)$, and let $\Xi^{\prime}:=\Xi \cup\left\{\tau_{e}, \tau_{\infty}\right\}$. So, Ξ^{\prime} is the set of parameters $\tau \in \mathbf{C} \mathbf{P}^{1}$ such that L_{τ} is singular with respect to C^{\prime} or $\tau=\tau_{\infty}$.

We give a natural presentation of the fundamental group $\pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)$ by $d+1$ generators $\rho, \xi_{1}, \cdots, \xi_{d}$ as in Figure 3 and the relation $\rho \xi_{d} \cdots \xi_{1}=1$. The generators ξ_{1}, \cdots, ξ_{d} are lassos around the d intersection points of $L_{\tau_{0}}$ with C while the generator ρ is a lasso around the intersection point of $L_{\tau_{0}}$ with $L_{\tau_{e}}$ (i.e., the axis b_{0} of the pencil). Similarly, we give a natural presentation of $\pi_{1}\left(\mathbf{C} \mathbf{P}^{1}-\Xi^{\prime}, \tau_{0}\right)$ by $s+2$ generators $\theta, \mu, \sigma_{1}, \cdots, \sigma_{s}$ as in Figure 4 and the relation $\mu \theta \sigma_{s} \cdots \sigma_{1}=1$, if $\tau_{e} \notin \Xi$, or by $s+1$ generators $\mu, \sigma_{1}, \cdots, \sigma_{s}$ as in Figure 4^{\prime} and the relation $\mu \sigma_{s} \cdots \sigma_{1}=1$, if $\tau_{e} \in \Xi$. The generators $\sigma_{1}, \cdots, \sigma_{s}$ are lassos around the s points of Ξ, the generator μ is a lasso around τ_{∞}. If $\tau_{e} \notin \Xi$, then θ is a lasso around τ_{e}. If $\tau_{e} \in \Xi$, then there is $j_{0}, 1 \leq j_{0} \leq s$, such that $\sigma_{j_{0}}$ is a lasso around τ_{e}.

There is an action of $\pi_{1}\left(\mathbf{C} \mathbf{P}^{1}-\Xi^{\prime}, \tau_{0}\right)$ on $\pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)$. In this action, for each j, $1 \leq j \leq s$, and each $\xi \in \pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)$, the image of (σ_{j}, ξ) (resp. (θ, ξ)), denoted by $\xi^{\sigma_{j}}$ (resp. ξ^{θ}), is just the image of ξ by the local monodromy along σ_{j} (resp. along θ), as in the usual monodromy action. The image of (μ, ξ) is more complicated (it is defined by the
action of $\left(\theta \sigma_{s} \cdots \sigma_{1}\right)^{-1}$ if $\tau_{e} \notin \Xi$ or by the action of $\left(\sigma_{s} \cdots \sigma_{1}\right)^{-1}$ if $\left.\tau_{e} \in \Xi\right)$ but we do not need it for our purpose.

A non-generic version of the Zariski-van Kampen theorem is as follows.
THEOREM 1.2.1. The inclusion map $L_{\tau_{0}}-C^{\prime} \hookrightarrow \mathbf{C P}^{2}-C^{\prime}$ induces an isomorphism

$$
\pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right) / N^{\prime} \xrightarrow{\sim} \pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}, b_{0}^{\prime}\right),
$$

where N^{\prime} is the normal subgroup of $\pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)$ generated by:

- $\left\{\xi^{-1} \xi^{\sigma_{j}}, \rho^{-1} \xi^{-1} \rho \xi^{\theta} \mid j \in\{1, \cdots, s\}, \xi \in \pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)\right\}$, if $\tau_{e} \notin \Xi$;
- $\left\{\xi^{-1} \xi^{\sigma_{j}}, \rho^{-1} \xi^{-1} \rho \xi^{\sigma_{j_{0}}} \mid j \in\{1, \cdots, s\}-\left\{j_{0}\right\}, \xi \in \pi_{1}\left(L_{\tau_{0}}-C^{\prime}, b_{0}^{\prime}\right)\right\}$, if $\tau_{e} \in \Xi$.

In other words, the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C^{\prime}, b_{0}^{\prime}\right)$ is presented by the generators $\rho, \xi_{1}, \cdots, \xi_{d}$ and the following relations:

$$
\begin{aligned}
& \text { - if } \tau_{e} \notin \Xi,\left\{\begin{array}{l}
\rho \xi_{d} \cdots \xi_{1}=1, \\
\xi_{i}=\xi_{i}^{\sigma_{j}}, \quad \text { for all } i \text { and } j, \\
\rho^{-1} \xi_{i} \rho=\xi_{i}^{\theta}, \quad \text { for all } i
\end{array}\right. \\
& \bullet \text { if } \tau_{e} \in \Xi,\left\{\begin{array}{l}
\rho \xi_{d} \cdots \xi_{1}=1, \\
\xi_{i}=\xi_{i}^{\sigma_{j}}, \quad \text { for all } i \text { and all } j \neq j_{0}, \\
\rho^{-1} \xi_{i} \rho=\xi_{i}^{\sigma_{j 0}}, \quad \text { for all } i
\end{array}\right.
\end{aligned}
$$

Theorem 1.2.1 can be proved in the same way as the classical Zariski-van Kampen theorem. We thus omit the proof.

REmARK. There is also a discussion on non-generic Zariski-van Kampen theorems in [D, Remark (4.3.19)] but different from our setting.
1.3. Fundamental group and first homology. Let D be a reduced curve in $\mathbf{C P}^{2}$ with r irreducible components D_{1}, \cdots, D_{r} of degree d_{1}, \cdots, d_{r} respectively. By Lefschetz duality (cf. [Sp]), it is not difficult to see that the first integral homology group $H_{1}\left(\mathbf{C} \mathbf{P}^{2}-D ; \mathbf{Z}\right)$ is isomorphic to

$$
\mathbf{Z}^{r-1} \times\left(\mathbf{Z} / d_{0} \mathbf{Z}\right)
$$

where $d_{0}:=\operatorname{gcd}\left(d_{1}, \cdots, d_{r}\right)(\mathrm{cf} .[\mathrm{O} 5])$. On the other hand, by the Hurewicz theorem (cf. [Sp]), $H_{1}\left(\mathbf{C} \mathbf{P}^{2}-D ; \mathbf{Z}\right)$ is isomorphic to the quotient of $\pi_{1}\left(\mathbf{C P}^{2}-D\right)$ by the commutator subgroup. So, in the case where $\pi_{1}\left(\mathbf{C P}^{2}-D\right)$ is abelian, we have the isomorphism

$$
\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \mathbf{Z}^{r-1} \times\left(\mathbf{Z} / d_{0} \mathbf{Z}\right)
$$

1.4. Notation. For our purpose, we shall use only the pencil $\mathcal{L}_{X, Z}$ and $\mathcal{L}_{Y, Z}$ generated by the linear forms l_{X}, l_{Z} and l_{Y}, l_{Z}, respectively, where

$$
l_{X}(X, Y, Z)=X, \quad l_{Y}(X, Y, Z)=Y, \quad l_{Z}(X, Y, Z)=Z
$$

Let $L_{\infty}=\left\{(X: Y: Z) \in \mathbf{C} \mathbf{P}^{2} \mid Z=0\right\}$ be the line at infinity of $\mathbf{C} \mathbf{P}^{2}$. We shall identify $\mathbf{C} \mathbf{P}^{2}-L_{\infty}$ with the affine space \mathbf{C}^{2} and we shall consider on this space the affine coordinates $x:=X / Z$ and $y:=Y / Z$. In \mathbf{C}^{2}, the pencils $\mathcal{L}_{X, Z}$ and $\mathcal{L}_{Y, Z}$ are simply given by $\{x=\eta\}_{\eta \in \mathbf{C}}$ and $\{y=\eta\}_{\eta \in \mathbf{C}}$ respectively.

For any given parameter $\tau=(S: T) \in \mathbf{C} \mathbf{P}^{1}-\left\{\tau_{\infty}\right\} \simeq \mathbf{C}$, we shall also denote the line L_{τ} by L_{η} where $\eta=S / T$. In \mathbf{C}^{2}, the line L_{η} is simply defined by $x=\eta$ for the pencil $\mathcal{L}_{X, Z}$ and by $y=\eta$ for the pencil $\mathcal{L}_{Y, Z}$.

If $G(X, Y, Z)$ is a reduced homogeneous polynomial defining a curve D in $\mathbf{C P}^{2}$, then the affine equation of D is the equation $G(x, y, 1)=0$.

Hereafter, we shall always assume that ε is a sufficiently small strictly positive number.

2. A π_{1}-equivalent weak Zariski pair

Consider the sextics C_{1} and C_{2} defined by following affine equations:

$$
\begin{array}{ll}
C_{1}: & f_{1}(x, y):=f_{1}^{\prime}(x, y) f_{1}^{\prime \prime}(x, y)=0, \\
C_{2}: & f_{2}(x, y):=f_{2}^{\prime}(x, y) f_{2}^{\prime \prime}(x, y)=0,
\end{array}
$$

where $f_{1}^{\prime}, f_{1}^{\prime \prime}$ and $f_{2}^{\prime}, f_{2}^{\prime \prime}$ are given by

$$
\begin{aligned}
f_{1}^{\prime}(x, y):= & x, \\
f_{1}^{\prime \prime}(x, y):= & 26556 y^{4} x+19932 y^{2} x^{3}-14336 x^{3} y-7255 x^{4} y-38112 y^{3} x \\
& -31802 y^{3} x^{2}+13632 y^{2} x+35120 y^{2} x^{2}-8192 x^{2} y-12167 y^{5} \\
& +25392 y^{4}+704 x^{5}+4096 x^{4}+4096 y^{2}-17664 y^{3},
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}^{\prime}(x, y):= & y \\
f_{2}^{\prime \prime}(x, y):= & \frac{34600}{1331} y^{5}+\left(-\frac{6421}{121} x-\frac{81300}{1331}\right) y^{4} \\
& +\left(-\frac{96402}{1331} x^{2}+\frac{12963}{121} x+\frac{58800}{1331}\right) y^{3} \\
& +\left(\frac{20127}{121} x^{3}+\frac{116004}{1331} x^{2}-\frac{6663}{121} x-\frac{100}{11}\right) y^{2} \\
& +\left(\frac{65536}{1331} x^{4}-\frac{20127}{121} x^{3}-\frac{162}{11} x^{2}+x\right) y-\frac{16000}{121} x^{5} .
\end{aligned}
$$

The curve C_{1} has two irreducible components: a line C_{1}^{\prime} defined by the equation $f_{1}^{\prime}(x, y)=0$ and a quintic $C_{1}^{\prime \prime}$ defined by the equation $f_{1}^{\prime \prime}(x, y)=0$. The configuration of singularities of C_{1} is $\left\{D_{10}+A_{5}+A_{4}\right\}: D_{10}$ at the origin, A_{5} at $(0,16 / 23)$ and A_{4} at $(1,1)^{1}$. We show the real plane section of C_{1} in Figure 5 below (in the figures, we do not respect the numerical scale).

The curve C_{2} has also two irreducible components: a line C_{2}^{\prime} defined by the equation $f_{2}^{\prime}(x, y)=0$ and a quintic $C_{2}^{\prime \prime}$ defined by the equation $f_{2}^{\prime \prime}(x, y)=0$. The configuration of singularities of C_{2} is also $\left\{D_{10}+A_{5}+A_{4}\right\}: D_{10}$ at the origin, A_{5} at $(0,1)$ and A_{4} at $(1,2)$. We show the real plane section of C_{2} in Figure 12 below. Observe that, after the analytic change of coordinates $(x, y) \mapsto\left(x, y+1+\frac{128}{75} x^{2}\right)$, the equation of C_{2} near $(0,1)$ takes the form

$$
\frac{22500}{1331} y^{2}-\frac{1377}{121} x^{3} y+\frac{425984}{185625} x^{6}+\text { higher terms }=0
$$

So, as the leading term $\frac{22500}{1331} y^{2}-\frac{1377}{121} x^{3} y+\frac{425984}{185625} x^{6}$ has no real factorization, the point $(0,1)$ is an isolated point of the real plane section of C_{2}.

Notice that the curves C_{1} and C_{2} are not of torus type (for the definition, see e.g. [O3]).
THEOREM 2.1. The pair $\left(C_{1}, C_{2}\right)$ is a π_{1}-equivalent weak Zariski pair.
The proof of Theorem 2.1 follows immediately from Theorems 3.1, 4.1 and 5.1 below.
Let $\mathcal{M}:=\mathcal{M}\left(\left\{D_{10}+A_{5}+A_{4}\right\}, 6\right)$ be the moduli space of reduced sextics in $\mathbf{C} \mathbf{P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$. Let \mathcal{M}_{1} (resp. \mathcal{M}_{2}) be the connected component of \mathcal{M} containing the curve C_{1} (resp. C_{2}). Since the topology of the pair $\left(\mathbf{C P}^{2}, D\right)$ is independent on the choice of D in \mathcal{M}_{1} (resp. in \mathcal{M}_{2}) (cf. [Z4,5] and [LR]), Theorem 2.1 implies the following result.

Corollary 2.2. Any pair $\left(D_{1}, D_{2}\right)$, where $D_{1} \in \mathcal{M}_{1}$ and $D_{2} \in \mathcal{M}_{2}$, is a π_{1} equivalent weak Zariski pair.

3. Topology of C_{1} and C_{2}

The notation is as in Section 2.
THEOREM 3.1. The curves C_{1} and C_{2} are not homeomorphic. In particular $\left(C_{1}, C_{2}\right)$ is a weak Zariski pair.

Proof. First, we observe that the quintics $C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime}$ are rational curves (i.e., curves with genus 0). This follows immediately from the genus formula which can be stated as follows. Given an irreducible curve D with degree d and singular locus $\Sigma(D)$, the genus

[^2]$g(D)$ of D is given by the formula:
$$
2 g(D)=(d-1)(d-2)-\sum_{p \in \Sigma(D)}(\mu(D, p)+r(D, p)-1)
$$
where $\mu(D, p)$ and $r(D, p)$ are the Milnor number of D at p and the number of local irreducible components of D at p respectively (cf. $[\mathrm{M}]$ and $[\mathrm{BK}]$). In our case, notice that the configuration of singularities $\Sigma\left(C_{1}^{\prime \prime}\right)$ of $C_{1}^{\prime \prime}$ is $\left\{A_{7}+A_{4}\right\}$ (A_{7} at the origin, A_{4} at $(1,1)$) while the configuration $\Sigma\left(C_{2}^{\prime \prime}\right)$ of $C_{2}^{\prime \prime}$ is $\left\{A_{1}+A_{5}+A_{4}\right\}$ (A_{1} at the origin, A_{5} at $(0,1), A_{4}$ at $(1,2)$). The line C_{1}^{\prime} intersects with $C_{1}^{\prime \prime}$ at two points: at the origin, transversally with the tangent cone of $C_{1}^{\prime \prime}$ at O so that the singularity of C_{1} at O is D_{10}, and at $(0,16 / 23)$ where C_{1}^{\prime} is tangent to $C_{1}^{\prime \prime}$ with intersection multiplicity 3 so that the singularity of C_{1} at this point is A_{5}. The line C_{2}^{\prime} intersects $C_{2}^{\prime \prime}$ only at the origin and it is tangent to one of the branches of A_{1} with intersection multiplicity 5 so that the singularity of C_{2} at O is D_{10}.

So, topologically, $C_{1}^{\prime \prime}$ is the sphere \mathbf{S}^{2} with two points identified while $C_{2}^{\prime \prime}$ is \mathbf{S}^{2} with two pairs of points identified.

Now, observe that the line C_{1}^{\prime} intersects $C_{1}^{\prime \prime}$ at the (unique) exceptional point of $C_{1}^{\prime \prime}$ (i.e., the point where $C_{1}^{\prime \prime}$ is not a topological manifold) and at an "ordinary" point (i.e., a point where one has a structure of topological manifold), while the line C_{2}^{\prime} intersects $C_{2}^{\prime \prime}$ at only one point which is exceptional. So, the set of ordinary points of C_{1} is homeomorphic to the disjoint union

$$
\left(\mathbf{S}^{2}-2 \text { points }\right) \sqcup\left(\mathbf{S}^{2}-3 \text { points }\right)
$$

while the set of ordinary points of C_{2} is homeomorphic to the disjoint union

$$
\left(\mathbf{S}^{2}-1 \text { point }\right) \sqcup\left(\mathbf{S}^{2}-4 \text { points }\right)
$$

So, if there was a homeomorphism from C_{1} onto C_{2}, then (for example) the connected component $\mathbf{S}^{2}-\{2$ points $\}$ of the set of ordinary points of C_{1} would be sent homeomorphically onto one of the two connected components, $\mathbf{S}^{2}-\{1$ point $\}$ or $\mathbf{S}^{2}-\{4$ points $\}$, of the set of ordinary points of C_{2}. Of course, this is impossible.

REMARK. Notice that C_{1} and C_{2} have the same integral reduced homology:

$$
\tilde{H}_{q}\left(C_{i} ; \mathbf{Z}\right)=\left\{\begin{array}{ll}
\mathbf{Z}^{2} & \text { if } q=1 \text { or } 2 \\
0 & \text { otherwise }
\end{array} \quad(i=1,2)\right.
$$

4. Fundamental group of $\mathbf{C P}^{2}-C_{1}$

Again, the notation is as in Section 2.
THEOREM 4.1. The fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{1}\right)$ is isomorphic to \mathbf{Z}.

We still denote by \mathcal{M} the moduli space of reduced sextics in $\mathbf{C} \mathbf{P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$, and by \mathcal{M}_{1} the connected component of \mathcal{M} containing the curve C_{1}. Theorem 4.1 (together with $[\mathrm{Z} 4,5]$ and [LR] as above) implies the following result.

Corollary 4.2. For any curve $D \in \mathcal{M}_{1}$, we have $\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \mathbf{Z}$.
Proof of Theorem 4.1. We use the classical Zariski-van Kampen theorem (cf. Theorem 1.1.1) with the pencil $\mathcal{L}_{Y, Z}$ (cf. Notation 1.4). We recall that in $\mathbf{C}^{2}:=\mathbf{C} \mathbf{P}^{2}-L_{\infty}$ this pencil is given by $\{y=\eta\}_{\eta \in \mathbf{C}}$. Observe that the point b_{0} (i.e., the axis of the pencil) does not belong to the curve C_{1}. To prove Theorem 4.1, it suffices (cf. Section 1.3) to show that $\pi_{1}\left(\mathbf{C P}^{2}-C_{1}, b_{0}\right)$ is abelian.

The discriminant $\Delta_{x}\left(f_{1}\right)$ of f_{1} as a polynomial in x, which describes the singular lines of the pencil $\mathcal{L}_{Y, Z}$ (with respect to C_{1}), is a polynomial in y given by

$$
\Delta_{x}\left(f_{1}\right)(y)=a_{1} y^{14}\left(a_{2} y^{3}+a_{3} y^{2}+a_{4} y+a_{5}\right)(23 y-16)^{6}(y-1)^{7}
$$

Of course, we know the numbers $a_{i}(1 \leq i \leq 5)$ but we do not write them here because they are too big; we observe, nevertheless, that $\Delta_{x}\left(f_{1}\right)$ has six distinct real roots:

$$
\eta_{1}=0, \quad \eta_{2}=0.683 \cdots, \quad \eta_{3}=0.695 \cdots, \quad \eta_{4}=0.754 \cdots, \quad \eta_{5}=1, \quad \eta_{6}=1.085 \cdots
$$

The singular lines of the pencil are the lines $L_{\eta_{1}}, \cdots, L_{\eta_{6}}$ corresponding to these six roots.
We take generators ξ_{1}, \cdots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{5}+\varepsilon}-C_{1}, b_{0}\right)$ (which are also generators of $\left.\pi_{1}\left(\mathbf{C P}^{2}-C_{1}, b_{0}\right)\right)$ as in Figure $6 ; \xi_{1}, \cdots, \xi_{5}$ are lassos for $C_{1}^{\prime \prime}$ and ξ_{6} is a lasso for the line component C_{1}^{\prime}.

We first look at the monodromy relations around $L_{\eta_{6}}$ (obtained when y moves on the real axis from $y:=\eta_{5}+\varepsilon \rightarrow \eta_{6}-\varepsilon$, then runs once counter-clockwise on the circle $\left|y-\eta_{6}\right|=\varepsilon$, and then comes back on the real axis from $y:=\eta_{6}-\varepsilon \rightarrow \eta_{5}+\varepsilon$). In Figure 7 we show how the generators at $y=\eta_{5}+\varepsilon$ are deformed when y moves on the real axis from $y:=\eta_{5}+\varepsilon \rightarrow$ $\eta_{6}-\varepsilon$. Then, to read the monodromy relations around $L_{\eta_{6}}$, it suffices to observe that the line $L_{\eta_{6}}$ is tangent to the curve at the simple point p_{0} (cf. Figure 5) and that the intersection multiplicity $I\left(L_{\eta_{6}}, C_{1} ; p_{0}\right)$ of $L_{\eta_{6}}$ with C_{1} at p_{0} is equal to 2 . Thus, by the implicit functions

Figure 5. Real plane section of C_{1}.

Figure 6. Generators at $y=\eta_{5}+\varepsilon$.
theorem, the germ $\left(C_{1}, p_{0}\right)$ is topologically equivalent to the germ $\left(\left\{y=-x^{2}\right\}, O\right)$. The monodromy relations around $L_{\eta_{6}}$ thus give the relation

$$
\begin{equation*}
\xi_{5}=\xi_{3} \xi_{2} \xi_{3}^{-1} \tag{4.3}
\end{equation*}
$$

To read the monodromy relations around $L_{\eta_{5}}$, we look at the Puiseux parametrization of C_{1} at $(1,1)$:

$$
\left\{\begin{array}{l}
y=1+t^{4} \\
x=1+\frac{2}{19} \sqrt{38} t^{2}+\frac{162}{361} 38^{(1 / 4)} \sqrt{3} t^{3}+\text { higher terms }
\end{array}\right.
$$

When $y=1+\varepsilon \exp (i \theta)$ moves around $\eta_{5}=1 \in(\mathbf{C}, y)$ once counter-clockwise, the topological behavior of the four points near $1 \in(\mathbf{C}, x)$ (cf. Figure 6) looks like the movement of four satellites accompanying two planets, two satellites around each planet corresponding to $t=\varepsilon^{1 / 4} \exp (i v), v=\theta / 4, \theta / 4+\pi / 2, \theta / 4+\pi, \theta / 4+(3 \pi) / 2$. The movement of the planets is described by the term $\frac{2}{19} \sqrt{38} t^{2}$; each of them do (1/2)-turn counter-clockwise around the sun $(\approx 1 \in(\mathbf{C}, x))$. The movement of each satellite around its planet is described by the term $\frac{162}{361} 38^{(1 / 4)} \sqrt{3} t^{3}$; each of them does (3/4)-turn counter-clockwise around its planet. So, the monodromy relations around $L_{\eta_{5}}$ give the relations

$$
\begin{align*}
\xi_{1} & =\xi_{4} \\
\xi_{2} & =\xi_{4} \xi_{3} \xi_{4}^{-1} \\
\xi_{3} & =\left(\xi_{4} \xi_{3} \xi_{2}\right) \xi_{1}\left(\xi_{4} \xi_{3} \xi_{2}\right)^{-1} \tag{4.4}\\
& =\left(\xi_{1} \xi_{3}\right)^{2} \xi_{1}\left(\xi_{1} \xi_{3}\right)^{-2} \quad(\text { by the two previous relations }) .
\end{align*}
$$

In order to read the monodromy relations around $L_{\eta_{4}}$, we first show in Figure 8 how the generators at $y=\eta_{5}+\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{5}\right|=\varepsilon$. Now, we also need to know how the generators at $y=\eta_{5}-\varepsilon$ are deformed when y moves on the real axis from $y:=\eta_{5}-\varepsilon \rightarrow \eta_{4}+\varepsilon$. This is described by the following lemma.

Figure 7. Generators at $y=\eta_{6}-\varepsilon$.

Figure 8. Generators at $y=\eta_{5}-\varepsilon$.

LEMMA 4.5. When y moves on the real axis from $y:=\eta_{5}-\varepsilon \rightarrow \eta_{4}+\varepsilon$, the generators at $y=\eta_{5}-\varepsilon$ (cf. Figure 8) are deformed as in Figure 9.

Proof. We consider the polynomial

$$
h(u, v, y):=f_{1}(u+i v, y)
$$

for u, v, y real. We denote by $f_{1 e}(u, v, y)$ and $f_{1 o}(u, v, y)$ the real and the imaginary part of $h(u, v, y)$ respectively. They have degree 6 and 5 respectively in v. Suppose that there exists an $y_{0} \in\left[\eta_{4}+\varepsilon, \eta_{5}-\varepsilon\right]$ such that four complex solutions of the equation (in $\left.x\right) f_{1}\left(x, y_{0}\right)=0$ are on a same vertical line $u=u_{0}$ in the complex plane $(\mathbf{C}, x=u+i v)$. This implies that the equations (in v)

$$
f_{1 e}\left(u_{0}, v, y_{0}\right)=f_{1 o}\left(u_{0}, v, y_{0}\right)=0
$$

have four common real solutions $v_{1}, v_{2}, v_{3}, v_{4}$. These solutions are not 0 since the equation (in y) $\Delta_{x}\left(f_{1}\right)(y)=0$ has no solution on $\left[\eta_{4}+\varepsilon, \eta_{5}-\varepsilon\right]$. Thus, the equations (in v)

$$
f_{1 e}\left(u_{0}, v, y_{0}\right)=f_{1 o o}\left(u_{0}, v, y_{0}\right)=0
$$

where $f_{1 o o}(u, v, y):=f_{1 o}(u, v, y) / v$ (notice that v divides $f_{1 o}(u, v, y)$, and thus $f_{1 o o}(u, v, y)$ is a polynomial), have also $v_{1}, v_{2}, v_{3}, v_{4}$ as common solutions. As $f_{10 o}$ has degree 4 in v, this implies that $f_{1 o o}\left(u_{0}, v, y_{0}\right)$ divides $f_{1 e}\left(u_{0}, v, y_{0}\right)$. Thus, the remainder $R(u, v, y)$ of $f_{1 e}$ by $f_{1 o o}$, as a polynomial of v, must be identically 0 for $u=u_{0}$ and $y=y_{0}$ (of course, R is written as $R=R^{\prime} / R^{\prime \prime}$, where R^{\prime} is a polynomial in u, v, y, while $R^{\prime \prime}$ is a polynomial just depending on u and y). By an easy computation, we see that $R=\left(R_{2}^{\prime} / R_{2}^{\prime \prime}\right) v^{2}+\left(R_{0}^{\prime} / R_{0}^{\prime \prime}\right)$, where $R_{2}^{\prime}, R_{2}^{\prime \prime}, R_{0}^{\prime}$ and $R_{0}^{\prime \prime}$ are polynomials in u and y. Thus, (u_{0}, y_{0}) is a common real solution of the equations

$$
\begin{equation*}
R_{2}^{\prime}(u, y)=R_{0}^{\prime}(u, y)=0 . \tag{4.6}
\end{equation*}
$$

This implies that y_{0} is a root of the resultant $\operatorname{Res}(y)$ of the polynomials $u \mapsto R_{2}^{\prime}(u, y)$ and $u \mapsto R_{0}^{\prime}(u, y)$. Note that the condition $\operatorname{Res}\left(y_{0}\right)=0$ is necessary to have a real partner u_{0} such that $R_{2}^{\prime}\left(u_{0}, y_{0}\right)=R_{0}^{\prime}\left(u_{0}, y_{0}\right)=0$, but it is not sufficient since the possible partner u_{0} might be not real. There are three real solutions y_{01}, y_{02}, y_{03} of the equation $\operatorname{Res}(y)=0$ on the interval $\left[\eta_{4}+\varepsilon, \eta_{5}-\varepsilon\right]$. Each of them gives a real number, say $u_{0 j}$ for $y_{0 j}(1 \leq j \leq 3)$, such that $\left(u_{0 j}, y_{0 j}\right)(1 \leq j \leq 3)$ are three solutions of (4.6). But none of these three solutions gives four real roots v of the polynomial $v \mapsto f_{1 o o}\left(u_{0}, v, y_{0}\right)$. Thus, we cannot have an overcrossing of the four (purely) complex roots on $\left[\eta_{4}+\varepsilon, \eta_{5}-\varepsilon\right]$. This completes the proof of Lemma (4.5).

The monodromy relations around $L_{\eta_{4}}$ thus give the relation

$$
\xi_{1}=\left(\xi_{6} \xi_{5}\right) \xi_{3}\left(\xi_{6} \xi_{5}\right)^{-1}
$$

We shall not need the monodromy relations around $L_{\eta_{3}}$ but in order to read the monodromy relations around $L_{\eta_{2}}$, we need to know how the generators at $y=\eta_{4}+\varepsilon$ are deformed

Figure 9. Generators at $y=\eta_{4}+\varepsilon$.

Figure 10. Generators at $y=\eta_{2}+\varepsilon$.

Figure 11. Generators at $y=\eta_{1}+\varepsilon$.
when y moves as follows: half-turn counter-clockwise on the circle $\left|y-\eta_{4}\right|=\varepsilon$; on the real axis from $y:=\eta_{4}-\varepsilon \rightarrow \eta_{3}+\varepsilon$; half-turn counter-clockwise on the circle $\left|y-\eta_{3}\right|=\varepsilon$; on the real axis from $y:=\eta_{3}-\varepsilon \rightarrow \eta_{2}+\varepsilon$. This deformation is shown in Figure 10. To see the movement of the generators when y does half-turn counter-clockwise on the circle $\left|y-\eta_{3}\right|=\varepsilon$, just observe that near the A_{5}-singularity $(0,16 / 23)$ the curve has two branches K_{1} and K_{2}, corresponding to the line C_{1}^{\prime} and the quintic $C_{1}^{\prime \prime}$ respectively, given by

$$
\begin{aligned}
& K_{1}: x=0 \\
& K_{2}: x=-\frac{6436343}{15552}\left(y-\frac{16}{23}\right)^{3}+\text { higher terms }
\end{aligned}
$$

The monodromy relations around $L_{\eta_{2}}$ give the relations

$$
\xi_{1}^{-1} \xi_{5} \xi_{1}=\left(\xi_{6} \xi_{1}\right)^{-2} \xi_{1}\left(\xi_{6} \xi_{1}\right)^{2}
$$

To read the monodromy relations around $L_{\eta_{1}}$, we first need to know how the generators at $y=\eta_{2}+\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{2}\right|=\varepsilon$, then moves on the real axis from $y:=\eta_{2}-\varepsilon \rightarrow \eta_{1}+\varepsilon$. This deformation is shown in Figure

11, where (use the previous relation)

$$
\begin{aligned}
& \zeta_{1}:=\left(\xi_{3} \xi_{1} \xi_{3}\right)^{-1} \xi_{1}\left(\xi_{3} \xi_{1} \xi_{3}\right) \\
& \zeta_{2}:=\left(\xi_{6} \xi_{1}\right)^{-2} \xi_{1}^{-1}\left(\xi_{6} \xi_{1}\right)^{3} \\
& \zeta_{3}:=\left(\xi_{6} \xi_{1}\right)^{-2} \xi_{1}\left(\xi_{6} \xi_{1}\right)^{2} \\
& \zeta_{4}:=\left(\xi_{6} \xi_{1}\right)^{-1} \xi_{1}\left(\xi_{6} \xi_{1}\right)
\end{aligned}
$$

To see the deformation when y moves on the real axis from $y:=\eta_{2}-\varepsilon \rightarrow \eta_{1}+\varepsilon$, just proceed as in Lemma 4.5.

Now, we observe that near the origin the curve has three branches K_{3}, K_{4} and K_{5} given by

$$
\begin{aligned}
& K_{3}: y=x^{2}-\frac{101}{64} x^{3}+\frac{3}{256}\left(\frac{11011}{32}+\frac{27}{32} i \sqrt{15}\right) x^{4}+\text { higher terms } \\
& K_{4}: y=x^{2}-\frac{101}{64} x^{3}+\frac{3}{256}\left(\frac{11011}{32}-\frac{27}{32} i \sqrt{15}\right) x^{4}+\text { higher terms } \\
& K_{5}: x=0
\end{aligned}
$$

An easy computation shows that the Puiseux parametrizations of K_{3} and K_{4} at the origin are given by

$$
\begin{array}{ll}
K_{3}: y=t^{2}, & x=b_{1} t+b_{2} t^{2}+b_{3} t^{3}+\text { higher terms } \\
K_{4}: y=t^{2}, & x=b_{1}^{\prime} t+b_{2}^{\prime} t^{2}+b_{3}^{\prime} t^{3}+\text { higher terms }
\end{array}
$$

for some complex numbers b_{i} and b_{i}^{\prime} such that $b_{i}=b_{i}^{\prime}$ for $1 \leq i \leq 2$, the number $b_{1}=b_{1}^{\prime}$ is non-zero, and $b_{3} \neq b_{3}^{\prime}$. Put

$$
\omega=\xi_{3} \zeta_{1}, \quad \omega^{\prime}=\zeta_{4} \zeta_{3}, \quad \Omega=\omega^{\prime} \zeta_{2} \omega
$$

The equations above show that the monodromy relations around $L_{\eta_{1}}$ give the relations

$$
\begin{align*}
& \zeta_{1}=\zeta_{4} \zeta_{3} \zeta_{4}^{-1} \\
& \xi_{3}=\omega^{\prime} \zeta_{4} \omega^{\prime-1} \\
& \zeta_{2}=\omega^{\prime} \zeta_{2} \omega^{\prime-1} \tag{4.7}\\
& \zeta_{3}=\Omega \xi_{3} \zeta_{1} \xi_{3}^{-1} \Omega^{-1} \\
& \zeta_{4}=(\Omega \omega) \xi_{3}(\Omega \omega)^{-1}
\end{align*}
$$

Now, we have enough relations to conclude that the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{1}, b_{0}\right)$ is abelian. The first and the second relations of (4.7) imply

$$
\omega=\omega^{\prime}
$$

The vanishing relation at infinity, $\xi_{1} \Omega=1$, thus implies $\omega \xi_{1}=\left(\omega \zeta_{2}\right)^{-1}$. Since $\omega \zeta_{2}=\zeta_{2} \omega$ (third relation of (4.7)), one deduces

$$
\xi_{1} \omega=\omega \xi_{1}
$$

In other words, $\xi_{3}^{-1}\left(\xi_{1} \xi_{3}\right)^{2}=\xi_{1}^{-1} \xi_{3}^{-1}\left(\xi_{1} \xi_{3}\right)^{2} \xi_{1}$. Now, by the third relation of (4.4), we have $\xi_{3}\left(\xi_{1} \xi_{3}\right)^{2}=\left(\xi_{1} \xi_{3}\right)^{2} \xi_{1}$. So, the previous relation implies $\xi_{1}=\xi_{3}$. Then, the first and the second relations of (4.4) imply $\xi_{1}=\xi_{2}$, the relation (4.3) shows $\xi_{1}=\xi_{5}$, and the vanishing relation at infinity gives $\xi_{6}=\xi_{1}^{-5}$.

The fundamental group $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-C_{1}, b_{0}\right)$ is thus generated by a single generator, and consequently it is abelian.

5. Fundamental group of $\mathbf{C} \mathbf{P}^{2}-C_{2}$

Again, the notation is as in Section 2.
THEOREM 5.1. The fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{2}\right)$ is isomorphic to \mathbf{Z}.
We still denote by \mathcal{M} the moduli space of reduced sextics in $\mathbf{C} \mathbf{P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$, and by \mathcal{M}_{2} the connected component of \mathcal{M} containing the curve C_{2}. As above, Theorem 5.1 implies the following result.

COROLLARY 5.2. For any curve $D \in \mathcal{M}_{2}$, we have $\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \mathbf{Z}$.
PROOF OF THEOREM 5.1. We use the non-generic version of the Zariski-van Kampen theorem (cf. Theorem 1.2.1) with the pencil $\mathcal{L}_{Y, Z}$ (cf. Notation 1.4). We recall that in $\mathbf{C}^{2}:=$ $\mathbf{C} \mathbf{P}^{2}-L_{\infty}$ this pencil is given by $\{y=\eta\}_{\eta \in \mathbf{C}}$. Pencil $\mathcal{L}_{Y, Z}$ is not generic with respect to the curve C_{2}. Notice, nevertheless, that b_{0} does not belong to the quintic $C_{2}^{\prime \prime}$. To prove Theorem 5.1, it suffices (cf. Section 1.3) to show that the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{2}\right)$ is abelian. We recall that as the base point for $\pi_{1}\left(\mathbf{C P}^{2}-C_{2}\right)$ we take a point b_{0}^{\prime} on a generic line such that b_{0}^{\prime} is sufficiently close to b_{0} but $b_{0}^{\prime} \neq b_{0}$ (cf. Section 1.2 and below).

The discriminant $\Delta_{x}\left(f_{2}\right)$ of f_{2} as a polynomial in x, which describes the singular lines of the pencil $\mathcal{L}_{Y, Z}$ (with respect to C_{2}), is a polynomial in y given by

$$
\Delta_{x}\left(f_{2}\right)(y)=a_{1} y^{13}(y-2)^{5}(y-1)^{8}\left(a_{2} y^{2}+a_{3} y+a_{4}\right)
$$

Again, of course, we know the numbers $a_{i}(1 \leq i \leq 4)$ but we do not write them here because they are too big; we observe, nevertheless, that $\Delta_{x}\left(f_{2}\right)$ has five distinct real roots:

$$
\eta_{1}=0, \quad \eta_{2}=0.001 \cdots, \quad \eta_{3}=1, \quad \eta_{4}=1.954 \cdots, \quad \eta_{5}=2
$$

The singular lines of the pencil are the lines $L_{\eta_{1}}, \cdots, L_{\eta_{5}}$ corresponding to these five roots.
We take generators $\rho, \xi_{1}, \cdots, \xi_{5}$ of the fundamental group $\pi_{1}\left(L_{\eta_{2}-\varepsilon}-C_{2}, b_{0}^{\prime}\right)$ as in Figure $13 ; \xi_{1}, \cdots, \xi_{5}$ are lassos for $C_{2}^{\prime \prime}$, while ρ is a lasso for the line component C_{2}^{\prime}.

Figure 12. Real plane section of C_{2}.

Figure 13. Generators at $y=\eta_{2}-\varepsilon$.

Figure 14. Generators at $y=\eta_{1}+\varepsilon$.

As above, the monodromy relations around $L_{\eta_{2}}$ give the relation

$$
\xi_{2}=\xi_{1} .
$$

To read the monodromy relations around $L_{\eta_{1}}$, we first show in Figure 14 how the generators at $y=\eta_{2}-\varepsilon$ are deformed when y moves on the real axis from $y:=\eta_{2}-\varepsilon \rightarrow \eta_{1}+\varepsilon$. Then we observe that, at the origin, the curve has three branches K_{1}, K_{2} and K_{3} given by

$$
\begin{aligned}
& K_{1}: y=0, \\
& K_{2}: y=t, \quad x=\frac{100}{11} t+\text { higher terms } \\
& K_{3}: y=t^{4}, \quad x=\left(\frac{121}{16000}\right)^{(1 / 4)} t+\text { higher terms } .
\end{aligned}
$$

One deduces that the monodromy relations around $L_{\eta_{1}}$ give the relations

$$
\begin{align*}
& \rho^{-1} \xi_{1} \rho=\xi_{3} \xi_{1} \xi_{3}^{-1} \\
& \rho^{-1} \xi_{1} \rho=\xi_{3} \\
& \rho^{-1} \xi_{3} \rho=\xi_{4} \tag{5.3}\\
& \rho^{-1} \xi_{4} \rho=\xi_{5} \\
& \rho^{-1} \xi_{5} \rho=\left(\xi_{5} \xi_{4} \xi_{3} \xi_{1}\right) \xi_{1}\left(\xi_{5} \xi_{4} \xi_{3} \xi_{1}\right)^{-1}
\end{align*}
$$

We can already conclude that the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{2}, b_{0}^{\prime}\right)$ is abelian. Indeed, the two first relations in (5.3) immediately imply $\xi_{3}=\xi_{1}$. By the third relation, we then have $\xi_{4}=\xi_{3}$. The fourth relation thus shows $\xi_{4}=\xi_{5}$. And the big circle relation $\rho \xi_{5} \xi_{4} \xi_{3} \xi_{2} \xi_{1}=1$ then gives $\rho=\xi_{1}^{-5}$. So, the fundamental group $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-C_{2}, b_{0}^{\prime}\right)$ is generated by a single generator, and consequently it is abelian.

6. A weak Zariski 4-ple

Consider the sextics C_{3} and C_{4} defined by following affine equations:

$$
\begin{aligned}
& C_{3}: f_{3}(x, y):=f_{3}^{\prime}(x, y) f_{3}^{\prime \prime}(x, y)=0 \\
& C_{4}: f_{4}(x, y):=f_{4}^{\prime}(x, y) f_{4}^{\prime \prime}(x, y) f_{4}^{\prime \prime \prime}(x, y)=0
\end{aligned}
$$

where $f_{3}^{\prime}, f_{3}^{\prime \prime}$ and $f_{4}^{\prime}, f_{4}^{\prime \prime}, f_{4}^{\prime \prime \prime}$ are given by

$$
\begin{aligned}
f_{3}^{\prime}(x, y):= & y^{2}+y+\frac{128}{11} x^{2} \\
f_{3}^{\prime \prime}(x, y):= & -\frac{184}{33} y^{4}+\left(\frac{347}{11} x-\frac{272}{33}\right) y^{3}+\left(-\frac{24124}{363} x^{2}+\frac{358}{11} x-\frac{8}{3}\right) y^{2} \\
& +\left(\frac{6916}{121} x^{3}-\frac{1076}{33} x^{2}+x\right) y-\frac{6656}{363} x^{4}+\frac{128}{11} x^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{4}^{\prime}(x, y):= & x \\
f_{4}^{\prime \prime}(x, y):= & y, \\
f_{4}^{\prime \prime \prime}(x, y):= & -x^{4}-8 y+36 y^{2}-54 y^{3}+27 y^{4}+3 x y-8 x y^{3}-6 y x^{2} \\
& +6 y^{2} x^{2}+4 y x^{3} .
\end{aligned}
$$

The curve C_{3} has two irreducible components: a conic C_{3}^{\prime} defined by the equation $f_{3}^{\prime}(x, y)=0$ and a quartic $C_{3}^{\prime \prime}$ defined by the equation $f_{3}^{\prime \prime}(x, y)=0$. The configuration of singularities of C_{3} is $\left\{D_{10}+A_{5}+A_{4}\right\}: D_{10}$ at the origin, A_{5} at $(0,-1)$ and A_{4} at $(1,1)$. We show the real plane section of C_{3} in Figure 15 below.

The curve C_{4} has three irreducible components: two lines C_{4}^{\prime} and $C_{4}^{\prime \prime}$ defined by the equations $x=0$ and $y=0$ respectively, and a quartic $C_{4}^{\prime \prime \prime}$ defined by the equation $f_{4}^{\prime \prime \prime}(x, y)=$ 0 . The configuration of singularities of C_{4} is also $\left\{D_{10}+A_{5}+A_{4}\right\}: D_{10}$ at the origin, A_{5} at $(0,2 / 3)$ and A_{4} at $(1 / 2,1 / 2)$. We show the real plane section of C_{4} in Figure 21 below.

Notice that the curves C_{3} and C_{4} are not of torus type.
THEOREM 6.1. The 4-ple $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$, where C_{1}, C_{2} are the sextics given in Section 2 and C_{3}, C_{4} the sextics defined above, is a weak Zariski 4-ple.

The proof of Theorem 6.1 follows immediately from Theorems 3.1, 4.1 and 5.1 above and Theorems 7.1 and 8.1 below.

We still denote by \mathcal{M} the moduli space of reduced sextics in $\mathbf{C P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$, and by \mathcal{M}_{1} and \mathcal{M}_{2} the connected component of \mathcal{M} containing the curves C_{1} and C_{2} respectively. Let \mathcal{M}_{3} and \mathcal{M}_{4} be the connected component of \mathcal{M} containing the curves C_{3} and C_{4} respectively. Theorem 6.1 has the following immediate corollary.

Corollary 6.2. Any 4-ple $\left(D_{1}, D_{2}, D_{3}, D_{4}\right)$, where $D_{i} \in \mathcal{M}_{i}$ for $1 \leq i \leq 4$, is a weak Zariski 4-ple.

7. Fundamental group of $\mathbf{C P}^{2}-C_{3}$

The notation is as in Section 6.
THEOREM 7.1. The fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{3}\right)$ is isomorphic to $\mathbf{Z} \times(\mathbf{Z} / 2 \mathbf{Z})$.
We still denote by \mathcal{M} the moduli space of reduced sextics in $\mathbf{C P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$, and by \mathcal{M}_{3} the connected component of \mathcal{M} containing the curve C_{3}. Theorem 7.1 implies the following result.

Corollary 7.2. For any curve $D \in \mathcal{M}_{3}$, we have the following isomorphism: $\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \mathbf{Z} \times(\mathbf{Z} / 2 \mathbf{Z})$.

Proof of Theorem 7.1. We use the classical Zariski-van Kampen theorem (cf. Theorem 1.1.1) with the pencil $\mathcal{L}_{X, Z}$ (cf. Notation 1.4). We recall that in $\mathbf{C}^{2}:=\mathbf{C} \mathbf{P}^{2}-L_{\infty}$ this pencil is given by $\{x=\eta\}_{\eta \in \mathbf{C}}$. Observe that b_{0} does not belong to the curve C_{3}. To prove Theorem 7.1, it suffices (cf. Section 1.3) to show that $\pi_{1}\left(\mathbf{C P}^{2}-C_{3}, b_{0}\right)$ is abelian.

The discriminant $\Delta_{y}\left(f_{3}\right)$ of f_{3} as a polynomial in y, which describes the singular lines of the pencil $\mathcal{L}_{X, Z}$ (with respect to C_{3}), is a polynomial in x given by

$$
\Delta_{y}\left(f_{3}\right)(x)=a_{1} x^{18}\left(a_{2} x^{2}+a_{3}\right)\left(a_{4} x^{5}+a_{5} x^{4}+a_{6} x^{3}+a_{7} x^{2}+a_{8} x+a_{9}\right)(x-1)^{5} .
$$

The numbers $a_{i}(1 \leq i \leq 9)$ above are such that $\Delta_{y}\left(f_{3}\right)$ has seven distinct real roots:

$$
\begin{gathered}
\eta_{1}=-0.146 \cdots, \quad \eta_{2}=-0.053 \cdots, \quad \eta_{3}=-0.015 \cdots, \quad \eta_{4}=0, \\
\eta_{5}=0.054 \cdots, \quad \eta_{6}=0.146 \cdots, \quad \eta_{7}=1 .
\end{gathered}
$$

Figure 15. Real plane section of C_{3}.

Figure 16. Generators at $x=\eta_{1}+\varepsilon$.

The lines $L_{\eta_{1}}, \cdots, L_{\eta_{7}}$ corresponding to these seven roots are thus some singular lines of the pencil.

We take generators ξ_{1}, \cdots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{1}+\varepsilon}-C_{1}, b_{0}\right)$ as in Figure $16 ; \xi_{1}, \xi_{2}, \xi_{5}, \xi_{6}$ are lassos for the quartic $C_{3}^{\prime \prime}$ and ξ_{3}, ξ_{4} are lassos for the conic component C_{3}^{\prime}.

As above, the monodromy relations around $L_{\eta_{1}}$ give the relation

$$
\begin{equation*}
\xi_{4}=\xi_{3} . \tag{7.3}
\end{equation*}
$$

To read the monodromy relations around $L_{\eta_{2}}$, we first show in Figure 17 how the generators at $x=\eta_{1}+\varepsilon$ are deformed when x moves on the real axis from $x:=\eta_{1}+\varepsilon \rightarrow \eta_{2}-\varepsilon$ (the proof is similar to Lemma 4.5). Then, as above, the monodromy relations around $L_{\eta_{2}}$ give the relation

$$
\begin{equation*}
\xi_{6}=\left(\xi_{5} \xi_{3}\right) \xi_{5}\left(\xi_{5} \xi_{3}\right)^{-1} \tag{7.4}
\end{equation*}
$$

Figure 17. Generators at $x=\eta_{2}-\varepsilon$.

Figure 18. Generators at $x=\eta_{3}-\varepsilon$.

To read the monodromy relations around $L_{\eta_{3}}$, we first show in Figure 18 how the generators at $x=\eta_{2}-\varepsilon$ are deformed when x does half-turn counter-clockwise on the circle $\left|x-\eta_{2}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{2}+\varepsilon \rightarrow \eta_{3}-\varepsilon$. Then, as above, it is easy to see that the monodromy relations around $L_{\eta_{3}}$ give the relation

$$
\begin{equation*}
\xi_{1}=\left(\xi_{3} \xi_{2}\right)^{-1} \xi_{2}\left(\xi_{3} \xi_{2}\right) \tag{7.5}
\end{equation*}
$$

Now, we look at the monodromy relations around $L_{\eta_{4}}$. For this purpose, we show in Figure 19 how the generators at $x=\eta_{3}-\varepsilon$ are deformed when x does half-turn counterclockwise on the circle $\left|x-\eta_{3}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{3}+\varepsilon \rightarrow \eta_{4}-\varepsilon$. We look at the contribution of the origin. At $(0,0)$, the curve C_{3} has three branches: two branches K_{1} and K_{2} corresponding to the quartic $C_{3}^{\prime \prime}$, and another one K_{3} corresponding to the conic C_{3}^{\prime} :

$$
\begin{aligned}
& K_{1}: y=-\frac{128}{11} x^{2}-\frac{4980224}{1331} x^{4}+\text { higher terms } \\
& K_{2}: y=\frac{3}{8} x+\text { higher terms } \\
& K_{3}: y=-\frac{128}{11} x^{2}-\frac{16384}{121} x^{4}+\text { higher terms }
\end{aligned}
$$

The monodromy relations around $L_{\eta_{4}}$ (contribution of the origin) thus give the relation

$$
\xi_{2}=\left(\xi_{3} \xi_{2} \xi_{1}\right) \xi_{2}\left(\xi_{3} \xi_{2} \xi_{1}\right)^{-1}
$$

The latter, together with (7.5), implies $\xi_{1}=\xi_{2}$. Notice that we thus have

$$
\begin{equation*}
\xi_{1} \xi_{3}=\xi_{3} \xi_{1} \tag{7.6}
\end{equation*}
$$

We shall not use the contribution of $(0,-1)$.
Now, in order to read the monodromy relations around $L_{\eta_{5}}$, we first show in Figure 20 how the generators at $x=\eta_{4}-\varepsilon$ are deformed when x does half-turn counter-clockwise

Figure 19. Generators at $x=\eta_{4}-\varepsilon$.

Figure 20. Generators at $x=\eta_{5}-\varepsilon$.
on the circle $\left|x-\eta_{4}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{4}+\varepsilon \rightarrow \eta_{5}-\varepsilon$. To see the movement of the generators near -1 , when x does half-turn counter-clockwise on the circle $\left|x-\eta_{4}\right|=\varepsilon$, just observe that near $(0,-1)$ the curve has two branches K_{4} and K_{5}, corresponding to the quartic $C_{3}^{\prime \prime}$ and the conic C_{3}^{\prime} respectively, given by

$$
\begin{aligned}
& K_{4}: y=-1+\frac{128}{11} x^{2}-\frac{9375}{88} x^{3}+\text { higher terms } \\
& K_{5}: y=-1+\frac{128}{11} x^{2}+\frac{16384}{121} x^{4}+\text { higher terms }
\end{aligned}
$$

The monodromy relations around $L_{\eta_{5}}$ thus give the relation

$$
\xi_{1}=\left(\xi_{5} \xi_{3}\right)^{-1} \xi_{6}\left(\xi_{5} \xi_{3}\right)
$$

that is $\xi_{1}=\xi_{5}$ by (7.4). One deduces immediately $\xi_{1}=\xi_{6}$.
We can now conclude that the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{3}, b_{0}\right)$ is abelian. Indeed, we have seen that $\xi_{1}=\xi_{2}=\xi_{5}=\xi_{6}$ and $\xi_{4}=\xi_{3}$, that is that there is only two generators ξ_{1} and ξ_{3}. Theorem 7.1 thus follows immediately from the relation (7.6) which asserts that these generators commute.

8. Fundamental group of $\mathbf{C P}^{2}-C_{4}$

We still use the notation of Section 6.
THEOREM 8.1. The fundamental group $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-C_{4}\right)$ is isomorphic to \mathbf{Z}^{2}.
We still denote by \mathcal{M} the moduli space of reduced sextics in $\mathbf{C} \mathbf{P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$, and by \mathcal{M}_{4} the connected component of \mathcal{M} containing the curve C_{4}. Theorem 8.1 implies the following result.

COROLLARY 8.2. For any curve $D \in \mathcal{M}_{4}$, we have: $\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \mathbf{Z}^{2}$.
Proof of Theorem 8.1. We use the non-generic version of the Zariski-van Kampen theorem (cf. Theorem 1.2.1) with the pencil $\mathcal{L}_{Y, Z}$ (cf. Notation 1.4). We recall that in $\mathbf{C}^{2}:=$ $\mathbf{C P}^{2}-L_{\infty}$ this pencil is given by $\{y=\eta\}_{\eta \in \mathbf{C}}$. Pencil $\mathcal{L}_{Y, Z}$ is not generic with respect to the curve C_{4}. Notice, nevertheless, that b_{0} does not belong to the curve $C_{4}^{\prime} \cup C_{4}^{\prime \prime \prime}$. To prove Theorem 8.1, it suffices (cf. Section 1.3) to show that the fundamental group $\pi_{1}\left(\mathbf{C P}^{2}-C_{4}\right)$ is abelian. We recall that as the base point for $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-C_{4}\right)$ we take a point b_{0}^{\prime} on a generic line such that b_{0}^{\prime} is sufficiently close to b_{0} but $b_{0}^{\prime} \neq b_{0}$ (cf. Section 1.2 and below).

The discriminant $\Delta_{x}\left(f_{4}\right)$ of f_{4} as a polynomial in x, which describes the singular lines of the pencil $\mathcal{L}_{Y, Z}$ (with respect to C_{4}), is a polynomial in y given by

$$
\Delta_{x}\left(f_{4}\right)(y)=-y^{13}\left(171542 y^{2}-316811 y+131072\right)(3 y-2)^{6}(2 y-1)^{7}
$$

This polynomial has five distinct real roots:

$$
\eta_{1}=0, \quad \eta_{2}=0.5, \quad \eta_{3}=0.625 \cdots, \quad \eta_{4}=0.666 \cdots, \quad \eta_{5}=1.221 \cdots
$$

Figure 21. Real plane section of C_{4}.

Figure 22. Generators at $y=\eta_{2}+\varepsilon$.

The singular lines of the pencil are the lines $L_{\eta_{1}}, \cdots, L_{\eta_{5}}$ corresponding to these five roots.
We take generators $\rho, \xi_{1}, \cdots, \xi_{5}$ of the fundamental group $\pi_{1}\left(L_{\eta_{2}+\varepsilon}-C_{4}, b_{0}^{\prime}\right)$ as in Figure 22; ξ_{1}, \cdots, ξ_{5} are lassos around the intersection points of the generic line $L_{\eta_{2}+\varepsilon}$ with $C_{4}^{\prime} \cup C_{4}^{\prime \prime \prime}$, while ρ is a lasso around the intersection point of $L_{\eta_{2}+\varepsilon}$ with $C_{4}^{\prime \prime}$ (i.e., around the axis b_{0} of the pencil).

To read the monodromy relations around $L_{\eta_{2}}$, we look at the Puiseux parametrization of C_{4} at (1/2, 1/2):

$$
\left\{\begin{array}{l}
y=\frac{1}{2}+t^{4} \\
x=\frac{1}{2}+\sqrt{3} t^{2}-\frac{1}{2} \sqrt{2} 3^{(1 / 4)} t^{3}+\text { higher terms }
\end{array}\right.
$$

As above, these equations show that the monodromy relations around $L_{\eta_{2}}$ give the relations

$$
\begin{align*}
\xi_{1} & =\xi_{4}, \\
\xi_{2} & =\xi_{3}, \\
\xi_{3} & =\left(\xi_{4} \xi_{3} \xi_{1} \xi_{2}\right) \xi_{1}\left(\xi_{4} \xi_{3} \xi_{1} \xi_{2}\right)^{-1} \tag{8.3}\\
& =\left(\xi_{1} \xi_{2}\right)^{2} \xi_{1}\left(\xi_{1} \xi_{2}\right)^{-2}
\end{align*}
$$

To read the monodromy relations around $L_{\eta_{3}}$, we first show in Figure 23 how the generators at $y=\eta_{2}+\varepsilon$ are deformed when y moves on the real axis from $y:=\eta_{2}+\varepsilon \rightarrow \eta_{3}-\varepsilon$. The monodromy relations around $L_{\eta_{3}}$ thus give the relation

$$
\begin{equation*}
\xi_{2}=\xi_{5} \xi_{1} \xi_{5}^{-1} \tag{8.4}
\end{equation*}
$$

To read the monodromy relations around $L_{\eta_{4}}$, we first show in Figure 24 how the generators at $y=\eta_{3}-\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{3}\right|=\varepsilon$, then moves on the real axis from $y:=\eta_{3}+\varepsilon \rightarrow \eta_{4}-\varepsilon$. Then, we observe that

Figure 23. Generators at $y=\eta_{3}-\varepsilon$.

Figure 24. Generators at $y=\eta_{4}-\varepsilon$.

Figure 25. Generators at $y=\eta_{1}+\varepsilon$
near the point $(0,2 / 3)$ the curve has two branches K_{1} and K_{2} given by

$$
\begin{aligned}
& K_{1}: x=0 \\
& K_{2}: x=\frac{243}{5}\left(y-\frac{2}{3}\right)^{3}+\text { higher terms } .
\end{aligned}
$$

The monodromy relations around $L_{\eta_{4}}$ thus give the relation

$$
\begin{equation*}
\xi_{2}=\left(\xi_{5} \xi_{2}\right)^{3} \xi_{2}\left(\xi_{5} \xi_{2}\right)^{-3} \tag{8.5}
\end{equation*}
$$

We shall not need the monodromy relations around $L_{\eta_{5}}$, but we shall use the monodromy relations around $L_{\eta_{1}}$. To determine them, we first show in Figure 25 how the generators at $y=\eta_{2}+\varepsilon$ are deformed when y does half-turn counter-clockwise on the circle $\left|y-\eta_{2}\right|=\varepsilon$, then moves on the real axis from $y:=\eta_{2}-\varepsilon \rightarrow \eta_{1}+\varepsilon$ (the proof is similar to Lemma 4.5). Then, we observe that near the origin the curve has three branches K_{3}, K_{4} and K_{5} given by

$$
\begin{aligned}
& K_{3}: x=0, \\
& K_{4}: y=0,
\end{aligned}
$$

$$
K_{5}: y=-\frac{1}{8} x^{4}+\text { higher terms }
$$

The monodromy relations around $L_{\eta_{1}}$ thus give the relations

$$
\begin{align*}
& \rho^{-1} \xi_{2} \rho=\xi_{1} \\
& \rho^{-1} \xi_{1} \rho=\xi_{5} \xi_{2} \xi_{5}^{-1} \\
& \rho^{-1} \xi_{5} \rho=\left(\xi_{5} \xi_{2}\right) \xi_{5}\left(\xi_{5} \xi_{2}\right)^{-1} \tag{8.6}\\
& \rho^{-1} \xi_{5} \xi_{2} \xi_{5}^{-1} \rho=\xi_{5} \xi_{1} \xi_{5}^{-1} \\
& \rho^{-1} \xi_{5} \xi_{1} \xi_{5}^{-1} \rho=\left(\xi_{5} \xi_{1} \xi_{2} \xi_{1}\right) \xi_{2}\left(\xi_{5} \xi_{1} \xi_{2} \xi_{1}\right)^{-1}
\end{align*}
$$

Now we are ready to prove that $\pi_{1}\left(\mathbf{C P}^{2}-C_{4}, b_{0}^{\prime}\right)$ is abelian. By the second and the third relation of (8.6), we have:

$$
\begin{aligned}
\rho^{-1} \xi_{5} \xi_{1} \xi_{5}^{-1} \rho & =\rho^{-1} \xi_{5} \rho \cdot \rho^{-1} \xi_{1} \rho \cdot\left(\rho^{-1} \xi_{5} \rho\right)^{-1} \\
& =\left(\xi_{5} \xi_{2}\right) \xi_{5}\left(\xi_{5} \xi_{2}\right)^{-1} \cdot \xi_{5} \xi_{2} \xi_{5}^{-1} \cdot\left(\left(\xi_{5} \xi_{2}\right) \xi_{5}\left(\xi_{5} \xi_{2}\right)^{-1}\right)^{-1} \\
& =\left(\xi_{5} \xi_{2}\right)^{2} \xi_{5}^{-1}\left(\xi_{5} \xi_{2}\right)^{-1} \\
& =\left(\xi_{5} \xi_{2}\right)^{2} \xi_{2}\left(\xi_{5} \xi_{2}\right)^{-2}
\end{aligned}
$$

But, by (8.4), $\xi_{5} \xi_{1} \xi_{5}^{-1}=\xi_{2}$. We thus have

$$
\rho^{-1} \xi_{2} \rho=\left(\xi_{5} \xi_{2}\right)^{2} \xi_{2}\left(\xi_{5} \xi_{2}\right)^{-2}
$$

that is, using the first relation of (8.6),

$$
\xi_{1}=\left(\xi_{5} \xi_{2}\right)^{2} \xi_{2}\left(\xi_{5} \xi_{2}\right)^{-2} .
$$

This relation is equivalent to the following one:

$$
\left(\xi_{5} \xi_{2}\right) \xi_{1}\left(\xi_{5} \xi_{2}\right)^{-1}=\left(\xi_{5} \xi_{2}\right)^{3} \xi_{2}\left(\xi_{5} \xi_{2}\right)^{-3} .
$$

The relation (8.5) thus implies

$$
\left(\xi_{5} \xi_{2}\right) \xi_{1}\left(\xi_{5} \xi_{2}\right)^{-1}=\xi_{2}
$$

that is $\xi_{5} \xi_{2} \xi_{1}=\xi_{2} \xi_{5} \xi_{2}$. But, by (8.4), $\xi_{2} \xi_{5}=\xi_{5} \xi_{1}$. So, we have $\xi_{5} \xi_{2} \xi_{1}=\xi_{5} \xi_{1} \xi_{2}$, that is

$$
\begin{equation*}
\xi_{2} \xi_{1}=\xi_{1} \xi_{2} \tag{8.7}
\end{equation*}
$$

Now, by (8.3), $\xi_{2}=\left(\xi_{1} \xi_{2}\right)^{2} \xi_{1}\left(\xi_{1} \xi_{2}\right)^{-2}$. So, the relation (8.7) implies $\xi_{1}=\xi_{2}$. The big circle relation $\rho \xi_{5} \xi_{4} \xi_{3} \xi_{1} \xi_{2}=1$ is thus written as $\rho=\left(\xi_{5} \xi_{1}^{4}\right)^{-1}$.

So, we have proved that $\xi_{1}=\xi_{2}=\xi_{3}=\xi_{4}$ and $\rho=\left(\xi_{5} \xi_{1}^{4}\right)^{-1}$, that is there is only two generators ξ_{1} and ξ_{5}, and since they commute, by (8.4), the fundamental group $\pi_{1}\left(\mathbf{C} \mathbf{P}^{2}-\right.$ $\left.C_{4}, b_{0}^{\prime}\right)$ is abelian.

9. On the moduli space $\mathcal{M}:=\mathcal{M}\left(\left\{D_{10}+A_{5}+A_{4}\right\}, 6\right)$ and concluding remarks

We still denote by \mathcal{M} the moduli space of reduced sextics in $\mathbf{C} \mathbf{P}^{2}$ with the configuration of singularities $\left\{D_{10}+A_{5}+A_{4}\right\}$. It is known that the moduli of sub-lattices with this configuration in $K 3$ surfaces has four irreducible components (cf. [Y]). We shall see below that each of them gives exactly one irreducible component in \mathcal{M} (in general, this is not true for arbitrary moduli !) so that \mathcal{M} has exactly four connected components which are necessarily (by Theorem 6.1 or Corollary 6.2) the connected components $\mathcal{M}_{i}(1 \leq i \leq 4)$ defined above. So, in view of our previous results (cf. Corollaries 4.2, 5.2, 7.2 and 8.2), we have the following theorem.

Theorem 9.1. Let D be a curve in \mathcal{M}. Then,

$$
\pi_{1}\left(\mathbf{C P}^{2}-D\right) \simeq \begin{cases}\mathbf{Z} & \text { if } D \in \mathcal{M}_{1} \text { or } \mathcal{M}_{2} \\ \mathbf{Z} \times(\mathbf{Z} / 2 \mathbf{Z}) & \text { if } D \in \mathcal{M}_{3} \\ \mathbf{Z}^{2} & \text { if } D \in \mathcal{M}_{4}\end{cases}
$$

Let us now explain why each irreducible component of the moduli of sub-lattices in $K 3$ surfaces gives exactly one irreducible component in \mathcal{M}. Consider a curve $C \in \mathcal{M}$. First, using the genus formula mentioned in Section 3, we can see that C cannot be irreducible as the right side of the formula is -2 . As A_{4} is an irreducible singularity, and thus can appear only on curves of degree greater than or equal to 4 , the possible component types of C (cf. [O7]) are:
(a) a quintic and a line;
(b) a quartic and a conic;
(c) a quartic and two lines.

On the other hand, the configuration of singularities $\left\{D_{10}+A_{4}\right\}$ cannot appear on an irreducible component of degree less than or equal to 5 . Thus, for our curve C, the singularity D_{10} must be an intersection singularity (see [O7] for definition). Suppose that the origin $O \in C$ is a D_{10}-singularity. A D_{10}-singularity locally consists of three smooth branches, say K_{1}, K_{2}, K_{3}, so that their local intersection numbers are given by $I\left(K_{1}, K_{2} ; O\right)=$ $I\left(K_{1}, K_{3} ; O\right)=1$ and $I\left(K_{2}, K_{3} ; O\right)=4$ (if C is defined by the normal form $y^{2} x-x^{9}=0$, K_{1} is just the line $x=0$, and K_{2}, K_{3} are defined by $y \pm x^{4}=0$). Thus, if D_{10} is an intersection singularity of two irreducible components, the possibilities are:
(d-1) one smooth component and one component with an A_{1}-singularity intersecting with intersection number 5 and so that the smooth component is tangent to one of the branch of A_{1};
(d-2) one smooth component and one component with an A_{7}-singularity intersecting with intersection number 2 and so that the smooth component is transverse to the tangent cone direction of A_{7}.
If D_{10} is not an intersection singularity of two components, then:
(d-3) $\quad D_{10}$ is given as an intersection singularity of three irreducible components.
In the case (d-1), the possibilities for the component types are the following:
($\sharp 1) \quad C$ is a union of a line L and a quintic B_{5} such that the configuration of singularities of B_{5} is $\Sigma\left(B_{5}\right):=\left\{A_{4}+A_{5}+A_{1}\right\}$ and the line L is passing at the A_{1}-singularity. Let us denote by \mathcal{M}_{2}^{\prime} the subspace of sextics in \mathcal{M} corresponding to this possibility;
$(\sharp 2) \quad C$ is a union of a quartic B_{4} and a conic B_{2} such that: $\Sigma\left(B_{4}\right)=\left\{A_{4}+A_{1}\right\}$; $B_{2} \cap B_{4}=\{O, P\} ;$ the singularity of B_{4} at O is $A_{1} ; B_{2}, B_{4}$ are non-singular at P and tangent with intersection multiplicity 3 . We denote by \mathcal{M}_{3}^{\prime} the subspace of sextics in \mathcal{M} corresponding to this possibility.

The case (d-2) is possible if and only if the components of C are a line L and a quintic B_{5} such that: $\Sigma\left(B_{5}\right)=\left\{A_{7}+A_{4}\right\} ; L \cap B_{5}=\{O, P\}$; the singularity of B_{5} at O is A_{7}, and at this point L intersects transversely the tangent cone of the singularity; B_{5} is non-singular at P and $I\left(L, B_{5} ; P\right)=3$ (to make A_{5}). Notice that P is a flex point of B_{5}. We denote by \mathcal{M}_{1}^{\prime} the subspace of \mathcal{M} consisting of sextics which correspond to this possibility.

The case (d-3) takes place when C has two line components L_{1}, L_{2} and a quartic component B_{4} such that: $\Sigma\left(B_{4}\right)=\left\{A_{4}\right\} ; L_{1}$ is the tangent line of a flex point O of B_{4} of order 2 (i.e., $I\left(L_{1}, B_{4} ; O\right)=4$); L_{2} is transverse to B_{4} at O and intersects B_{4} at another flex point P to make A_{5}. Let us denote by \mathcal{M}_{4}^{\prime} the subspace of \mathcal{M} consisting of sextics which correspond to this possibility.

By definition of $\mathcal{M}_{1}^{\prime}, \cdots, \mathcal{M}_{4}^{\prime}$, we see that:

$$
\mathcal{M}=\bigcup_{i=1}^{4} \mathcal{M}_{i}^{\prime} \quad \text { and } \quad \mathcal{M}_{i} \subset \mathcal{M}_{i}^{\prime}(i=1, \cdots, 4)
$$

We assert that, for each $1 \leq i \leq 4$, the subspace \mathcal{M}_{i}^{\prime} is irreducible, and thus $\mathcal{M}_{i}^{\prime}=\mathcal{M}_{i}$. The proof is done by a direct computation using a suitable slice condition as in [OP]. For example, consider the case of \mathcal{M}_{2}^{\prime}. Take a sextic $C=L \cup B_{5} \in \mathcal{M}_{2}^{\prime}$. The quintic B_{5} has the configuration of singularities $\left\{A_{1}+A_{5}+A_{4}\right\}$. First, it is not difficult to see that the three singularities are not colinear and strongly generic in the sense that the line defined by the tangent cone (or cones) at any one of the singular points does not pass through the other singularities. Thus, by the action of $\operatorname{PGL}(3, \mathbf{C})$, we may consider the following slice condition:
$\left(\mathcal{S}_{2}\right) \quad A_{5}$ is at $(0,1)$ with the tangent cone defined by $y=1 ; A_{4}$ is at $(1,0)$ with tangent cone $x=1 ; A_{1}$ is at the origin O and one of the tangent lines at A_{1} intersects the line L with intersection number 5 at O.

Under this slice condition, the computation using Maple can be carried out exactly as in [OP], and we can show that, in fact, the quintic (and the line component tangent at A_{1}) is uniquely determined by this slice condition. As the computation in detail is boring and heavy, we omit the proof.

The irreducibility of the other $\mathcal{M}_{i}^{\prime}(i=1,3$ and 4$)$ can be shown using the following slice conditions:

Slice condition for \mathcal{M}_{1}^{\prime} : the quintic B_{5} has A_{7} at O with $y=0$ as the tangent cone,
A_{4} at $(0,1)$ with $y=1$ as the tangent cone, and $(1,-1)$ is a flex point with the tangent line $y+x=0$;

Slice condition for \mathcal{M}_{3}^{\prime} : the quartic B_{4} has A_{1} at O, A_{4} at $(1,0)$ with $x=1$ as the tangent line. The conic B_{2} passes through O and $P:=(0,1)$ so that the singularity of $B_{2} \cup B_{4}$ at O is $D_{10}, I\left(B_{2}, B_{4} ; P\right)=3$ and the singularity of $B_{2} \cup B_{4}$ at P is A_{5}.

Slice condition for \mathcal{M}_{4}^{\prime} : the quartic B_{4} has A_{4} at $(1,0)$ with $x=1$ as the tangent line, the two line components are $x=0$ and $y-x=0$, the origin is a flex point of B_{4} of order 2 with $y-x=0$ the flex tangent, and the line $x=0$ intersects B_{4} at another flex point P so that $x=0$ is the flex tangent line at P.

ACKNOWLEDGEMENTS. The first author was supported by a fellowship from the Japan Society for the Promotion of Science (JSPS) to which he expresses his deep gratitude. He also thanks the staff of the department of Mathematics of the Tokyo Metropolitan University for their warm hospitality.

References

[A] E. Artal Bartolo, Sur les couples de Zariski, J. Algebraic Geom. 3 (1994), 223-247.
[AC] E. Artal Bartolo and J. Carmona Ruber, Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan 50 (1998), 521-543.
[BK] E. BRIESKORN and H. KNÖRRER, Plane algebraic curves, Birkhäuser (1986).
[C] D. CHÉNIOT, Une démonstration du théorème de Zariski sur les sections hyperplanes d'une hypersurface projective et du théorème de van Kampen sur le groupe fondamental du complémentaire d'une courbe projective plane, Compositio Math. 27 (1973), 141-158.
[D] A. DimCA, Singularities and topology of hypersurfaces, Springer-Verlag, New-York (1992).
[GLS] G.M. Greuel, C. Lossen and E. Shustin, Castelnuovo function, zero-dimensional schemes and singular plane curves, J. Algebraic Geom. 9 (2000), 663-710.
[H] J. Harris, On the Severi problem, Invent. Math. 84 (1986), 345-461.
[LR] LÊ D.T. and C. P. RAMANUJAM, The invariance of Milnor number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 67-78.
[M] J. MILNOR, Singular points of complex hypersurfaces, Annals Math. Studies 61, Princeton Univ. Press (1968).
[O1] M. OkA, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan 44 (1992), 375-414.
[O2] M. OKA, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo 3 (1996), 399-443.
[O3] M. OKA, Geometry of cuspidal sextics and their dual curves, Singularities - Sapporo 1998 Advanced Studies in Pure Math. 29 (2000), 247-277.
[O4] M. Oka, Flex curves and their applications, Geometriae Dedicata 75 (1999), 67-100.
[O5] M. OKA, A survey on Alexander polynomials of plane curves, Séminaires et Congrès No. 10 (2005), 209-232.
[O6] M. Ока, A new Alexander-equivalent Zariski pair, Acta Math. Vietnam. 27 (3) (2002), 349-357.
[O7] M. OKA, Geometry of reduced sextics of torus type, Tokyo J. Math. 26 No. 2 (2003), 301-327.
[OP] M. OKA and D. T. Pho, Classification of sextics of torus type, Tokyo J. Math. 25 (2) (2002), 399-433.
[P] D. T. Pho, Classification of singularities on torus curves of type (2,3), Kodai Math. J. 24 (2001), 259-284.
[Sh] I. Shimada, A note on Zariski pairs, Compositio Math. 104 (1996), 125-133.
[Sp] E. H. Spanier, Algebraic topology, Reprint of the 1966 original, Springer-Verlag, New-York (1989).
[T] H.-o. Tokunaga, Some examples of Zariski pairs arising from certain elliptic K3 surfaces, Math. Z. 230 (2) (1999), 389-400.
vK] E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255-260
[Y] J-G. Yang, Sextics curves with simple singularities, Tohoku Math. J. 48 (2) (1996), 203-227.
[Z1] O. ZARISKI, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305-328
[Z2] O. ZARISKI, On the irregularity of cyclic multiple planes, Ann. of Math. 32 (1931), 445-489.
[Z3] O. ZARISKI, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math. 59 (1937), 335-358.
[Z4] O. Zariski, Studies in equisingularity II. Equisingularity in codimension 1 (and characteristic zero), Amer. J. Math. 87 (1965), 972-1006.
[Z5] O. Zariski, Contribution to the problem of equisingularity, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Ed. Cremonese, Roma (1970), 261-343.

Present Addresses:
C. EyRAL

Max-Planck Institut FÜr Mathematik
Vivatsgasse 7, 53111 Bonn, Germany.
e-mail: eyralchr@yahoo.com
M. Ока

Department of Mathematics, Faculty of Science,
Tokyo University of Science
WAKAMIYA-CHO, Shinjuku-Ku, TOKyo, 162-8601 Japan.
e-mail: oka@rs.kagu.tus.ac.jp

[^0]: Received April 7, 2004
 Mathematics Subject Classification 2000: 14H20, 14H30.

[^1]: ${ }^{1}$ In the figures, for simplicity of drawing pictures, we shall denote a lasso oriented counter-clockwise just by a path ending with a black disk ——as in [O3,4]. We recall that a lasso is defined as follows. Let D be a reduced curve in $\mathbf{C P} \mathbf{P}^{2}$, and let $\left(D_{i}\right)_{i}$ be the irreducible components of D. An element $\zeta \in \pi_{1}\left(\mathbf{C P}^{2}-D, *\right)$ is called a lasso oriented counter-clockwise for D_{i} if it is represented by a loop written as $\varrho \omega \varrho^{-1}$, where ω is a loop running once counter-clockwise around the boundary circle of a small closed normal disk Δ of D at a simple point such that Δ does not intersect with D_{j} for $j \neq i$, and where ϱ is a simple path connecting the base point $*$ and the loop ω such that $i m \varrho \cap \Delta$ is reduced to a single point (cf. [O2]).

[^2]: ${ }^{1}$ We recall that a point p of a curve C is called a singularity of type A_{n}, where n is an integer ≥ 1, if the germ (C, p) is topologically equivalent to the germ $\left(\left\{x^{2}+y^{n+1}=0\right\}, O\right)$ as embedded germs (for the definition of "topologically equivalent", see e.g. [Di, Definition (1.4)]). It is called a singularity of type D_{10} if (C, p) is topologically equivalent to $\left(\left\{x^{2} y+y^{9}=0\right\}, O\right)$.

