On Homogeneous Almost Kähler Einstein Manifolds of Negative Curvature

Wakako OBATA
Tohoku University
(Communicated by H. Tsuji)

Abstract

A homogeneous almost Kähler manifold M of negative curvature can be identified with a solvable Lie group G with a left invariant metric g and a left invariant almost complex structure J. We prove that if g is an Einstein metric and G is of Iwasawa type, then J is integrable so that M is Kähler, and hence is holomorphically isometric to a complex hyperbolic space of the same dimension.

1. Introduction

An almost Hermitian manifold $M=(M, g, J)$ is called homogeneous if the group of almost complex isometries acts transitively on M. If the fundamental 2-form Φ of M defined by $\Phi(X, Y)=g(X, J Y)$ is closed, then we call M an almost Kähler manifold. The purpose of this paper is to study the geometry of homogeneous almost Kähler manifolds of negative curvature.

It is proved by Heintze [4] that if M is in particular a homogeneous Kähler manifold of negative curvature, then M is holomorphically isometric to a complex hyperbolic space $\mathbb{C} H^{n}$ of the same dimension. On the other hand, it has been known, for instance in [1], that there are many examples of homogeneous almost Kähler manifold which are not Kähler. However, in conjunction with the Goldberg conjecture [2], it seems plausible that a homogeneous almost Kähler Einstein manifold of negative curvature is necessarily Kähler, and hence is holomorphically isometric to a complex hyperbolic space.

By a result of Heintze [4] we know that a homogeneous almost Kähler manifold M of negative curvature can be identified with a connected solvable Lie group G with a left invariant metric \langle,$\rangle and a left invariant almost complex structure J$ on G. Also, recall that a simply connected solvable Lie group G is said to be of Iwasawa type if its Lie algebra \mathfrak{g} with inner product \langle,$\rangle satisfies the conditions: (i) the orthogonal complement \mathfrak{a}$ of $\mathfrak{n}=[\mathfrak{g}, \mathfrak{g}]$ is abelian, (ii) for any $A \in \mathfrak{a}$, the adjoint representation ad $A: \mathfrak{g} \rightarrow \mathfrak{g}$ is symmetric with respect to \langle,$\rangle ,$ and (iii) for some $A_{0} \in \mathfrak{a}$, ad $A_{0} \mid \mathfrak{n}: \mathfrak{n} \rightarrow \mathfrak{n}$ is positive definite.

Then we can prove the following

Received February 12, 2004

2000 Mathematics Subject Classificatio. Primary 53C30; Secondary 53C15, 53C25.
Key words and phrases. Homogeneous manifold of negative curvature, almost Kähler structure, Einstein structure.

Theorem 1. Let $(G,\langle\rangle, J$,$) be a homogeneous almost Kähler Einstein manifold$ of negative curvature. If G is of Iwasawa type, then $(G,\langle\rangle, J$,$) is Kähler, and in fact is$ holomorphically isometric to a complex hyperbolic space $\left(\mathbb{C} H^{n}, g_{0}, J_{0}\right)$.

It should be remarked that by a result of Heber [3, Theorem 4.10], there exists, under the asumption of Theorem 1, a simply connected solvable Lie group G^{\prime} of Iwasawa type such that $\left(G^{\prime},\langle\rangle,\right)$ is isometric to $(G,\langle\rangle$,$) . However, we do not know in general if \left(G^{\prime},\langle\rangle, J,\right)$ is to be almost Kähler.

2. Preliminaries

Let $M=(M, g)$ be a homogeneous Riemannian manifold of (strictly) negative curvature $K<0$. Since M is simply connected ([5]) and admits a solvable Lie group of isometries acting simply transitively on M ([4]), we can identify (M, g) with a simply connected solvable Lie group G with a left invariant metric \langle,$\rangle . We denote by \mathfrak{g}$ the Lie algebra of G defined by left invariant vector fields on G, and by $\mathfrak{n}=[\mathfrak{g}, \mathfrak{g}]$ the derived algebra of \mathfrak{g}. Note that \mathfrak{n} is nilpotent, since \mathfrak{g} is solvable.

For $X, Y \in \mathfrak{g}$ the covariant derivative $\nabla_{X} Y \in \mathfrak{g}$ is given by

$$
\begin{align*}
\nabla_{X} Y & =\frac{1}{2}[X, Y]+U(X, Y) \tag{1}\\
U(X, Y) & =-\frac{1}{2}\left((\operatorname{ad} X)^{*} Y+(\operatorname{ad} Y)^{*} X\right)
\end{align*}
$$

where ad is the adjoint representation of \mathfrak{g} and ${ }^{*}$ denotes transpose with respect to \langle,$\rangle . As a$ result, the curvature tensor $R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z$ is determined by the bracket product, so that we have

$$
\begin{align*}
\langle R(X, Y) Y, X\rangle= & \|U(X, Y)\|^{2}-\langle U(X, X), U(Y, Y)\rangle-\frac{3}{4}\|[X, Y]\|^{2} \tag{2}\\
& -\frac{1}{2}\langle[X,[X, Y]], Y\rangle-\frac{1}{2}\langle[Y,[Y, X]], X\rangle
\end{align*}
$$

The curvature condition $K<0$, where $K(X, Y)=\langle R(X, Y) Y, X\rangle$, implies that the orthogonal complement of \mathfrak{n} in \mathfrak{g} is one-dimensional, that is,

$$
\mathfrak{g}=\mathfrak{n} \oplus \mathbb{R}\left\{A_{0}\right\}
$$

with a unit vector $A_{0} \in \mathfrak{g}$ orthogonal to \mathfrak{n}. Moreover, if we denote by D_{0} and S_{0} the symmetric and the skew-symmetric part of ad $\left.A_{0}\right|_{\mathfrak{n}}: \mathfrak{n} \rightarrow \mathfrak{n}$, respectively, then D_{0} and $D_{0}^{2}+\left[D_{0}, S_{0}\right]$ are both positive definite (see Heintze [4] for details). Note that, since A_{0} is orthogonal to \mathfrak{n}, $(\operatorname{ad} X)^{*} A_{0}=0$ for all $X \in \mathfrak{g}$. Then it follows from (1) that if $X \in \mathfrak{n}$, then

$$
\begin{equation*}
\nabla_{A_{0}} A_{0}=0, \quad \nabla_{A_{0}} X=S_{0} X, \quad \nabla_{X} A_{0}=-D_{0} X \tag{3}
\end{equation*}
$$

Let J be a left invariant almost complex structure on G, and suppose J is skewsymmetric with respect to \langle,$\rangle , that is, \langle$,$\rangle is a Hermitian metric with respect to J$. Then
$(G,\langle\rangle, J$,$) is called a homogeneous almost Kähler manifold if the fundamental 2-form \Phi$ defined by $\Phi(X, Y)=\langle X, J Y\rangle, X, Y \in \mathfrak{g}$, is closed, that is,

$$
\begin{equation*}
\langle[X, Y], J Z\rangle-\langle[X, Z], J Y\rangle+\langle[Y, Z], J X\rangle=0 \tag{4}
\end{equation*}
$$

for $X, Y, Z \in \mathfrak{g}$. Furthermore, if J is integrable, then $(G,\langle\rangle, J$,$) is called a homogeneous$ Kähler manifold.

Finally, $(G,\langle\rangle$,$) is called an Einstein manifold if the Ricci curvature Ric of (G,\langle\rangle$,$) is$ proportional to the metric, that is, $\operatorname{Ric}(X, Y)=c\langle X, Y\rangle$ for some constant c and any $X, Y \in \mathfrak{g}$.

3. Proof of Theorem

Let $(G,\langle\rangle, J$,$) be a homogeneous almost complex manifold of negative curvature,$ and \mathfrak{g} the Lie algebra of G. Then the left invariant metric \langle,$\rangle and the left invariant almost$ complex structure J of G induce the inner product \langle,$\rangle on \mathfrak{g}$ and the skew-symmetric operator $J: \mathfrak{g} \rightarrow \mathfrak{g}$, respectively. Recall that \mathfrak{g} is decomposed into the direct sum $\mathfrak{g}=\mathbb{R}\left\{A_{0}\right\} \oplus \mathfrak{n}$, where $\mathfrak{n}=[\mathfrak{g}, \mathfrak{g}]$ is the derived algebra of \mathfrak{g} and $\mathbb{R}\left\{A_{0}\right\}$ denotes its one-dimensional orthogonal complement.

Let \mathfrak{z} be the center of $\mathfrak{n}, \mathfrak{b}=\mathfrak{z}^{\perp}$ the orthogonal complement of \mathfrak{z} in \mathfrak{n}. If $(G,\langle\rangle, J$,$) is$ Kähler and of negative curavature, then it is known that $(\mathfrak{g},\langle\rangle, J$,$) satisfies the condtion$

$$
\begin{align*}
\mathfrak{z} & =\mathbb{R}\left\{J A_{0}\right\}, \\
{\left[A_{0}, X\right] } & =\lambda X+S_{0} X, \quad\left[A_{0}, J A_{0}\right]=2 \lambda J A_{0}, \tag{5}\\
{[X, Y] } & =2 \lambda\langle J X, Y\rangle J A_{0}, \quad\left[X, J A_{0}\right]=0,
\end{align*}
$$

for any $X, Y \in \mathfrak{b}$ and some $\lambda \in \mathbb{R}$ (see Heintze [4]). On the other hand, in the case when $(G,\langle\rangle, J$,$) is almost Kähler, we have the following$

Proposition 2. Let $(G,\langle\rangle, J$,$) be a homogeneous almost Kähler manifold of nega-$ tive curvature. Suppose that $(G,\langle\rangle$,$) is Einstein and G$ is of Iwasawa type. Then $(\mathfrak{g},\langle\rangle, J$, also satisfies Condition (5) (with $S_{0}=0$).

Proof. Take a non-zero vector $Z \in \mathfrak{z}$. By Condition (4) with $Z, J Z$ and A_{0}, we obtain

$$
\begin{equation*}
\left\langle[Z, J Z], J A_{0}\right\rangle=\left\langle\operatorname{ad} A_{0}(Z), Z\right\rangle+\left\langle\operatorname{ad} A_{0}(J Z), J Z\right\rangle=\left\langle D_{0} Z, Z\right\rangle+\left\langle D_{0} J Z, J Z\right\rangle \tag{6}
\end{equation*}
$$

Since D_{0} is positive definite, the right hand side of (6) is positive so that $[Z, J Z] \neq 0$. Since $Z \in \mathfrak{z} \subset \mathfrak{n}$, this implies that $J Z \notin \mathfrak{n}$. Hence $\left\langle J Z, A_{0}\right\rangle \neq 0$, implying that \mathfrak{z} is a 1dimensional subspace of \mathfrak{n}. Moreover, \mathfrak{z} is ad A_{0}-invariant, since \mathfrak{z} is the center of \mathfrak{n} and ad A_{0} is a derivation. Hence there exists a positive real number $\lambda>0$ such that ad $A_{0}(Z)=2 \lambda Z$ for any $Z \in \mathfrak{z}$.

From Condition (4) with $A_{0} \in \mathfrak{g}, Y \in \mathfrak{n}$ and $Z \in \mathfrak{z}$, we have

$$
\left\langle\left(\operatorname{ad} A_{0}+2 \lambda \mathrm{id}\right) Y, J Z\right\rangle=0
$$

where id denotes the identity map of \mathfrak{g}. Since $\left.\left(\operatorname{ad} A_{0}+2 \lambda i d\right)\right|_{\mathfrak{n}}$ is non-degenerate, this implies that $[\mathfrak{n}, J Z]=0$ so that $J Z \in \mathbb{R}\left\{A_{0}\right\}$. Hence $Z \in \mathbb{R}\left\{J A_{0}\right\}$. Since $Z \in \mathfrak{z}$ is arbitrary, we have $\mathfrak{z}=\mathbb{R}\left\{J A_{0}\right\}$.

Since G is assumed of Iwasawa type, ad $\left.A_{0}\right|_{\mathfrak{n}}$ is symmetric with respect to \langle,$\rangle , that is,$ $\left.\operatorname{ad} A_{0}\right|_{\mathfrak{n}}=D_{0}$. Then it follows from Condition (4) with $X, Y \in \mathfrak{b}$ and A_{0} that

$$
\begin{equation*}
\left\langle[X, Y], J A_{0}\right\rangle=\left\langle\left(D_{0} J+J D_{0}\right) X, Y\right\rangle . \tag{7}
\end{equation*}
$$

Recall that $D_{0}=\left.\operatorname{ad} A_{0}\right|_{\mathfrak{n}}$ leaves $\mathfrak{z}=\mathbb{R}\left\{J A_{0}\right\}$ invariant, and hence also its orthogonal complement $\mathfrak{b}=\mathfrak{z}^{\perp}$ of \mathfrak{z} in \mathfrak{n}. Multiplying 2λ to this equation, we then obtain

$$
\begin{align*}
2 \lambda & \left\langle\left(D_{0} J+J D_{0}\right) X, Y\right\rangle=2 \lambda\left\langle[X, Y], J A_{0}\right\rangle \\
& =\left\langle 2 \lambda[X, Y]_{\mathfrak{z}}, J A_{0}\right\rangle=\left\langle\left[A_{0},[X, Y]_{\mathfrak{z}}\right], J A_{0}\right\rangle \\
& =\left\langle\left[A_{0},[X, Y]\right], J A_{0}\right\rangle=\left\langle\left[\left[A_{0}, X\right], Y\right], J A_{0}\right\rangle+\left\langle\left[X,\left[A_{0}, Y\right]\right], J A_{0}\right\rangle \tag{8}\\
& =\left\langle\left(D_{0} J+J D_{0}\right) D_{0} X, Y\right\rangle+\left\langle\left(D_{0} J+J D_{0}\right) X, D_{0} Y\right\rangle,
\end{align*}
$$

where $[X, Y]_{\mathfrak{z}}$ denotes the component of $[X, Y]$ in \mathfrak{z}.
We now consider the restriction $\left.D_{0}\right|_{\mathfrak{b}}$ of ad $\left.A_{0}\right|_{\mathfrak{n}}=D_{0}$ to \mathfrak{b}, and let $\mu_{i}>0$ be the eigenvalues of $\left.D_{0}\right|_{\mathfrak{b}}$ with eigenspace \mathfrak{b}_{i} for $i=1, \cdots, s$. Without loss of generality, we may suppose $\mu_{1}<\mu_{2}<\cdots<\mu_{s}$. Note that if $X \in \mathfrak{b}_{i}$, then for any $Y \in \mathfrak{b}_{j}$ we obtain from (8) that

$$
\begin{equation*}
\left\{2 \lambda-\left(\mu_{i}+\mu_{j}\right)\right\}\left(\mu_{i}+\mu_{j}\right)\langle J X, Y\rangle=0, \tag{9}
\end{equation*}
$$

which implies that for each μ_{i} there exists a unique eigenvalue $\mu_{i^{*}}$ that satisfies

$$
\begin{equation*}
2 \lambda-\left(\mu_{i}+\mu_{i^{*}}\right)=0 \tag{10}
\end{equation*}
$$

Indeed, for a given μ_{i}, if we have no eigenvalue μ_{j} satisfying $2 \lambda-\left(\mu_{i}+\mu_{j}\right)=0$, then we see from (9) that $J X=0$ for any $X \in \mathfrak{b}_{i}$, contradicting that J is non-degenerate.

It follows from (9) together with (10) that $J\left(\mathfrak{b}_{i}\right)=\mathfrak{b}_{i^{*}}$. Moreover, by our choice of the order of μ_{i} 's, we conclude from (10) that $i^{*}=s-i+1$ and hence

$$
\begin{equation*}
\mu_{i}=2 \lambda-\mu_{s-i+1}, \quad i=1, \cdots, s . \tag{11}
\end{equation*}
$$

Now, note that we obtain from (3)

$$
\nabla_{A_{0}} A_{0}=0, \quad \nabla_{A_{0}} X=0, \quad \nabla_{X} A_{0}=-D_{0} X
$$

for $X \in \mathfrak{n}$, since ad A_{0} is symmetric. Let $\left\{X_{1}^{k}, \cdots, X_{l_{k}}^{k}\right\}$ be an orthonomal basis of \mathfrak{b}_{k} for $k=1, \cdots, s$. Then the Ricci curvature $\operatorname{Ric}\left(A_{0}, A_{0}\right)$ of $(G,\langle\rangle$,$) in the direction A_{0}$ is given by

$$
\operatorname{Ric}\left(A_{0}, A_{0}\right)=\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left\langle R\left(X_{i}^{k}, A_{0}\right) A_{0}, X_{i}^{k}\right\rangle+\left\langle R\left(J A_{0}, A_{0}\right) A_{0}, J A_{0}\right\rangle
$$

$$
\begin{aligned}
& =\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left\langle-\nabla_{\left[X_{i}^{k}, A_{0}\right]} A_{0}, X_{i}^{k}\right\rangle+\left\langle-\nabla_{\left[J A_{0}, A_{0}\right]} A_{0}, J A_{0}\right\rangle \\
& =-\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left\langle D_{0}^{2} X_{i}^{k}, X_{i}^{k}\right\rangle-\left\langle D_{0}^{2} J A_{0}, J A_{0}\right\rangle \\
& =-\left.\operatorname{Tr} D_{0}^{2}\right|_{\mathfrak{b}}-\left\langle D_{0}^{2} J A_{0}, J A_{0}\right\rangle .
\end{aligned}
$$

On the other hand, since from (7) we have $(\operatorname{ad} X)^{*} J A_{0}=\left(D_{0} J+J D_{0}\right) X$ for $X \in \mathfrak{b}$, it follows from (1) that

$$
\nabla_{J A_{0}} X=\nabla_{X} J A_{0}=(-1 / 2)\left(D_{0} J+J D_{0}\right) X, \quad \nabla_{J A_{0}} J A_{0}=2 \lambda A_{0}
$$

Substituting $J X$ for Y in (8), we also have

$$
2 \lambda\left\langle\left(D_{0} J+J D_{0}\right) X, J X\right\rangle=-\left\langle\left(D_{0} J+J D_{0}\right)^{2} X, X\right\rangle
$$

Therefore, the Ricci curvature $\operatorname{Ric}\left(J A_{0}, J A_{0}\right)$ in the direction $J A_{0}$ is given by

$$
\begin{aligned}
& \operatorname{Ric}\left(J A_{0}, J A_{0}\right)=\left\langle R\left(A_{0}, J A_{0}\right) J A_{0}, A_{0}\right\rangle+\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left\langle R\left(X_{i}^{k}, J A_{0}\right) J A_{0}, X_{i}^{k}\right\rangle \\
& = \\
& =\left\langle-\nabla_{\left[J A_{0}, A_{0}\right]} A_{0}, J A_{0}\right\rangle+\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left\langle\left(\nabla_{X_{i}^{k}} \nabla_{J A_{0}} J A_{0}-\nabla_{\left.\left.J A_{0} \nabla_{X_{i}^{k}} J A_{0}\right), X_{i}^{k}\right\rangle}=-\left\langle D_{0}^{2} J A_{0}, J A_{0}\right\rangle+\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left(\left\langle\nabla_{X_{i}^{k}}\left(2 \lambda A_{0}\right)-\frac{1}{4}\left(D_{0} J+J D_{0}\right)^{2} X_{i}^{k}, X_{i}^{k}\right\rangle\right)\right.\right. \\
& = \\
& =-\left\langle D_{0}^{2} J A_{0}, J A_{0}\right\rangle+\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left(-2 \lambda\left\langle D_{0} X_{i}^{k}, X_{i}^{k}\right\rangle+\lambda \frac{1}{2}\left\langle\left(D_{0} J+J D_{0}\right) X_{i}^{k}, J X_{i}^{k}\right\rangle\right) \\
& = \\
& =-\left\langle D_{0}^{2} J A_{0}, J A_{0}\right\rangle-\left.2 \lambda \operatorname{Tr} D_{0}\right|_{\mathfrak{b}}+\left.\lambda \frac{1}{2} \operatorname{Tr} D_{0}\right|_{\mathfrak{b}}+\left.\lambda \frac{1}{2} \operatorname{Tr} D_{0}\right|_{\mathfrak{b}} \\
& \left.0, J A_{0}\right\rangle-\left.\lambda \operatorname{Tr} D_{0}\right|_{\mathfrak{b}} .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\operatorname{Ric}\left(J A_{0}, J A_{0}\right)-\operatorname{Ric}\left(A_{0}, A_{0}\right)=\operatorname{Tr}\left(\left.D_{0}^{2}\right|_{\mathfrak{b}}\right)-\lambda \operatorname{Tr}\left(\left.D_{0}\right|_{\mathfrak{b}}\right) \tag{12}
\end{equation*}
$$

Recall that \mathfrak{b}_{k} is the eigenspace of D_{0} with eigenvalue μ_{k}, so that we have $D_{0} X_{j}^{k}=$ $\mu_{k} X_{j}^{k}$. Hence, noting (10) and (11), the right hand side of (12) reads as

$$
\operatorname{Tr}\left(D_{0}^{2} \mid \mathfrak{b}\right)-\lambda \operatorname{Tr}\left(D_{0} \mid \mathfrak{b}\right)=\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left(\left\langle D_{0}^{2} X_{i}^{k}, X_{i}^{k}\right\rangle-\lambda\left\langle D_{0} X_{i}^{k}, X_{i}^{k}\right\rangle\right)
$$

$$
\begin{aligned}
& =\sum_{k=1}^{s} \sum_{i=1}^{l_{k}}\left(\mu_{k}^{2}-\lambda \mu_{k}\right)=\sum_{k=1}^{s}\left(\mu_{k}^{2}-\lambda \mu_{k}\right) l_{k} \\
& =\frac{1}{2} \sum_{k=1}^{s}\left(\mu_{k}^{2}-\lambda \mu_{k}\right) l_{k}+\frac{1}{2} \sum_{k=1}^{s}\left(\mu_{k}^{2}-\lambda \mu_{k}\right) l_{k} \\
& =\frac{1}{2} \sum_{k=1}^{s}\left(\mu_{k}^{2}-\lambda \mu_{k}\right) l_{k}+\frac{1}{2} \sum_{k=1}^{s}\left(\left(2 \lambda-\mu_{s-k+1}\right)^{2}-\lambda\left(2 \lambda-\mu_{s-k+1}\right)\right) l_{s-k+1} \\
& =\frac{1}{2} \sum_{k=1}^{s}\left(\mu_{k}^{2}-\lambda \mu_{k}\right) l_{k}+\frac{1}{2} \sum_{k=1}^{s}\left(\left(2 \lambda-\mu_{k}\right)^{2}-\lambda\left(2 \lambda-\mu_{k}\right)\right) l_{k} \\
& =\frac{1}{2} \sum_{k=1}^{s}\left(\mu_{k}^{2}-\lambda \mu_{k}+\left(2 \lambda-\mu_{k}\right)^{2}-\lambda\left(2 \lambda-\mu_{k}\right)\right) l_{k} \\
& =\sum_{k=1}^{s}\left(\mu_{k}-\lambda\right)^{2} l_{k}
\end{aligned}
$$

since $\mu_{k}=2 \lambda-\mu_{s-k+1}$ and $l_{k}=l_{s-k+1}$. Consequently, we obtain

$$
\begin{equation*}
\operatorname{Ric}\left(J A_{0}, J A_{0}\right)-\operatorname{Ric}\left(A_{0}, A_{0}\right)=\sum_{k=1}^{s}\left(\mu_{k}-\lambda\right)^{2} l_{k} \tag{13}
\end{equation*}
$$

Since $(G,\langle\rangle$,$) is assumed Einstein, we have \operatorname{Ric}\left(A_{0}, A_{0}\right)=\operatorname{Ric}\left(J A_{0}, J A_{0}\right)$. Hence it follows from (13) that

$$
\sum_{k=1}^{s}\left(\mu_{k}-\lambda\right)^{2} l_{k}=0
$$

from which we have $\lambda=\mu_{j}$ for $j=1, \cdots, s$, that is,

$$
\left.D_{0}\right|_{\mathfrak{b}}=\left.\lambda \mathrm{id}\right|_{\mathfrak{b}} .
$$

Since $D_{0}=\left.\operatorname{ad} A_{0}\right|_{\mathfrak{n}}$ is a derivation of \mathfrak{n}, for any $X, Y \in \mathfrak{b}$ we have

$$
D_{0}[X, Y]=\left[D_{0} X, Y\right]+\left[X, D_{0} Y\right]=2 \lambda[X, Y]
$$

Hence $[X, Y] \in \mathfrak{z}$, so that $[\mathfrak{n}, \mathfrak{n}] \subset \mathfrak{z}$. Therefore it follows from Condition (4) that

$$
[X, Y]=\lambda\langle J X, Y\rangle J A_{0}
$$

Consequently, $(\mathfrak{g},\langle\rangle, J$,$) satisfies Condition (5)$
In Propsition 2 we assume that $(G,\langle\rangle$,$) is Einstein. However, in the proof we only use$ this assumption to assure that $\operatorname{Ric}\left(J A_{0}, J A_{0}\right)=\operatorname{Ric}\left(A_{0}, A_{0}\right)$. As a result, we also have the following

Proposition 3. Let $(G,\langle\rangle, J$,$) be a homogeneous almost Kähler manifold of neg-$ ative curvature. Suppose that G is of Iwasawa type and the Ricci tensor field of $(G,\langle\rangle$, is J-invariant, that is, $\operatorname{Ric}(J X, J Y)=\operatorname{Ric}(X, Y)$ for $X, Y \in \mathfrak{g}$. Then $(\mathfrak{g},\langle\rangle, J$,$) satisfies$ Condition (5) (with $S_{0}=0$).

Regarding the integrability of the almost complex structure J, we now have
Lemma 4. Let $(G,\langle\rangle, J$,$) be a homogeneous almost complex manifold of negative$ curvature. If $(\mathfrak{g},\langle\rangle, J$,$) satisfies Condition (5), then J is integrable.$

Proof. By a straightforward computation, we can see that the Nijenhuis tensor of J

$$
N(X, Y)=[J X, J Y]-J[X, J Y]-J[J X, Y]-[X, Y]
$$

vanishes identically, so that J is integrable.
Indeed, for any $X, Y \in \mathfrak{b}$ and A_{0}, the Jacobi identity together with Condition (4) yield that

$$
\begin{aligned}
0 & =\left[A_{0},[X, Y]\right]+\left[X,\left[Y, A_{0}\right]\right]+\left[Y,\left[A_{0}, X\right]\right] \\
& =\left[A_{0}, 2 \lambda\langle J X, Y\rangle J A_{0}\right]+\left[X,-\left(\lambda Y+S_{0} Y\right)\right]+\left[Y, \lambda X+S_{0} X\right] \\
& =4 \lambda^{2}\langle J X, Y\rangle J A_{0}+2 \lambda\left\langle J X,-\left(\lambda Y+S_{0} Y\right)\right\rangle J A_{0}+2 \lambda\left\langle J Y, \lambda X+S_{0} X\right\rangle J A_{0} \\
& =2 \lambda\left\langle\left(S_{0} J-J S_{0}\right) X, Y\right\rangle J A_{0} .
\end{aligned}
$$

Hence we have $S_{0} J-J S_{0}=0$. Using this identity, we see that the Nijenhuis tensor $N\left(A_{0}, X\right)$ for $X \in \mathfrak{b}$ and A_{0} vanishes as follows.

$$
\begin{aligned}
N\left(A_{0}, X\right) & =\left[J A_{0}, J X\right]-J\left[A_{0}, J X\right]-J\left[J A_{0}, X\right]-\left[A_{0}, X\right] \\
& =-J\left(\lambda J X+S_{0} J X\right)-\left(\lambda X+S_{0} X\right) \\
& =-J\left(S_{0} J-J S_{0}\right) X=0 .
\end{aligned}
$$

The vanishing of the other components $N\left(A_{0}, J A_{0}\right), N\left(J A_{0}, X\right)$ and $N(X, Y)$ for $X, Y \in \mathfrak{b}$ of the Nijenhuis tensor can be seen in a similar manner.

It is shown in Heintze [4] that a connected homogeneous Kähler manifolds of negative curvature is holomorphically isometric to a complex hyperbolic space. Hence, it follows form Proposition 2 and Lemma 4 that $(G,\langle\rangle, J$,$) must be holomorphically isometric to a complex$ hyperbolic space. This completes the proof of Theorem 1

It should be remarked that, combining Proposition 3 with Lemma 4, we also have the following

THEOREM 5. Let $(G,\langle\rangle, J$,$) be a homogeneous almost Kähler manifold of negative$ curvature. If G is of Iwasawa type and the Ricci tensor field of $(G,\langle\rangle$,$) is J-invariant, then$ $(G,\langle\rangle, J$,$) is Kähler, and in fact is holomorphically isometric to a complex hyperbolic space$ $\left(\mathbb{C} H^{n}, g_{0}, J_{0}\right)$.

Finally, we give an example of a homogeneous almost Kähler manifold of negative curvature which is neither Einstein nor Kähler.

EXAMPLE 6. Let \mathfrak{g} be a real Lie algebra spanned by A, X, Y, Z, with the bracket operation defined by

$$
\begin{align*}
& {[A, X]=X, \quad[A, Y]=2 Y, \quad[A, Z]=3 Z,} \tag{14}\\
& {[X, Y]=3 Z, \quad \text { otherwise }=0,}
\end{align*}
$$

and with an inner product \langle,$\rangle for which A, X, Y, Z$ are orthonormal. We define a skewsymmetric endmorphism J on \mathfrak{g} by

$$
\begin{equation*}
J A=Z, \quad J X=Y, \quad J Y=-X, \quad J Z=-A \tag{15}
\end{equation*}
$$

Let G be the simply connected Lie group associated with \mathfrak{g}. By left translations, 〈, > and J on \mathfrak{g} extend to G as an left invariant metric \langle,$\rangle and a left invariant almost complex$ structure J, respectively. Then it is immediate from (14) that G is of Iwasawa type. Moreover, from (14) and (15), it is easily verified by a straightforward computation that ($G,\langle\rangle,$,$J)$ has negative curvature and is almost Kähler, that is, J satisfies Condition (4). However, $(G,\langle\rangle, J$,$) is not Einstein, since we have$

$$
\operatorname{Ric}(A, A)=-14=-14\langle A, A\rangle, \quad \operatorname{Ric}(X, X)=-21 / 2=-(21 / 2)\langle X, X\rangle
$$

for unit vectors $A, X \in \mathfrak{g}$. Also, $(G,\langle\rangle, J$,$) is not Kähler, since we have$

$$
\begin{aligned}
N(A, X) & =[J A, J X]-J[A, J X]-J[J A, X]-[A, X] \\
& =[Z, Y]-J[A, Y]-J[Z, X]-X=-3 X .
\end{aligned}
$$

References

[1] L. A. Cordero, M. Fernandez and M. De Leon, Example of compact non-Kähler almost Kähler manifolds, Proc. Amer. Math. Soc. 95 (1985), 280-286.
[2] S. Goldberg, Integrability of almost Kaehler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96-100.
[3] J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 211 (1998), 279-352.
[4] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34.
[5] S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Tôhoku Math. J. 14 (1962), 413415.

Present Address:
Mathematical Institute, Tohoku University,
SENDAI, 980-8578 JAPAN

