On a Genus of a Closed Surface Containing a Brunnian Link

Makoto OZAWA
Komazawa University
(Communicated by K. Taniyama)

Abstract

Let L be an n-component Brunnian link and F a genus g closed surface containing L. Then, we show that $g>(n+3) / 3$.

1. Introduction

An n-component link $L=C_{1} \cup \cdots \cup C_{n}(n \geq 3)$ in the 3 -sphere S^{3} is said to be Brunnian if it is non-trivial but $L-C_{i}$ is trivial for all i ([B]). Kazuaki Kobayashi observed that the Borromean rings are contained in a genus 3 Heegaard surface of S^{3}, and asked whether it is contained in a genus 2 Heegaard surface of S^{3}. In this article, we answer Kobayashi's question in the following theorem.

THEOREM 1. Let L be an n-component Brunnian link and F a genus g closed surface containing L. Then, $g>(n+3) / 3$ holds.

Theorem 1 shows that the Borromean rings can not be contained in a genus 2 closed surface.

It seems from the proof that the estimation in Theorem 1 is very rough. The author would expect the following.

Conjecture 1. Let L be an n-component Brunnian link and F a genus g closed surface containing L. Then, $g \geq n$ holds.

We note that the inequality of Conjecture 1 is best possible since any n-component link can be contained in a genus n closed surface, which is constructed from peripheral tori of the link by $n-1$ tubings.

2. Proof

Lemma 1. Let $L=C_{1} \cup \cdots \cup C_{n}$ be an n-component Brunnian link. Then, for any component C_{i} of L, there exists an essential tangle decomposing sphere S_{i} for L such that S_{i} intersects L only in C_{i}.

Proof. Without loss of generality, it is sufficient to show this lemma only for $i=1$. Since $L-C_{1}$ is a trivial link, there exists a splitting sphere S for $L-C_{1}$. We assume that S intersects C_{1} minimally among all splitting spheres for $L-C_{1}$. Then, $S-\operatorname{intN}(\mathrm{L})$ is incompressible and ∂-incompressible in $S^{3}-\operatorname{intN}(\mathrm{L})$, namely, S is an essential tangle decomposing sphere for L.

By Lemma 1, the Borromean rings admits at least three essential tangle decompositions. In fact, it was shown in Theorem 4 of [O] that the Borromean rings admits exactly three essential tangle decompositions.

PROOF OF THEOREM 1. Let $L=C_{1} \cup \cdots \cup C_{n}$ be an n-component Brunnian link and F be a genus g closed surface containing L. If $g \leq(n+3) / 3$, then there exists a component of $F-L$ which is an open disk, say D, an open annulus, say A, or an open pair of pants, say P.

If an open disk D exists, then without loss of generality, let $\partial\left(D \cup C_{1}\right)=C_{1}$. Thus C_{1} is trivial in the complement of $C_{2} \cup \cdots \cup C_{n}$. Then, since $L-C_{1}$ is trivial by the Brunnian property of L, L is also trivial. This contradicts that L is Brunnian.

If an open annulus A exists, then without loss of generality, let $\partial\left(A \cup C_{1} \cup C_{2}\right)=C_{1} \cup C_{2}$. Thus C_{1} is parallel to C_{2} in the complement of $C_{3} \cup \cdots \cup C_{n}$. Then, since $L-C_{1}$ is trivial by the Brunnian property, L is also trivial. This contradicts that L is Brunnian.

If an open pair of pants P exists, then without loss of generality, there are two possibilities;

CASE 1. $\quad C_{2}$ bounds a punctured torus $P^{\prime}=P \cup C_{1} \cup C_{2}$ in F.
CASE 2. $\quad C_{1} \cup C_{2} \cup C_{3}$ bounds a pair of pants $P^{\prime \prime}=P \cup C_{1} \cup C_{2} \cup C_{3}$ in F.
In Case 1, we note that $P^{\prime}-L$ is incompressible in $S^{3}-L$, otherwise at least one of C_{1} and C_{2} bounds a disk D in the complement of the rest. This contradicts that L is Brunnian. By Lemma 1, there exists an essential tangle decomposing sphere S for L such that S intersects L in only C_{1}. We assume that S intersects P^{\prime} minimally up to isotopy of S in the pair (S^{3}, L). Then, $S \cap P^{\prime}$ consists of essential loops in P^{\prime} which are disjoint from C_{2}. Let α be an innermost loop of $S \cap P^{\prime}$ in S and δ be the corresponding innermost disk in S. By compressing P^{\prime} along δ, we obtain a disk bounded by C_{2} in $S^{3}-L$. This contradicts that L is Brunnian.

In Case 2, a trivial link $L-\left(C_{2} \cup C_{3}\right)$ is obtained from a trivial link $L-C_{1}$ by a band sum along a band $b \subset P^{\prime \prime}$. By 8.11 Corollary of [S], the band b is trivial, i.e. there exists a 2-sphere containing $L-C_{1}$ and b. Hence, L is trivial and contradicts that L is Brunnian.

References

[^0][S] M. Scharlemann, Sutured manifolds and generalized Thurston norms, J. Diff. Geometry 29 (1989), 557614.

Present Address:
Department of Natural Sciences, Faculty of Arts and Sciences,
Komazawa University,
1-23-1 Komazawa, Setagaya-Ku, Tokyo, 154-8525 Japan.
e-mail: w3c@komazawa-u.ac.jp

[^0]: [B] H. Brunn, Über Verkettung, Sitzungsberichte der Bayerische Akad. Wiss., MathPhys. Klasse 22 (1892), 7799.
 [O] M. Ozawa, Morse position of knots and closed incompressible surfaces, J. Knot Theory and its Ramifications 17 (2008), 377-397.

