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Abstract. For a number field k and a prime number p, let k∞ be a Zp-extension of k and X∞(k) the Galois
group over k∞ of the maximal abelian unramified p-extension of k∞. We first give a sufficient condition, bearing
on the norm index of units in the layers of k∞, for X∞(k) to be finite. When the prime p is 2 and X∞(k) �
Z/2Z × Z/2Z, we study the structure of the Galois group of the maximal unramified p-extension of k∞, improving
on some previous results in the case of quadratic fields.

1. Introduction

Let p be a prime number and Zp the additive group of p-adic integers. Let k be an
algebraic number field and k∞ any Zp-extension of k. For any integer n ≥ 1, we denote by
kn the n-th layer of k∞/k and by An the p-class group of kn. The p-class group of k will be
simply denoted by A. As usual λ,µ and ν will be the Iwasawa invariants corresponding to

the series of groups An: for n large the order of An is given by pλn+µpn+ν .
Let L∞ be the maximal unramified p-extension of k∞ and L∞ the maximal abelian

sub-extension of L∞/k∞. If the number field k is totally real, the now famous conjecture of
Greenberg predicts the vanishing of the two invariants λ and µ [Gr1, Gr2]. The µ-invariant
vanishes precisely when the p-ranks of An are bounded independently of n. When k is abelian
over the field of rational numbers Q, and k∞ is the cyclotomic Zp-extension of k, then we

know that the corresponding µ-invariant vanishes [F-W]. For p = 3 and k = Q(
√

39345017),
Y. Mizusawa shows that the abelian extension L∞/k∞ is finite, while L∞/k∞ is infinite
[M1]. More generally, M. Ozaki showed that for any prime number p, there exist infinitely
many number fields k (cyclic extensions of Q of degree p) such that L∞/k∞ is finite while
L∞/k∞ is infinite [O].

Let n0 be the smallest integer such that all ramified primes in k∞/k are totally ramified in
k∞/kn0 and denote by Un, for any integer n, the group of global units of kn. In this paper, we
first give a sufficient condition, bearing on the norm index [Un0 : Un0∩Nkn0+1/kn0

(k∗n0+1)], for

X∞(k) := G(L∞/k∞) to be finite (Theorem 2.1, Corollary 2.6). Then, in section 3, we fix the
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prime p to be 2 and study the structure of the Galois group G(L∞/k∞) when its abelianized
X∞(k) is isomorphic to Z/2Z × Z/2Z. There exist exactly three infinite families of non-
abelian finite 2-groups which have such a property. Namely the dihedral, the semidihedral and
the generalized quaternion groups (see Section 3). Let N be the smallest integer for which we
simultaneously have A(kN) � Z/2Z × Z/2Z and k∞/kN totally ramified at a prime of kN .
In Theorem 3.1, we prove that if X∞(k) � Z/2Z × Z/2Z and the Galois group G(LN/kN)

is of quaternion type or semidihedral, then we have G(L∞/k∞) � G(LN/kN). Theorem 2
of [M3] turns out to be a special case of Theorem 3.1, which deals with general number fields
rather than quadratic ones (see Example 3.2). Theorem 3.3 gives infinite families of quadratic
fields for which the Galois group G(L∞/k∞) is a dihedral or generalized quaternion 2-group
(see also the main Theorem of [M2] and Theorem 1 of [M3]).

The authors would like to thank Thong NGUYEN QUANG DO for his remarks on a
preliminary version of this paper and also an anonymous referee for helpful comments.

2. Structure of X∞(k) for certain number fields k

The following notations will be used throughout the paper:

p a prime number
k a number field
k∞ a Zp-extension of k

kn the n-th layer of k∞/k

Un the group of units of kn

An the p-class group of kn

Ln the maximal abelian unramified p-extension of kn

L∞ the maximal abelian unramified p-extension of k∞
Ln the maximal unramified p-extension of kn

L∞ the maximal unramified p-extension of k∞
n0 the smallest integer such that all ramified primes in k∞/k

are totally ramified in k∞/kn0

s the number of primes of kn0 which are ramified in k∞
X∞(k) the Galois group G(L∞/k∞)

NE/F the norm map with respect to an extension E/F .
It is known that if the Iwasawa invariants λ and µ (corresponding to X∞(k)) vanish,

then for n large enough, we have An
∼← An+1

∼← An+2
∼← . . . . So, in this case, the Galois

group G(kn+1/kn) acts trivially on An+1 and the ambiguous class formula in kn+1/kn reads
as follow:

|An+1| = |An|ps

[kn+1 : kn][Un : Un ∩Nkn+1/kn(k
∗
n+1)]

= |An|ps−1

[Un : Un ∩Nkn+1/kn(k
∗
n+1)]
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Hence, for such an n, we have the following equality for the norm index of the multi-
plicative group of non zero elements of kn+1 inside the units of kn:

[Un : Un ∩Nkn+1/kn(k
∗
n+1)] = ps−1 .

The following theorem studies the converse:

THEOREM 2.1. Let k be a number field and let k∞ be any Zp-extension of k. Suppose
that An0 	= 0 and that the p-adic primes of kn0 which are ramified in k∞ remain inert in Ln0 .

If, furthermore, [Un0 : Un0 ∩ Nkn0+1/kn0
(k∗n0+1)] = ps−1, then X∞(k)

∼→ An0 , in particular

λ = µ = 0.

To prove the theorem we will need the following two lemmas:

LEMMA 2.2 ([Iw, §4]). Let k be a number field. Suppose that the maximal unramified
p-extension K of k is of finite degree over k. Denote by G the Galois group of K/k. Let Uk

(resp. UK) be the group of units of k (resp. K). Then

Uk/NK/k(UK) � M(G) ,

where M(G) = H 2(G, Qp/Zp) is the Schur multiplier of G.

Note that when F/k is an unramified cyclic p-extension, the Hasse local-global principle
allows us to see that each unit of k is the norm of an element (which is not necessarily a unit)
of F . If, furthermore, the p-class group of F is trivial, then the preceding lemma immediately
yields the following:

COROLLARY 2.3. If the p-class group of k is cyclic then, the maximal unramified p-
extension K being the Hilbert p-class field of k, G is cyclic and M(G) = 0. In particular, in
this case, each unit of k is the norm of a unit of K .

LEMMA 2.4 ([F, Theorem 1]). Let k∞/k be a Zp-extension and n any integer ≥ n0.
(i) If |An| = |An+1|, then |Am| = |An| for all m ≥ n. Hence λ = µ = 0.

(ii) If rank(An+1) = rank(An), then rank(Am) = rank(An) for all m ≥ n. Hence
µ = 0.

PROOF OF THEOREM 2.1. Introduce the field Fn0+1 := Ln0kn0+1. Since k∞/kn0 is
totally ramified, we have:

[Fn0+1 : kn0+1] = [Ln0 : kn0] .
The extension Ln0/kn0 is cyclic since, by hypothesis, the p-adic primes which are ramified in
k∞ are inert therein. Thus, by corollary 2.3, each unit of kn0 is the norm of a unit of Ln0 . So,
the map induced by the norm in the extension Ln0/kn0 :

ULn0
/ULn0

∩NFn0+1/Ln0
(F ∗n0+1)→ Un0/Un0 ∩Nkn0+1/kn0

(k∗n0+1)

is surjective. Hence:

[ULn0
: ULn0

∩NFn0+1/Ln0
(F ∗n0+1)] ≥ [Un0 : Un0 ∩Nkn0+1/kn0

(k∗n0+1)] = ps−1 ,
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where we recall that s is the number of p-adic primes of kn0 which are ramified in k∞. Be-
sides, since An0 is cyclic, the class number of Ln0 is prime to p. Also, by hypothesis, all the
p-adic primes of kn0 remain inert in Ln0 . Accordingly, the ambiguous class formula for the
p-class groups in Fn0+1/Ln0 reads:

|A(Fn0+1)
G(Fn0+1/Ln0 )| = ps−1

[ULn0
: ULn0

∩NFn0+1/Ln0
(F ∗n0+1)]

.

Taking into account the previous inequality, A(Fn0+1)
G(Fn0+1/Ln0 ) must be trivial. In

other words Fn0+1 = Ln0+1. Hence An0+1
∼→ An0 . Now we can apply Lemma 2.4:

X∞(k)
∼→ An0 and so λ = µ = 0.

REMARK 2.5. Suppose that An0 	= 0 and that the p-adic primes of kn0 remain inert in
Ln0 (especially An0 is cyclic). Denote by Pn0 a p-adic prime of kn0 which is totally ramified
in k∞. If the number field k is totally real and if there exists an integer n > n0 such that
An is also cyclic, then under Leopoldt’s conjecture, it can be proved that X∞(k) is finite

without resorting to the condition [Un0 : Un0 ∩ Nkn0+1/kn0
(k∗n0+1)] = ps−1 which intervenes

in Theorem 2.1. Indeed, by Lemma 2.4, the group X∞(k) is cyclic (of finite or infinite order).
Moreover, one readily verifies that for all n ≥ n0, the class group An is generated by the
p-adic prime of kn lying above Pn0 . This shows that the action of the Galois group G(k∞/k)

on An is trivial. On the other hand, if we assume Leopoldt’s conjecture for k then, by [Gr1,

Proposition 1], the order of A
G(k∞/k)
n is bounded when n increases. This allows us to conclude

that X∞(k) is finite.

COROLLARY 2.6. Suppose that An0 	= 0 and that there is only one p-adic prime in
Ln0 . Then X∞(k) is a finite cyclic group isomorphic to An0 .

PROOF. By hypotheses, we have s = 1, and An0 is cyclic since the p-adic prime of kn0

is inert in Ln0 . Moreover, by the Hasse local-global principle (alternatively, by the ambiguous
class formula) for the cyclic extension kn+1/kn, we see that for each n ≥ n0, all units of kn

are norms from elements of kn+1. Thus the preceding theorem applies.

We notice that when the number field k is abelian over Q, and when the prime number p

is odd, the hypotheses of the preceding corollary are not satisfied [N-L, lemma 1.5]. However
for p = 2, as the following example shows, such a situation is perfectly possible: let p and
q be two prime numbers such that p ≡ −q ≡ 1 (mod 4) and k = Q(

√
pq). The prime 2

is then totally ramified in the cyclotomic Z2-extension of k, so n0 = 0. Suppose also that

the Legendre symbol
( 2

p

) = −1, then the 2-adic prime of k is inert in Q(
√

p,
√

q) which is

simply the Hilbert 2-class field of k [R-R]. Thus the hypotheses of the preceding corollary are
satisfied and X∞(k) is isomorphic to A0 = A(k) � Z/2Z.

EXAMPLE 2.7. Let p1 and p2 be two prime numbers such that p1 ≡ p2 ≡ 5 (mod 8)

and k = Q(
√

p1p2). Suppose that NQ(
√

p1p2)/Q(εp1p2) = 1, where εp1p2 is the fundamental
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unit of k (i.e. the unit ε which generates the unit group of k modulo ±1, with the property
that ι(ε) > 1 under a fixed embedding ι of k into R). Then λ(k) = 0. Indeed according to
genus theory the 2-class group of k is cyclic. The congruences p1 ≡ p2 ≡ 5 (mod 8) show
that 2 splits into two prime ideals P1 and P2 in k. These primes P1 and P2 remain inert in
Q(
√

p1,
√

p2), which is an unramified extension of k. Hence P1 et P2 remain inert in L.
So we have s = 2 and A0 cyclic. Thus all we need to apply Theorem 2.1, is to prove the
following equality:

[Uk : Uk ∩Nk1/k(k
∗
1)] = 2 ,

where k1 = k(
√

2). As NQ(
√

p1p2)/Q(εp1p2) = 1, we can easily verify that there exist two

rational integers y1 and y2 such that
√

εp1p2 = 1
2 (y1
√

p1 + y2
√

p2)(see for example [A-M,
proof of Lemma 1]). Hence p1εp1p2 is a square in k and we can compute the following norm
residue symbol in k1/k:

(
εp1p2, 2

P1

)
=

(
p1, 2

P1

)
=

(
2

p1

)
= −1 .

Thus εp1p2 is not a norm in k1/k and the result holds. In fact, M. Ozaki and H. Taya [O-T]
showed the vanishing of λ(k) for prime numbers p1 ≡ p2 ≡ 5 (mod 8), without assuming
NQ(
√

p1p2)/Q(εp1p2) = 1.

In what follows we are going to apply the results of this section to quadratic fields, with
p = 2.

3. Application

Throughout this section we take the prime number to be 2. We will be interested in the
number fields k for which X∞(k) is isomorphic to Z/2Z × Z/2Z and we are going to study
the (not necessarily abelian) Galois group G(L∞/k∞).

Any pro-2-group (not necessarily finite) whose abelianization is isomorphic to Z/2Z ×
Z/2Z is metabelian. It is known [G, Chap. 5, Theorem 4.5] that there exist exactly three
infinite families of non-abelian finite 2-groups G of which the largest abelian factor groups
are isomorphic to Z/2Z × Z/2Z. Namely, the generalized quaternion groups Qm, dihedral
groups Dm and the semidihedral groups Sm, of order exactly 2m, with m ≥ 3 for the first two
families and m ≥ 4 for the last. A representation by generators and relations of these three
families are given by:

Qm = 〈x, y | x2m−2 = y2 = a, a2 = 1, y−1xy = x−1〉 ;
Dm = 〈x, y | x2m−1 = y2 = 1, y−1xy = x−1〉 ;

Sm = 〈x, y | x2m−1 = y2 = 1, y−1xy = x2m−2−1〉 .
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In this section we will use the following known properties of these groups G (see, for instance,

[Ki, Section 1]). The commutator subgroup G′ of G is always cyclic: G′ = 〈x2〉. These groups

G possess exactly three sub-groups of index 2. Namely, 〈x〉; 〈x2, y〉 and 〈x2, xy〉. When G is
not the quaternion group of order 8, only one of the three maximal sub-groups of G is cyclic.
When m ≥ 4 the other two maximal sub-groups of G are not abelian and their maximal abelian
factor groups are again isomorphic to Z/2Z × Z/2Z . Of course, when G is the quaternion
group of order 8 its three maximal subgroups are cyclic and when G is the dihedral group of
order 8, its three subgroups are abelian. None of the proper factor groups of G is of quaternion
type. This will be needed in the proof of the next Theorem.

Now let k be a number field whose 2-class group is isomorphic to Z/2Z× Z/2Z. Then,
according to what we have just said, the Hilbert 2-class field tower of k terminates in at most
two steps. Denote by H1 the Hilbert 2-class field of k and by H2 that of H1. If H2 	= H1, then
the Galois group G(H2/H1) is cyclic and G(H2/k) is a quaternion, dihedral or semidihedral
group.

For a non-square positive integer m, denote by εm (resp. h(m)), the fundamental unit
(resp. the 2-part of the class number) of the quadratic field Q(

√
m). For any number field K

and any Z2-extension K∞/K , we denote by A(Kn) the 2-class group of the n-th layer Kn.
We are now ready to prove the following

THEOREM 3.1. Let k be a number field such that X∞(k) � Z/2Z× Z/2Z. Let N be
the smallest integer for which we simultaneously have A(kN) � Z/2Z × Z/2Z and k∞/kN

totally ramified at a prime of kN . If the Galois group G(LN/kN) is of quaternion type or
semidihedral, then we have

G(L∞/k∞) � G(LN/kN) .

In particular, λ(K) = µ(K) = 0 for any unramified extension K of k.

PROOF. According to our hypotheses, for any integer n ≥ N , we have A(kn) �
Z/2Z × Z/2Z. Also, for n ≥ N , the Galois group G(Ln/kn) maps surjectively onto
G(LN/kN).

(i) The Galois group G(LN/kN) is of quaternion type only when G(Ln/kn) �
G(LN/kN), since no proper factor group of G(Ln/kn) is of quaternion type.

(ii) When G(LN/kN) is semidihedral, replacing kN by a quadratic extension KN in-
side LN , the statement is reduced to the previous case. More precisely, we know that there
exists a quaternion type sub-group with index 2 in G(LN/kN). Denote by KN the sub-
extension of LN fixed by this sub-group. Since k∞/kN is totally ramified at a prime of kN ,
this is also the case of K∞/KN , where K∞ := KNk∞. Now it is enough to apply case (i)
to the Z2-extension K∞/KN in order to obtain G(L∞/K∞) � G(LN/KN). Consequently,
G(L∞/k∞) � G(LN/kN).

As we are going to see now, by specializing to the quadratic case, this last theorem con-
tains Theorem 2 of [M3] which corresponds to the case A-(i) below. Let d be a square-free



p-CLASS TOWER OF A Zp-EXTENSION 327

integer and k := Q(
√

d). Suppose that the 2-class group A1 of k1 = Q(
√

d,
√

2) is isomor-
phic to Z/2Z× Z/2Z. We first notice that the Galois group G(L1/k1) is never semidihedral
(see [A-M, Theorems 8,9,10 and 15]). There follows a complete list of quadratic fields for
which G(L1/k1) is of quaternion type [A-M, Theorems 7, 8, 9 and Proposition 10]:

(A) k = Q(
√

p1p2) where p1 ≡ 1, p2 ≡ 5 (mod 8) are two distinct primes satisfying
one of the two following conditions.

(i)
(

p1
p2

)
= −1,

(
2
p1

)
4
= (−1)

(p1−1)

8 , NQ(
√

2p1)/Q(ε2p1) = −1 and QM = 2;

(ii)
(

p1
p2

)
= 1,

(
2
p1

)
4
= (−1)

(p1−1)

8 = 1,
(

p2
p1

)
4
	=

(
p1
p2

)
4

and NQ(
√

2p1)/Q(ε2p1) = 1.

Here, for distinct primes p 	= 2 and q , the rational fourth-power residue symbol
( q

p

)
4 is

1 or −1, according to whether q is a fourth-power residue of p or not. It is defined provided

the Legendre symbol
( q

p

) = 1. We recall that
( 2

p

)
4 ≡ 2(p−1)/4 (mod p). In A-(i) above, QM

stands for the Hasse unit index of the group generated by the units of the three quadratic sub-
fields in the unit group of the biquadratic field M := Q(

√
2p1,
√

p2). Since p1 ≡ 1 (mod 8),
we also remark that in A-(i), the condition NQ(

√
2p1)/Q(ε2p1) = −1 implies that 4 | h(2p1)

(see, for instance, [C-H, Corollary 19.8]).
(B) k = Q(

√
pq1q2) where p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) are three distinct primes

satisfying one of the following conditions

(i)
(

2
p

)
= −

(
q1
p

) (
q2
p

)
= −

(
2
q1

) (
2
q2

)
= 1,

(
2
q1

)
=

(
q1
p

)
,
(

2
p

)
4
= (−1)

(p−1)
8 and

NQ(
√

2p)/Q(ε2p) = −1;

(ii)
(

2
p

)
= −1,

(
2
q1

)
=

(
2
q2

)
= 1,

(
p
q1

)
=

(
p
q2

)
= −1 and u = 2;

(iii)
(

2
p

)
= −1,

(
2
q1

)
=

(
2
q2

)
= 1,

(
p
q1

) (
p
q2

)
= −1 and u ∈ {2q1, 2q2};

with the additional condition “the Galois group G(L1/k1) is not abelian” in the cases B-(ii)

and B-(iii). Here u is the square-free integer characterized by the fact that 1
u
NQ(
√

2q1q2)/Q)(1+
ε2q1q2) is a perfect square.

Now let k = Q(
√

d) be one of the quadratic fields introduced just above. To apply
Theorem 3.1 to k, it suffices to suppose that the class number of k2 is not divisible by 8 since
then A1 � A2 � Z/2Z × Z/2Z so as to satisfy the hypotheses of Theorem 3.1 with N = 1
(Lemma 2.4). The following example, carrying out in detail the above case A-(i), corresponds
to Theorem 2 of [M3].

EXAMPLE 3.2. Let k := Q(
√

p1p2), with p1 and p2 two distinct prime integers such
that

p1 ≡ 1, p2 ≡ 5 ( mod 8) ,

(
p2

p1

)
= −1 ,

(
2

p1

)
4
= (−1)(p1−1)/8 .

Then the 2-class group A1 of k1 is isomorphic to Z/2Z × Z/2Z. Assuming that the
class number of k2 is not divisible by 8 (condition C2 of [M3, Theorem 2]), we also have
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A2 � Z/2Z× Z/2Z, and so X∞(k) � Z/2Z× Z/2Z. The Galois group G(L1/k1) is either
abelian or dihedral or of quaternion type [A-M, Proposition 10, Theorem 8]. Moreover, if the
2-adic prime of M = Q(

√
2p1,
√

p2) is not principal (condition C1 of [M3, Theorem 2]),
then G(L1/k1) turns out to be of quaternion type. Finally, by Theorem 3.1, we get

G(L∞/k∞) � G(L1/k1) .

As in Theorem 3.1, in general G(L∞/k∞) is not isomorphic to G(LN/kN). We will
construct such a counter example in the next theorem with N = 0. Let k be a real quadratic
field such that A(k) � A(k1) � Z/2Z × Z/2Z. Suppose k∞/k totally ramified at 2-adic
primes so that X∞(k) � Z/2Z × Z/2Z (Lemma 2.4 (i)). It is well known that for such
a quadratic field k, its 2-genus field is the same as its 2-Hilbert class field. From this we

immediately deduce that the same holds for k1 = k(
√

2). Such a quadratic field k is of one of
the two following forms [A-M, Theorem 5]:

(1) k = Q(
√

q1q2q3), with q1, q2 and q3 three distinct prime numbers such that

q1 ≡ 7 (mod 8), q2 ≡ q3 ≡ 3 (mod 8) and
(

q1
q2

) (
q1
q3

)
= −1;

(2) k = Q(
√

p1p2q), with p1, p2 and q three distinct prime numbers such that

p1 ≡ p2 ≡ 5 (mod 8), q ≡ 3 (mod 4) and
(

q
p1

) (
q
p2

)
= −1.

In the first case, we have L = L [B-S, Theorem 1] and L1 = L1 [A-M, Theorem 11].
Consequently the Galois group G(L∞/k∞) is abelian (Lemma 2.4). In what follows we are
going to be interested in case (2) which is to be compared with the main Theorem of [M2]
and Theorem 1 of [M3]:

THEOREM 3.3. Let k = Q(
√

p1p2q) where p1, p2 and q be three distinct prime num-

bers such that p1 ≡ p2 ≡ 5 (mod 8) and q ≡ 3 (mod 4). Suppose that
(

q
p1

)
= −

(
q
p2

)
= 1.

Then G(L∞/k∞) � G(L/k) precisely when NQ(
√

p1p2)/Q(εp1p2) = 1. Moreover, in this

case, the Galois group G(L∞/k∞) is dihedral of order 4h(p1p2).

The proof of this theorem requires a result on the units of biquadratic fields:

LEMMA 3.4. Let p1, p2 and q be as in the statement of the theorem. Then a system of
fundamental units of the biquadratic field E := Q(

√
p1p2,

√
q) is given by

(i) {εq, εp1p2,
√

εp1p2εp1p2q} when NQ(
√

p1p2)/Q(εp1p2) = 1.

(ii) {εq, εp1p2, εp1p2q} when NQ(
√

p1p2)/Q(εp1p2) = −1.

PROOF. By [A-M, Proof of Lemma 5], there exist two rational numbers x1 and x2, such
that

(a) If
(

p1
p2

)
= 1, then

√
εp1p2q = x1

√
p1 + x2

√
p2q

(b) If
(

p1
p2

)
= −1, then

√
εp1p2q = x1

√
2p1 + x2

√
2p2q.

Besides, it is easy to see that there exist two rational numbers x3 and x4 such that

(c)
√

εq = x3
√

2+ x4
√

2q.
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(i) When NQ(
√

p1p2)/Q)(εp1p2) = 1, it is easy to see [A-M, Proof of Lemma 1] that

there exist two rational numbers x5 and x6 such that
(d)
√

εp1p2 = x5
√

p1 + x6
√

p2.

Moreover, in this case
(

p1
p2

)
= 1 (see, for instance, [C-H, Proposition 19.9]) and, by (a), (c)

and (d), we see that {εq, εp1p2,
√

εp1p2εp1p2q } is a system of fundamental units of E [Ku, Satz
11].

(ii) When NQ(
√

p1p2)/Q)(εp1p2) = −1, the unit εp1p2 is not a square in E. Hence by

(a), (b) and (c), we see that {εq, εp1p2, εp1p2q} is a system of fundamental units of E [Ku, Satz
11].

PROOF OF THEOREM 3.3. The maximal abelian unramified 2-extension of k is
given by L = Q(

√
p1,
√

p2,
√

q). Introduce the biquadratic intermediate field E =
Q(
√

p1p2,
√

q). In E we have 2 = P2P ′2. These two prime ideals P and P ′ remain in-
ert in L and are totally ramified in E∞, the cyclotomic Z2-extension of E.

Suppose first that NQ(
√

p1p2)/Q(εp1p2) = −1. By Lemma 3.4 the set {εq, εp1p2, εp1p2q}
consists of a system of fundamental units of E. We want to know if each unit of E is a norm

from E1 = E(
√

2). So we are going to study the norm residue symbol
(

u, 2
P

)
, when u runs

through the above system of fundamental units of E:
As P is ramified in the extension E/Q(

√
p1p2), the properties of the norm residue symbol

yield:
(

u, 2

P
)
=

(
NE/Q(

√
p1p2)(u), 2

NE/Q(
√

p1p2)(P)

)
.

Since q ≡ 3 (mod 4), by the Hasse norm principle−1 is a norm neither in Q(
√

q)/Q nor
in Q(
√

p1p2q)/Q. Hence,

NE/Q(
√

p1p2)(u) =
{

ε2
p1p2

for u = εp1p2 ,

1 for u ∈ {εq, εp1p2q} .

So it is clear that (
u, 2

P
)
= 1 .

In other words, once again by the Hasse norm principle, each unit of E is a norm from E1.
Accordingly, by the ambiguous class formula, we get:

| A(E1) |≥| A(E1)
G(E1/E) |= 2 | A(E) | .

Hence X∞(E) 	� A(E), and especially G(L∞/k∞) is not isomorphic to G(L/k).
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If instead NQ(
√

p1p2)/Q(εp1p2) = 1, then, by Lemma 3.4, u = √εp1p2εp1p2q is a unit in

E. As in the previous case, we have:

(
u, 2

P
)
=

(
NE/Q(

√
p1p2)(u), 2

NE/Q(
√

p1p2)(P)

)
=

( ±εp1p2, 2

NE/Q(
√

p1p2)(P)

)
.

On the other hand, the relation
√

εp1p2 = x5
√

p1 + x6
√

p2 of the proof of Lemma 3.4

shows that εp1p2/p1 is a square in Q(
√

p1p2). Hence

(
u, 2

P
)
=

( ±p1, 2

NE/Q(
√

p1p2)(P)

)
=

(
2

p1

)
= −1

and the unit u is not a norm in the extension E1/E.
Let us now prove that the 2-primary part A(E) of the class group of E is cyclic in order

to apply Theorem 2.1 (the 2-adic primes of E being inert in L = Q(
√

p1,
√

p2,
√

q), they
remain inert in the Hilbert 2-class field of E). Denote F := Q(

√
q). Since A(F) is odd, by

the genus formula the 2-rank of A(E) is given by:

rk2(A(E)) = t (E/F)− rk2(UF /UF ∩NE/F (E∗))− 1 ,

where t (E/F) = 3 is the number of the primes which ramify in E/F , and UF is the group of

units of the quadratic field F . The relation
√

εq = x3
√

2+ x4
√

2q of the proof of lemma 3.4
shows that εq/2 is a square in F . The hypotheses made on p1, p2 and q prevent 2 (hence also
εq ) from being a norm in E/F and therefore rk2(A(E)) = 1. Applying Theorem 2.1 to the
field E, we obtain: X∞(E) � A(E) � G(L/E), which immediately yields: G(L∞/k∞) �
G(L/k).

To finish the proof of Theorem 3.3, it remains to compute the order of G(L/k). Since

NQ(
√

p1p2)/Q(εp1p2) = 1, we have
(

p1
p2

)
= 1. In this case G(L/k) is dihedral [B-S, table 2

page 175]. Besides, the class number formula for real biquadratic fields yields the 2-part of
the class number h(E) of E :

QEh(q)h(p1p2)h(p1p2q)

4

where QE is the Hasse unit index of the biquadratic field E (see, for instance, [S, Chapter
3, Section 12]). We have already noticed that h(k) := h(p1p2q) = 4 and QE = 2 (see
Lemma 3.4). Consequently, h(E) = 2h(p1p2) and |G(L∞/k∞)| = 2|A(E)| is of order
4h(p1p2).

REMARKS 3.5. Let us keep the notations and hypotheses of Theorem 3.3 and Lemma
3.4. Then

(i) since X∞(E) ∼= A(E) is of order 2h(p1p2) = 2m+1, the smallest layer of E∞/E

in which the 2-classes of E capitulate is Em+1. More generally, for all integers n the smallest
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layer of E∞/En in which the 2-classes of En capitulate is En+m+1. This comes from the fact
that for all integers n, the 2-adic primes of En remain inert in the 2-Hilbert class field of En.

(ii) Let K be an unramified extension of k. By Theorem 3.3, we have λ(K) =
µ(K) = 0, if NQ(

√
p1p2)/Q(εp1p2) = 1. This last result remains valid even indepen-

dently of the value of the norm NQ(
√

p1p2)/Q(εp1p2). An outline of the proof goes as fol-

lows. Let E = Q(
√

p1p2,
√

q) be the biquadratic field introduced in the proof of The-
orem 3.3. It suffices to prove that X∞(E) is a (finite or infinite) cyclic group (which al-
ready shows that λ(E) ≤ 1 and µ(E) = 0) and to notice that for each integer n, we have

A(En) = A(En)
Gal(E∞/E) (this comes from the fact that the 2-adic primes of En are inert

in the 2-Hilbert class field of En). Hence the order of A(En) is bounded when n goes to
infinity [Gr1, Proposition 1]. Consequently λ(E) = µ(E) = 0 and the same holds for each
intermediate field between k and L.

If we fix in advance distinct prime numbers p1 ≡ p2 ≡ 5 (mod 8) such that
NQ(
√

p1p2)/Q(εp1p2) = 1, then we know that there exist infinitely many prime numbers

q ≡ −1 (mod 4) such that
(

q
p1

)
= −

(
q
p2

)
= 1. Hence, there exist infinitely many qua-

dratic fields k with dihedral Galois group G(L∞/k∞) of order 4h(p1p2). Numerically, one
may take p1 = 5 and p2 = 389. In this case, h(5 · 389) = 2. So there exist infinitely many
quadratic fields k of the form Q(

√
5 · 389q) such that G(L∞/k∞) is dihedral of order 8.

Consider now a power 2m of 2. Suppose there exist two distinct prime numbers p1 ≡
p2 ≡ 5 (mod 8) such that NQ(

√
p1p2)/Q(εp1p2) = 1. If the class number of the quadratic

field Q(
√

p1p2) is divisible by 2m (for instance, when p1p2 = a2m+1 + 4 for an odd integer
a ≥ 3 [I]), then there are infinitely many quadratic fields k := Q(

√
p1p2q) with G(L∞/k∞)

dihedral of order divisible by 2m (Theorem 3.3). Moreover, since the non-cyclic subgroups
of a dihedral group are also dihedral, we see that there exist infinitely many number fields K

(unramified extensions of k) for which G(L∞/K∞) is dihedral of order exactly 2m.
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