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Duality of Weights, Mirror Symmetry and Arnold’s Strange Duality

Masanori KOBAYASHI∗

Tokyo Metropolitan University

Abstract. A duality of weight systems which corresponds to Batyrev’s toric mirror symmetry is given. It is
shown that Arnold’s strange duality for exceptional unimodal singularities reduces to this duality.

0.1. Introduction. The hypersurfaces in weighted projective spaces often appear as
important examples in the context of mirror symmetry. In this paper, we describe the relation
between polar duality and duality of weight systems.

The duality of weights partly suggests why [10] produced a mirror symmetric phenom-

enon using only a resolution of weighted hypersurfaces in weighted P4. In fact, it is shown
that those examples in weighted 4-spaces correspond to some reflexive polytopes [9].

As an application, we will show that Arnold’s strange duality for fourteen exceptional
unimodal singularities with C∗-action reduces to polar duality (Theorem 4.3.9).

K. Saito defined weight systems and used them effectively for isolated hypersurface sin-
gularities with a C∗-action [35]. The relation between weight systems and those singularities
is as follows: take a germ of an analytic function f : Cn → C with f (0) = 0, which de-
termines a germ of a hypersurface singularity ({f = 0}, 0) ⊂ (Cn, 0). The function f can
be expressed as a weighted homogeneous polynomial of n variables (x1, . . . , xn) after some
suitable analytic change of coordinates near the origin if and only if there is a holomorphic
tangent vector field D such that Df = f [34]. In this case, we can assign to f a weight
system W = (wt (x1), . . . , wt (xn); wt(f )).

We associate some hypersurface singularity with a C∗-action on a compact complex
surface with trivial canonical sheaf in the following manner.

Let X0 ⊂ Cn be a hypersurface singularity with C∗-action whose weights are all pos-
itive. Such an X0 is known to be an algebraic variety defined by a weighted homogeneous
polynomial [29].

Let Xt be its Milnor fiber (if it exists; e.g. when X0 is an isolated singularity). We will

not restrict ourselves to isolated singularities. Let X̄ be the natural compactification of Xt in
P(1, a1, . . . , an) by sending the points (x1, . . . , xn) of Cn to the points (1 : x1 : · · · : xn).

We treat only the case where the total degree h is greater than the sum of the weights∑n
i=1 ai . We denote the difference h − ∑n

i=1 ai by a0. Our main interest is the case a0 = 1.
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Let X̂ be the image of X̄ by the Z/a0Z-quotient: P(1, a1, . . . , an) → P(a0, a1, . . . , an).

By the adjunction formula, the canonical sheaf of X̂ is trivial. We denote a crepant resolution

of X̂ by X if it exists, in which case X̂ has only canonical Gorenstein singularities.
In the case where X0 is an isolated singularity, it is known that the Milnor lattice or

exceptional lattice of resolution and the exceptional lattice at infinity enjoy some dual property
[24]. We will show how polar duality of polytopes related to X descends to the duality of
weight systems.

When n = 3, X is a K3 surface. First we assume X is a K3 surface corresponding to
one of Arnold’s singularities [30] [15].

The transcendental lattice TX decomposes as LG ⊕ U , where the dual graph of LG is
a tree of (−2)-elements with three branches and U is the even unimodular hyperbolic lattice
of rank 2. We will write LD := SX in this case. Then the whole cohomology ring decom-

poses as H ∗(X, C) = H 0,0 ⊕ (LG ⊕ U ⊕ LD)C ⊕ H 2,2, where the subscript C means the

tensor product by C. The mirror map should interchange (LG)C and (LD)C, H 0,0 ⊕ H 2,2

and UC, respectively, since the vector space (LG)C corresponds to the tangent space of the
deformation space of complex structures with a fixed Picard number and (LD)C corresponds
to a deformation of complexified algebraic Kähler structures. This is an explanation due to
[3] why mirror symmetry for algebraic K3 surface is said to correspond to Arnold’s duality.

Roan [32] applied orbifold constructions for four of the dual pairs and constructed non-
linear coordinate changes for them. Borcea [8] used Batyrev’s polar dual construction for the
reflexive pyramids and calculated some of the dual weights.

We shall give a proof that polar dual of polytopes corresponding to Arnold’s singularities
gives corresponding the dual singularities.

More generally, take a K3 surface X which is the minimal resolution of a toric hyper-
surface with only rational double points. Let LD be the restriction of the toric divisors of the

ambient space and L0 be the orthogonal complement L⊥
D in SX . Then (SX)Q decomposes as

a direct sum (LD)Q ⊕ (L0)Q.
The reason why the full algebraic lattice and LG does not interchange is that the induced

complexified Kähler class is trivial on the L0-part while the embedded deformation has the

full dimension. This L0-part is a generalization of H
1,1
n in [32], where Roan showed a similar

mirror property for a quotient construction. Batyrev pointed out in a non-published version of
[5] that for general �, rk LD(�) + rk LD(�∗) can be smaller than 20. For the 14 exceptional
unimodal singularities, we found polytopes for which the sum above equals 20.

Since the mirror of a generic marked K3 surface seems to be again a generic one, mirror
phenomena for special marked K3 surfaces are of particular interest, where ‘special’ means
e.g. the surface is algebraic and its (complexified) Kähler class is also ample.

For general K3 surfaces L0 is defined as the orthogonal complement of the fixed lattice

by the automorphism group which fixes H 2,0 and the (complexified) Kähler class. We show
this group is finite using Nikulin’s results on the automorphism of a K3 surface and Torelli’s
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theorem. H. Tsuji kindly informed the author that the finiteness also follows from Yau’s
Theorem.

We refer to [3] [21] and their references for an introduction to some background and [26]
[40] for general information about mirror symmetry. Dolgachev [14] gave relevant general
results and examples using lattice theory. Since the preprint version of our paper appeared,
several extensions (e.g. [17] [18]) have been published. The current status of mirror symmetry
can be seen in e.g. [20] and [40].

In Section 1, we shall formulate a dual correspondence of reflexive pairs in Q-Fano toric
projective varieties after reviewing some results of toric geometry. In Section 2, we prepare
the language of weight systems according to K. Saito and introduce our notion of duality of
weight systems. Our duality partly coincides with Saito’s duality. In Section 3, we state the
relation between duality of weight systems and Batyrev’s toric mirror symmetry using polar
polytopes. We find that our construction is partly a generalization of those of Batyrev [5],
Borcea [8] and Berglund-Katz [7] for reflexive simplices and pyramids. In Section 4, we
review some general results on K3 surfaces, and we discuss some lattice theory and automor-
phisms. We also construct a monomial divisor mirror map of Aspinwall-Greene-Morrison in
the case of K3 surfaces as toric hypersurfaces and establish Arnold’s strange duality. We add
some examples which are not Arnold’s singularities.

0.2. Notation. We use the following notation throughout the paper.
N : the monoid of nonnegative integers.
Z+ : the semigroup of positive integers.
Z : the ring of integers.
Q, R, C : the fields of rational, real, complex numbers.
T : n-dimensional complex torus (C∗)n.

1. Polar duality.

1.1. Reflexive polytopes. We fix here some notation concerning the geometry of con-
vex bodies and review some results. We refer to [28] for general treatment of toric geometry
and geometry of convex bodies.

Let M be a free Z-module of rank n. We naturally embed M in the Q-vector space
MQ := M ⊗Z Q. Similarly for the dual module N := M∨ = Hom(M, Z). We denote the
natural pairing by 〈 , 〉 : M × N → Z, which we also use for its Q-extensions.

DEFINITION 1.1.1. A subset � in MQ is called a convex polytope if it is a convex hull
of a finite subset of MQ. � is integral if the finite subset can be taken from M . A face of � is
a nonempty intersection with a hyperplane whose closed half space contains the whole of �.
We denote the k-skeleton of � by �[k], which is the union of all faces of � whose dimension
is no more than k. We call a codimension-one face a facet. We denote |M∩�| and |M∩Int �|
by l(�) and l∗(�), respectively.
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REMARK 1.1.2. We use similar terminology for subsets of NQ. We shall sometimes
omit the word “convex” in this paper since we always assume this property for polytopes. A
face of a polytope � is also a polytope.

DEFINITION 1.1.3. Let K , K1 and K2 be subsets of MQ and c ∈ Q. cK := {cx ∈
MQ | x ∈ K}, K1 + K2 := {x1 + x2 ∈ MQ | xi ∈ Ki for i = 1, 2}.

DEFINITION 1.1.4. K be a subset in MQ. The polar dual of K is the following subset
of NQ: K∗={y ∈ NQ | 〈x, y〉 ≥ −1 for all x ∈ K}.

LEMMA 1.1.5. (1) K∗ is a convex set containing 0. If K1 ⊂ K2 then K∗
1 ⊃ K∗

2 .
(2) If � is an n-dimensional convex polytope with 0 ∈ Int �, then �∗ is also an n-

dimensional convex polytope with 0 ∈ Int �∗. Moreover, �∗∗ = � by the natural
identification M∨∨ = M .

DEFINITION 1.1.6. For an n-dimensional polytope � in MQ, define an n-dimensional
projective variety

P�,M = P� := Proj
∞⊕

k=0

C〈k� ∩ M〉T k ,

where C〈k� ∩ M〉 denotes the C-vector space generated the elements of M in k�, and the
multiplication comes from the addition of M . (P�,O(1)) is the polarized variety associated
to the polytope �.

DEFINITION 1.1.7. Let � be an n-dimensional integral polytope with 0 ∈ Int �. � is
said to be reflexive if one of the following equivalent conditions is satisfied:

(1) �∗ is also an integral polytope;
(2) there exists a finite subset {y1, . . . , yk} in N such that � = {x ∈ MQ | 〈x, yi〉 ≥

−1 for 1 ≤ i ≤ k};
(3) for each facet δ of �, there exists an integral element y ∈ N such that δ ⊂ {x ∈

MQ | 〈x, y〉 = −1};
(4) for each facet δ, there are no points of M between the origin and the hyperplane

containing δ.

If � is reflexive, �∗ is reflexive. We cite here some results in [5].

THEOREM 1.1.8. Let � be an n-dimensional integral polyhedron in MQ, P� the cor-
responding n-dimensional projective toric variety, and F(�) the family of projective �-

regular hypersurfaces Zf in P�. Then the following conditions are equivalent:
(1) the family F(�) of �-regular hypersurfaces in P� consists of Calabi-Yau varieties

with canonical singularities;
(2) the ample invertible sheaf O�(1) on the toric variety P� is anticanonical(i.e. P� is

a toric Fano variety with Gorenstein singularities);
(3) � contains only one integral point m0 in its interior, and (�−m0,M) is a reflexive

pair.
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THEOREM 1.1.9. For any reflexive polyhedron � of dimension n ≥ 4, the Hodge

number hn−2,1(Ẑf ) of a MPCP-desingularization of a �-regular Calabi-Yau hypersurface

Zf ⊂ P� equals the Picard number h1,1(Ẑg ) of a MPCP-desingularization of a �∗-regular

projective Calabi-Yau hypersurface Zg ⊂ P�∗ corresponding to the dual reflexive polyhedron
�∗.

In the above two theorems, “polyhedron” is what we call “polytope” in this paper. We
reserve the word “polyhedron” for a three dimensional polytope. An MPCP-desingularization
is a maximal projective crepant partial toric embedded resolution.

1.2. Dual correspondence for toric projective varieties. In this section, we shall
treat a family of anticanonical members in a Q-Fano toric variety P� where � may not be
integral. We will consider not only the quotient family corresponding to the same � but also
specializations corresponding to sub-Newton polytopes.

DEFINITION 1.2.1. Let Pn be the set of n-dimensional pairs (�,M) where M is a
free Z-module of rank n and � is an n-dimensional polytope in MQ which contains 0 in its
interior, such that P�,M is Q-Fano and � represents the anticanonical divisor.

We usually assume that n ≥ 2. Let (�,M) and (∇, N) be two elements of Pn. We

denote the dual groups (M)∨ by N and (N)∨ by M . We also denote the polar duals �
∗

and

∇∗
by ∇ and �, respectively.

DEFINITION 1.2.2. A Q-linear isomorphism σ : MQ → MQ such that σ(�) ⊂ �, is

called a correspondence between (�,M) and (∇, N) if σ(�) ∩ M generates M and � has a

nonempty intersection with each facet of �.

If σ(M) = M and t σ is a correspondence, we call σ a dual correspondence.

We shall identify MQ and MQ, NQ and NQ by σ and t σ , respectively. We shall some-

times omit σ .
When (�,M) and (∇, N) have a dual correspondence σ , we will use M = M = σ(M)

and N = N = t σ (N).
A basic observation is the following

PROPOSITION 1.2.3. Assume that there exists a dual correspondence between two

elements (�,M) and (∇, N) of Pn. Let (�,M) be a reflexive pair such that � ⊂ � ⊂ �.
Then there is a natural birational map Φ : P� ��� P� coming from the inclusion be-

tween the polytopes. A general anticanonical member of P� is birational to the corresponding
member of P�.

Similarly, from ∇ ⊂ �∗ ⊂ ∇, a general anticanonical member of P�∗ is birational to
that of P∇ .

PROOF. We denote the sublinear system of the anticanonical linear system of P� cor-
responding to the polytope � by Λ(�).
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By definition, any nonempty nonzero subsystem Λ is free from base points on the n-
dimensional orbit of T.

Since the set � ∩ M generates the whole M , Λ(�) defines a birational map ϕ : P� ���
Pl(�)−1. The image V is the projective variety Proj

⊕∞
k=0

( ∑k
i=1(� ∩ M)

)
, which is associ-

ated to the graded algebra generated by � ∩ M .

Each facet of � corresponds to an (n − 1)-dimensional orbit of T on P�, which has
nonempty intersection with �, since � contains �. Thus Λ(�) is free from base components
and the birational transform of a hyperplane section of V in P� is a member of Λ(�). In
particular, a general member of Λ(�) is an irreducible divisor if n > 1.

On the other hand, the anticanonical complete linear system on P� is free from base
points, since � is an integral polytope, and defines a morphism ϕ to the same V , which is

birational by the same reason as above. Take Φ := ϕ−1 ◦ ϕ. �

REMARK 1.2.4. Thus, in the situation above, if a Calabi-Yau variety Z̄� is a special-

ization of Z̄�′ , then Z̄�∗ is a generalization of Z̄�′∗ . As a result, we have more Kähler moduli

and less complex structure moduli for the desingularization Z̃�, and the opposite for Z̃�∗ . We
believe that this relation holds also outside toric varieties.

REMARK 1.2.5. P� is isomorphic to V if n ≤ 3. Note that we have unique minimal
models in this case.

PROPOSITION 1.2.6. Let � be a reflexive polytope of dimension at most three, and
(P�,O(1)) be the polarized variety associated to it. Then O(1) is simply generated and

defines a projective normal embedding in P l(�)−1.

PROOF. The proof follows from the following

PROPOSITION 1.2.7. Let � be a reflexive polytope in MQ whose dimension is at most
three, and k be a positive integer. Then for any integral point P ∈ k�, there exist integral
points Pi ∈ � (i = 1, . . . , k) with P = P1 + · · · + Pk .

PROOF. We assume n = 3, since the other cases are similar and easier. For each
2-dimensional face δ of �, we have a subdivision by integral simplices (triangles) such that

(1) each simplex is elementary, that is, it does not contain points of M other than the
vertices,

(2) each simplex has common points with other simplices only on its edges, and
(3) the union of all simplices covers δ.
We note that an elementary simplex of dimension two is regular. That means, if we

denote the vertices of the simplex by Q0, Q1 and Q2 and the plane containing δ by α, Q1−Q0

and Q2 −Q0 spans α∩M . Let C be the closed cone over the simplex with apex at 0. Then any
integral point in C can be written as an integral combination of the Qi ’s, since � is reflexive.

REMARK 1.2.8. In higher dimensions, there exist elementary non-regular simplices.
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In general for an ample divisor A on an algebraic K3 surface, it is known that 3A is very
ample.

COROLLARY 1.2.9. For a general toric hypersurface Z̄ of dimension 1 or 2, the in-

duced morphism Z̄ → P l(�)−2 is a projectively normal embedding.

PROOF. H 1(P�,O(k)) vanishes for k ≥ 0. �

In Section 3, we shall apply these notions to the case of weighted projective spaces with
one particular choice of a homogeneous coordinate.

2. Duality for weight systems

2.1. Weighted projective space. We fix here some notations. For general properties
of weighted projective spaces, see for example, [25] [13] [19].

DEFINITION 2.1.1. Let a0, . . . , an be fixed positive integers. We denote by
P(a0, . . . , an) the projective variety Proj C[x0, . . . , xn] where the degree of xi is ai . We call
it a weighted projective space of weight (a0, . . . , an).

For any positive integer k, there is a natural isomorphism P(a0, . . . , an) ∼=
P(ka0, . . . , kan).

DEFINITION 2.1.2. A weight (a0, . . . , an) is reduced if gcd(a0, . . . , an) = 1.

We assume the weight is reduced. Let k be gcd(a1, . . . , an). Then P(a0, a1, . . . , an) ∼=
P(a0, a1/k, . . . , an/k), which leads to the following

DEFINITION 2.1.3. A reduced weight (a0, . . . , an) is well-formed if for all
i, gcd(aj )j �=i = 1.

We shall usually treat only well-formed weights.

2.2. Weight systems. We refer to [35] for general results on weight systems, espe-
cially for n = 3.

DEFINITION 2.2.1. An (n+1)-tuple of positive integers W = (a1, . . . , an; h) is called
a system of weights or simply a weight system or a weight. We always assume that h ∈∑n

i=1 Nai . We call the integers ai weights of W and the last weight h the degree of W .

DEFINITION 2.2.2. W is said to be reduced if gcd(a1, . . . , an, h) = 1.

REMARK 2.2.3. If W is reduced then gcd(a1, . . . , an) = 1, since h ∈ ∑n
i=1 Nai .

DEFINITION 2.2.4. W = (a1, . . . , an; h) and W ′ = (a′
1, . . . , a

′
n; h′) are equivalent if

for some rational number k and a permutation σ ∈ Sn, we have kaσ(i) = a′
i (1 ≤ i ≤ n) and

kh = h′.
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For each equivalence class of weight systems there is exactly one reduced weight system
satisfying a1 ≤ a2 ≤ · · · ≤ an. We usually choose this one.

2.3. Duality for weight systems. Let n be a positive integer. Take a weight system
Wa = (a1, . . . , an; h). Assume that h ∈ ∑n

i=1 Nai as always, and that Wa is reduced, for the
sake of brevity. We denote the integral vector t (a1, . . . , an) by a.

DEFINITION 2.3.1. a0 := h − ∑n
i=1 ai .

Assume also that a0 �= 0.
For a rational monomial X

m0
0 · · · Xmn

n of degree h, we assign an n-tuple of integers
(α1, . . . , αn) = (m1 − 1, . . . ,mn − 1). Note that X0 · · · Xn corresponds to the origin. Such
n-tuples constitute the following set:

DEFINITION 2.3.2.

M(Wa) :=
{
(α1, . . . , αn) ∈ Z⊕n

∣∣∣∣
n∑

i=1

ai(αi + 1) ≡ h mod a0

}
.

LEMMA 2.3.3. M(Wa) is a subgroup of Z⊕n of index |a0|.
PROOF. This follows from M(Wa) = {(α1, . . . , αn) ∈ Z⊕n | ∑n

i=1 aiαi ≡ 0 mod a0}
and gcd(a1, . . . , an) = 1. �

REMARK 2.3.4. If Wa and Wb are equivalent, M(Wa) and M(Wb) are the same up to
the permutation of the coordinates. We sometimes abbreviate this set as M in this section.

Let C = (cij ) be an n×n-matrix whose elements are nonnegative integers. Let B be the
n × n-matrix (cij − 1).

LEMMA 2.3.5. Assume Ca = t (h, . . . , h). Then
(1) (det C)/h = (det B)/a0, and this is an integer.
(2) The following three conditions are equivalent: (a) {(ci1−1, . . . , cin−1)| 1 ≤ i ≤ n}

is a basis of M , (b) | det B| = |a0|, and (c) | det C| = h.

PROOF. Note that for 1 ≤ i ≤ n, (ci1−1, . . . , cin−1) ∈ π(a0)∩M and (ci1, . . . , cin) ∈
π(h), where π(t) is the hyperplane defined by

∑n
i=1 aiαi = t . The rest is clear. �

REMARK 2.3.6. We will say a few words for the case where Wa is not reduced. Let
d0 be gcd(a1, . . . , an). Then M is a subgroup of index |a0|/d0, and the row vectors of B is a
basis ⇐⇒ | det B| = |a0|/d0 ⇐⇒ | det C| = h/d0.

Let Wa = (a1, . . . , an; h) and Wb = (b1, . . . , bn; k) be two weight systems.

DEFINITION 2.3.7. An integer matrix C ∈ Mn(N) is said to be a weighted magic
square of weight (Wa; Wb) if Ct (a1, . . . , an) = t (h, . . . , h) and (b1, . . . , bn)C = (k, . . . , k).

REMARK 2.3.8. In the case a1 = · · · = an = b1 = · · · = bn = 1 and h = k, C is
called an integer stochastic matrix or magic square, as in classical combinatorics theory [38].
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DEFINITION 2.3.9. A weighted magic square C is primitive if | det C| =
h/ gcd(a1, . . . , an) = k/ gcd(b1, . . . , bn).

REMARK 2.3.10. C is primitive if and only if the row vectors of B span M(Wa) and
the column vectors span M(Wb).

DEFINITION 2.3.11. When there exists a primitive weighted magic square C of
weight (Wa; Wb), we say Wa and Wb are dual with respect to C.

Dual weight systems are strongly dual if all rows and columns of C contain 0.

REMARK 2.3.12. If Wa and Wb are reduced dual weights, it follows that h = k,∑n
i=1 ai = ∑n

i=1 bi and a0 = b0.
A permutation on weights (a1, . . . , an) (resp. (b1, . . . , bn)) interchanges the correspond-

ing columns (resp. rows) of C. From this definition, one can calculate the dual weights.

The following Proposition is convenient for the calculation.

PROPOSITION 2.3.13. Let Wa = (a1, . . . , an; h) and Wb = (b1, . . . , bn; h) be dual
weight systems with a0 be h − ∑n

i=1 ai > 0 and let C = (cij ) be the corresponding weighted
magic square. Let Θ be the (n − 1)-simplex in M(Wa)Q with vertices {(ci1 − 1, . . . , cin −
1)|1 ≤ i ≤ n}. Then

(1)
∑n

j=1 cij aj = h for 1 ≤ i ≤ n,

(2)
a0

h − a0
(1, . . . , 1) ∈ Int Θ and

(3) Θ is elementary, i.e., Θ ∩ M(Wa) are the set of all vertices of Θ .
Conversely, for a given (a1, . . . , an) ∈ Z⊕n, if there exists an (n− 1)-simplex Θ with vertices
{(ci1 − 1, . . . , cin − 1)|1 ≤ i ≤ n} which satisfies 1, 2 and 3 above, then there exists a weight
system Wb = (b1, . . . , bn; h) such that C is a weighted magic square of weight (Wa; Wb). If
Wb is reduced, then it is a dual weight system.

PROOF. The assertions (1) and (3) are trivial. The remaining assertion (2) is equiva-
lent to saying that the origin sits inside the n-simplex � which is the cone over Θ with apex
(−1, . . . ,−1). This is equivalent to saying that all the coefficients of the linear relation be-
tween the vertices of � have the same sign. Since we can take nothing but bi’s as coefficients,
b0

t (−1, . . . ,−1) + ∑n
i=1 bi

t (ci1 − 1, . . . , cin − 1) = 0, and (2) follows.
We will prove the converse. From the argument above, the bi’s are determined as positive

integers up to ratio. We will take the reduced bi’s first. We define k := ∑n
i=0 bi and Wb :=

(b1, . . . , bn; k). Then C is a weighted magic square of weight (Wa; Wb). We note that | det C|
is a multiple of k, and by 3, | det C| = h. Thus multiplying the bi’s by some integer, we
can achieve h = k. In particular, if this new Wb is reduced then C is primitive since k =
| det C|. �

DEFINITION 2.3.14. A weight system W is self-dual if W and W are dual.
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REMARK 2.3.15. If one can take a symmetric matrix as C, then W is self-dual. In
general, there may be several (a finite number of) dual weight systems as shown in the Propo-
sition below. Similarly, self-duality does not mean that the given weight system is the only
dual weight system.

2.4. Examples. First we show examples of the case a0 = −1, which should be re-
garded as mirror symmetry for log Calabi-Yau manifolds.

PROPOSITION 2.4.1. The weight systems Al−1 = {(1, k, l − k; l), 1 ≤ k ≤ l/2)}
(l ≥ 2) are closed under duality for each l. Dl+1 = (2, l−1, l; 2l) (l ≥ 3), E6 = (3, 4, 6; 12),
E7 = (4, 6, 9; 18) and E8 = (6, 10, 15; 30) are self-dual.

PROOF. The case Al−1.
For an arbitrary positive integer j such that jk < l, we can take C as


l − jk j 0

k 0 1
0 1 1


 .

Then the dual weight system is (1, j, l − j ; l). These are the only choice for C up to permu-
tation.

For Dl+1(l: odd), Dl+1(l: even), E6, E7 and E8, take the following matrices as C:


(l + 1)/2 1 0

1 2 0
0 0 2


 ,


l/2 0 1

0 0 2
1 2 0


 ,


0 0 2

0 3 0
2 0 1


 ,


0 3 0

3 1 0
0 0 2


 and


5 0 0

0 3 0
0 0 2


 .

They are all symmetric and unique up to the permutation of the rows. They are strongly
dual. �

Next, we will treat the case of the exceptional unimodal singularities [1]. They are all
weighted homogeneous with a0 = 1.

THEOREM 2.4.2. Let W = (a1, a2, a3; h) be a weight system which corresponds to
one of the 14 exceptional unimodal singularities. Then W has a unique dual weight system
W∗ up to equivalence. This W∗ is the weight system which corresponds to Arnold’s strange
duality.

PROOF. We list below the choices of C. These are, in fact, the unique choices for
primitive C up to permutation. They are automatically strongly dual.

Let us take coordinates x, y and z. In the Table below, each monomial xαyβzγ in
the column C appears as a row vector (α, β, γ ) of C. For example, in the case E14,

C =

4 0 1

0 3 0
0 0 2


, and which is nothing but the transposed matrix tC for Q10.
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We list also C0, which shows the vertices of the maximum Newton polytope of polyno-
mials of degree h of x, y and z, as well as the Gabrielov numbers and the Dolgachev numbers
[1]. �

TABLE 1. (0) Arnold’s singularities.

class a1 a2 a3 h C0 C Gab Dol

E12 6 14 21 42 x7 y3 z2 x7 y3 z2 2 3 7 2 3 7

E13 4 10 15 30 x5y y3 z2 x5y y3 z2 2 3 8 2 4 5

Z11 6 8 15 30 x5 xy3 z2 x5 xy3 z2 2 4 5 2 3 8

E14 3 8 12 24 x8 y3 z2 x4z y3 z2 2 3 9 3 3 4

Q10 6 8 9 24 x4 y3 xz2 x4 y3 xz2 3 3 4 2 3 9

Z12 4 6 11 22 x4y xy3 z2 x4y xy3 z2 2 4 6 2 4 6

W12 4 5 10 20 x5 y4 z2 x5 z2 y2z 2 5 5 2 5 5

Z13 3 5 9 18 x6 xy3 z2 x3z xy3 z2 2 4 7 3 3 5

Q11 4 6 7 18 x3y y3 xz2 x3y y3 xz2 3 3 5 2 4 7

W13 3 4 8 16 x4y y4 z2 x4y z2 y2z 2 5 6 3 4 4

S11 4 5 6 16 x4 xz2 y2z x4 xz2 y2z 3 4 4 2 5 6

Q12 3 5 6 15 x5 y3 xz2 x3z y3 xz2 3 3 6 3 3 6

S12 3 4 5 13 x3y xz2 y2z x3y xz2 y2z 3 4 5 3 4 5

U12 3 4 4 12 x4 y3 z3 x4 y2z yz2 4 4 4 4 4 4

REMARK 2.4.3. K. Saito defines a duality of weights using a duality of poset diagrams
coming from the eigenvalues of the monodromy of minimally elliptic singularities [37]. His
duality also reproduces Arnold’s duality and he also computed the dual weights for the 49
weight systems corresponding to the minimally elliptic singularities which are not simple
elliptic. His results include the uniqueness of duality for isolated singularities.

As shown below, our duality for n = 3 coincides with Saito’s in the cases: (0) the
fourteen unimodal singularities and (3) a0 ≥ 2. For cases (2) a0 = 1 and modality m is
more than one, our duality gives new dual weights, where nonisolated singularities appear as
dual partners of isolated singularities. These of course also correspond to the polar duality, as
shown in Section 5.

It is natural to treat the simple elliptic cases (1) for n = 2, since these correspond to
weighted elliptic curves. Their list is the same as that of the weighted 2-spaces which corre-
spond to reflexive polytopes. The weights are self-dual for n = 2.

Notice that the singularities of dual weights are not dual in the sense of Arnold’s duality
but their (explicit) specializations enjoy this duality as shown in later sections.

PROPOSITION 2.4.4. (1) (1, 1; 3), (1, 2; 4), (2, 3; 6) are self-dual.
(2) (2, 2, 3; 8), (2, 2, 5; 10), (2, 3, 4; 10), (2, 4, 7, 14) and (2, 6, 9, 18) are self-strongly

dual; (2, 3, 6; 12) and (2, 4, 5; 12) are strongly dual. (2, 3, 3; 9) has no strongly
dual weight.
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(3) Duality of weights for minimally elliptic weight systems with a0 > 1 coincides with
Saito’s duality [37].

PROOF. Here we give the full list of primitive C up to permutation in Tables 1–3. The
notation of classes is after [1] and [22].

The * in (2) signifies that the dual weight is not strongly dual, hence the singularity
corresponding to the smaller triangle is reducible. Other weight systems are strongly dual. �

TABLE 2. (1) Simple elliptic singularities.

class C a1 a2 h dual

P8 x2y xy2 1 1 3 1 1

X9 y2 x2y 1 2 4 1 2

J10 x3 y2 2 3 6 2 3

TABLE 3. (2) Minimal elliptic singularities with a0 = 1 and m > 1

class C a1 a2 a3 h dual

V1,0 = V15 xz2 yz2 x2y2 2 2 3 8 2 2 3

x2y2 xy3 xz2 * 1 2 4

N16 x3y2 x2y3 z2 2 2 5 10 2 2 5

U1,0 = U14 — 2 3 3 9 —

y2z x3y yz2 * 1 3 4

S1,0 = S14 y2z x2y2 xz2 2 3 4 10 2 3 4

xz2 x3z y2z * 1 3 5

W1,0 = W15 y2z x3y2 z2 2 3 6 12 2 4 5

z2 x3z y2z * 1 4 6

Q2,0 = Q14 y3 x2y2 xz2 2 4 5 12 2 3 6

Z1,0 = Z15 xy3 x3y2 z2 2 4 7 14 2 4 7

J3,0 = J16 y3 x3y2 z2 2 6 9 18 2 6 9

REMARK 2.4.5. The four weight systems in (3): (6, 8, 13; 32), (6, 16, 21; 48),
(6, 16, 27; 54) and (8, 10, 15; 40) are not in the list of Reid [31] [19], hence do not corre-
spond to K3 surface with cyclic quotient singularities.

For the weights with some C but without a dual weight (e.g. W17), C does not satisfy
primitivity for the dual weight. On the contrary, they enjoy a dual correspondence defined in
Section 1, except for (5, 6, 15; 30).

All the dual weights are strongly dual.

REMARK 2.4.6. There are 41 weight systems with a0 = 1 in Reid’s list and 19 of
them are not minimally elliptic. A similar calculation shows that (1, 1, 1; 4), (1, 1, 2; 5),
(1, 2, 2; 6), (1, 2, 3; 7) and (1, 2, 4; 8) are self-dual; (1, 1, 3; 6) and (1, 2, 2; 6) are dual;
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(1, 2, 4; 8), (1, 3, 4; 9), (1, 3, 5; 10) and (1, 4, 6; 12) have dual weight systems which are
minimally elliptic as in Proposition 2.4.4 (2); and all ten weight systems with a1 > 1 do not
have dual weight systems.

3. Relation of duality of weight systems and polar duality

3.1. We shall show in this section that the duality of weights for a0 = 1 is a special
case of the dual correspondence defined in Section 1. We will always choose one coordinate
for the compactification parameter.

TABLE 4. (3) Minimal elliptic singularities with a0 > 1.

class C a1 a2 a3 h dual

V ′
18 — 3 3 4 12 — — —

U16 x5 y2z yz2 3 5 5 15 3 5 5

S16 x4y xz2 y2z 3 5 7 17 3 5 7

W17 x5y z2 y2z 3 5 10 20 — — —

Q16 x4z y3 xz2 3 7 9 21 3 7 9

Z17 x4z xy3 z2 3 7 12 24 — — —

E18 x5z y3 z2 3 10 15 30 — — —

2V ∗
18 xy3 x3z yz2 4 5 7 19 4 5 7

1V ∗
18 x3z y4 xz2 4 5 8 20 4 5 8

N19 x3z xy4 z2 4 5 12 24 — — —

S17 x6 xz2 y2z 4 7 10 24 — — —

W18 x7 y2z z2 4 7 14 28 4 7 14

Q17 x5y y3 xz2 4 10 13 30 — — —

Z18 x6y xy3 z2 4 10 17 34 4 10 17

E19 x7y y3 z2 4 14 21 42 — — —

3V ∗
19 y4 x3z yz2 5 6 9 24 — — —

2N20 y5 x3z z2 5 6 15 30 — — —

V ′
20 x3z z3 xy3 6 7 9 27 6 7 9

2V ∗
19 x5 xy3 yz2 6 8 11 30 — — —

1V ∗
19 x4y y4 xz2 6 8 13 32 4 7 16

1N20 x5y xy4 z2 6 8 19 38 6 8 19

Q18 x8 y3 xz2 6 16 21 48 3 16 24

Z19 x9 xy3 z2 6 16 27 54 4 18 27

E20 x11 y3 z2 6 22 33 66 6 22 33

V ′
21 z3 y4 x3z 8 9 12 36 8 9 12

V ∗
20 y4 x5 yz2 8 10 15 40 5 8 20

N21 y5 x5y z2 8 10 25 50 8 10 25
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Let Wa = (a1, . . . , an; h) be a weight system with h ∈ ∑n
i=1 Nai and a0 := h−∑n

i=1 ai

as usual. We assume a0 > 0 in this section.
Let P(a) be the weighted projective space of weight (a0, a1, . . . , an) and X0, . . . , Xn be

the natural homogeneous coordinates of P(a). Then the n-dimensional complex torus T is
embedded equivariantly in P(a) as the locus {F0 := ∏n

i=0 Xi �= 0}.
Let M(Wa) be the group defined in Section 3. M(Wa) is nothing but the abelian group

of exponents of rational monomials, which appears in the context of toric constructions. For
a point P = (α1, . . . , αn) on M(Wa), we write the corresponding monic monomial by FP =∏n

i=0 X
αi+1
i , where α0 is determined by

∑n
i=0 aiαi = 0.

DEFINITION 3.1.1. Let �(a) be the n-simplex in M(Wa)Q which is the convex hull
of the following vertices: (−1 + h/a1,−1, . . . ,−1), . . . , (−1, . . . ,−1,−1 + h/an) and
(−1, . . . ,−1).

(�,M) = (�(a),M(Wa)) is an element of Pn with P�,M
∼= P(a).

LEMMA 3.1.2. Let (�,M) be as above. Then its dual (�
∗
,M∗) is integral and the

vertices generate M∗.

PROOF. For the sake of simplicity, we assume that Wa is reduced. Recall that M

= {(α1, . . . , αn)| ∑n
i=1 aiαi ≡ 0 mod a0}. Let M ′ := Z⊕n, which contains M as a Z-

submodule of index a0. If one computes the dual of (�,M ′), it is an n-simplex with vertices
v1 := (1, 0, . . . , 0), . . . , vn := (0, . . . , 0, 1) and v0 := (−a1/a0, . . . ,−an/a0) in (M ′)∗Q.

Thus v1, . . . , vn generates (M ′)∗. Since (M ′)∗ is a submodule of M∗, Those n vertices are
also contained in M∗. On the other hand, v0 also belongs to M∗ since

∑n
i=1(−ai/a0)αi ∈ Z

for any (α1, . . . , αn) ∈ M .
The order of v0 in M∗/(M ′)∗ is exactly a0 since (a1, . . . , an) is reduced. Thus the last

statement follows. �

REMARK 3.1.3. By the previous proof, the submodule (M ′)∗ generated by v1, . . . , vn

has index a0 in M .

Let (∇, N) = (�(b),M(Wb)) be another pair. We assume Wb is also reduced, for the
sake of simplicity.

We restrict here the correspondence σ in Section 1 as follows: (*)

(1) σ sends the vertex of (�)∗ which corresponds to the divisor {X0 = 0} to the vertex

of ∇ which corresponds to the point (1 : 0 : · · · : 0) (i.e., X1 = · · · = Xn = 0).
(2) similarly for t σ .

PROPOSITION 3.1.4. Assume that (�,M) and (∇, N) has a dual correspondence σ

which satisfies the condition (∗) above.

Let (ci1 − 1, . . . , cin − 1) (1 ≤ i ≤ n) be the vertices other than (−1, . . . ,−1) of σ(∇∗
)

in M . Let B be the n × n-matrix (cij − 1).
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Then
(1) a0|h, b0|h and | det B| = a0b0,
(2) If a0 = b0 = 1, Wa and Wb are dual weight systems.

PROOF. (1) As σ(N
∗
) = M and σ(−b1/b0, . . . ,−bn/b0) = (−1, . . . ,−1),

(−1, . . . ,−1) ∈ M follows. Thus a0|h. Similarly for b0|h. Since σ(1, 0, . . . , 0), . . . ,

σ(0, . . . , 0, 1) generates a submodule of index b0 in M , | detB| = a0b0.
(2) Let C be (cij ). By condition (*), C is a weighted magic square of weight (Wa; Wb)

and primitive by | det B| = 1 using Lemma 2.3.5. �

Thus we have

THEOREM 3.1.5. Assume two weight systems Wa and Wb with a0 = b0 = 1 are dual.
Then

(1) there exists an identification M = (N)∗ = M such that ∇∗
is an integral simplex

and a subcone of � with a common apex (−1, . . . ,−1) and a common plane π ={∑n
i=1 aiαi = a0

}
of facets. The vertices of ∇∗

on π generate M . Similarly for the

induced identification N = (M)∗ = N .
(2) If the linear subsystem of the anticanonical divisor of P(a) corresponds to some

reflexive polytope � such that ∇∗ ⊂ � ⊂ �, then the family corresponding to
�∗ is the linear subsystem of the anticanonical divisor of P(b). This relation is
inclusion-reversing with respect to polytopes.

REMARK 3.1.6. The facet above is the Newton polytope for an (n − 1)-dimensional

hypersurface singularity X0 with C∗-action. Z̄ is the toric compactification in P(a) of a
deformation Z of X0.

REMARK 3.1.7. Let � be the full Newton polytope of P(a), that is the convex hull
of all vertices corresponding to the monomial anticanonical divisors. We have the associated
projective variety P� as usual. In general, � does not contain all the generators of the ring of
regular functions of P(a). Thus P(a) and P� are not isomorphic in general.

REMARK 3.1.8. By [5] (Theorem 5.4.5, Corollary 5.4.6), for a reflexive simplex

� = �, that is, for the case ai |h for all i, P� is a weighted projective variety whose
weight is the coefficients (a0, . . . , an) of the unique linear relation

∑n
i=0 aiPi = 0 (ai ∈ Z+,

gcd(a0, . . . , an) = 1) among the vertices {Pi}. Moreover, the polar dual family of deforma-
tion of Fermat-type hypersurfaces is the quotient of a subfamily by π1(�,M) [5](Corollary
5.5.6).

REMARK 3.1.9. Borcea’s construction [8] does not assume the property (*) which
arises from singularity theory. As he has pointed out, for a given reflexive polytope, its real-
ization as a family of weighted hypersurface involves some choice. Nevertheless, for Arnold’s
singularities, our duality of weights is unique and compatible with that of singularity theory.
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4. Application for n = 3

4.1. K3 surfaces. We refer the reader to [6] for more complete information about K3
surfaces and [3] for string theory on K3 surfaces.

Let X be a K3 surface, that is, a compact complex surface with trivial canonical bundle

and irregularity h1(OX) = 0. It is well known that any K3 surface is simply connected,
Kähler and symplectic. The only nonzero Hodge numbers of X are h0,0 = h2,0 = h0,2 =
h2,2 = 1 and h1,1 = 20.

First we recall here some properties of lattices.

DEFINITION 4.1.1. Let L be a free Z-module of finite rank with a symmetric bilinear
Z-valued pairing 〈 , 〉. Such an L is called a lattice. L is even if for each x ∈ L, 〈x, x〉
is an even integer, and unimodular if the discriminant is ±1. The index of L is the triplet
(λ+, λ0, λ−) of the numbers of positive, null and negative eigenvalues of the corresponding
matrix. L is said to be positive definite, negative definite, definite, indefinite, respectively, if
the corresponding matrix is so.

Since π1(X) = {1}, we can identify H 2(X, Z) and its natural image in H 2(X, C).
H 2(X, Z) is naturally regarded as a lattice with pairing given by the cup product, and it is

an even unimodular lattice of index (3, 0,−19), so is isomorphic to L := (−E8)
⊕2 ⊕ U⊕3.

Here, −E8 is the even unimodular negative definite lattice of rank 8, whose matrix is (−1)

times that of the lattice corresponding to the Dynkin diagram E8. U is the even unimodular

indefinite lattice of rank 2, whose matrix is

(
0 1
1 0

)
.

In general, the algebraic lattice SX and the transcendental lattice TX of a compact com-

plex surface X are defined as sublattices in (the image of) H 2(X, Z) as SX := H 1,1(X) ∩
H 2(X, Z) and TX := S⊥

X in H 2(X, Z). Here ⊥ denotes the orthogonal complement. The rank
of SX is called the Picard number of X and denoted by ρ(X).

Ruan and Tian have constructed the quantum cohomology ring with Z-coefficients of
symplectic manifolds in [33]. As a graded Z-module, the quantum cohomology ring is the
same as the classical cohomology ring, but in general, the multiplicative structures are differ-
ent. The mirror map µ is an involution of moduli of Calabi-Yau manifolds with Kähler struc-
ture which induces an isomorphism between cohomology groups, interchanging so-called the
A-model intersection numbers described by the quantum cohomology ring and the B-model
intersection numbers coming from the Gauss-Manin connection.

The following is an easy modification of [33] (Example 8.4).

PROPOSITION 4.1.2. Let X be a compact Kähler surface with trivial canonical bun-
dle. Then the quantum cohomology ring of X is isomorphic to the classical cohomology ring
of X.

Thus for a K3 surface or a 2-dimensional complex torus, the A-model intersection num-
ber is the classical intersection product. On the other hand, the B-model intersection numbers
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for those surfaces are also the intersection product by Hodge theory. Thus the mirror map
preserves the usual cup product.

4.2. Fixed set of the mirror map. First we shall prove a finiteness result for a special
automorphism group of a marked K3 surface.

THEOREM 4.2.1. Let X be a K3 surface with a Kähler class ω, L be the second inte-

gral cohomology lattice H 2(X, Z) and G be a subgroup of Aut X. Assume that the induced
action of G on L fixes the cohomology class of a nonzero holomorphic 2-form and ω. Then

(1) The fixed lattice LG contains TX.

(2) The orthogonal complement of (LG)⊥ in L is a negative definite sublattice of SX.
(3) G is a finite group.

REMARK 4.2.2. If the algebraic dimension a(X) of X is not one, the theorem was
essentially proved in [27].

REMARK 4.2.3. ω can be assumed to be a complexified Kähler class, since the action
of automorphisms preserves the real structure of L.

First we note the following elementary fact.

LEMMA 4.2.4. Let L be a lattice and K be a subset of L. Let φ be an isometry of L.
(1) If φ(K) = K then φ(K⊥) = K⊥.
(2) If φ acts as the identity on K , then for any x ∈ L, φ(x) − x ∈ K⊥.

COROLLARY 4.2.5. Let X be a compact Kähler surface and g ∈ Aut X. Then
g∗(SX) = SX and g∗(TX) = TX.

PROOF OF THEOREM. First note that the kernel of the multiplication of a nonzero holo-

morphic 2-form Ω on H 2(X, R) is H 1,1 ∩ H 2(X, R).
Take an arbitrary element x ∈ TX and g ∈ G . Then y := g∗x−x ∈ TX. By the previous

lemma, y ∈ TX ∩ Ω⊥ ∩ ω⊥ = TX ∩ SX ∩ ω⊥. Since y ∈ TX ∩ SX , we have 〈y, y〉 = 0. On
the other hand, since SX ∩ ω⊥ is negative definite by the signature theorem, one has y = 0.
Thus g∗x = x. This proves (1).

(2) follows from (LG)⊥ ⊂ (TX)⊥ ∩ Ω⊥ ∩ ω⊥ = SX ∩ ω⊥.
Next we shall prove (3).
Since (LG)⊥ is negative definite and finitely generated, the isometry group O((LG)⊥) is

a finite group.
Let j : G → O((LG)⊥) be the natural group homomorphism. We claim that j is

injective.

Suppose the induced action of an element g ∈ G on (LG)⊥ is identity. For an arbitrary
x ∈ L, y := g∗x − x belongs to (LG)⊥. Thus g∗y = y. Then for an integer n, we have
(gn)∗x = x + ny and since g∗ is isometry, 〈(gn)∗x, (gn)∗x〉 = 〈x, x〉. This leads to y = 0 by
definiteness of (LG)⊥. Thus g∗ is the identity on L.
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Since g∗ is, by definition, an effective Hodge isometry on L, g is the identity element in
Aut X by Torelli’s theorem. �

REMARK 4.2.6. The structure of G can be found in the list of [27] once one knows
that G is a finite algebraic automorphism group. Also, (LG)⊥ does not contain square (−2)-
elements.

COROLLARY 4.2.7. LG + (LG)⊥ is a sublattice in L of finite index and LQ =
(LG)Q ⊕ (LG)⊥Q.

PROOF. For any x ∈ L, there is an orthogonal decomposition whose coefficients are in
1

|G|Z:

x = 1

|G|(x1 ⊕ x2) , x1 =
∑
g∈G

g∗x ∈ (LG) , x2 =
∑
g∈G

(x − g∗x) ∈ (LG)⊥ .

�

Take an arbitrary h ∈ O((LG)⊥). For arbitrary element x in L, we have a decomposition
x = x1 + x2 in LQ, where x1 ∈ LG and x2 ∈ (LG)⊥. We define an action of O((LG)⊥) on
LQ by h(x) := x1 + h(x2).

PROPOSITION 4.2.8. If h(L) = L, there exists a unique g ∈ Aut X which satisfies:
g∗ω = ω, g∗Ω = Ω and h = g∗.

PROOF. Since ω and Ω belong to (LG)C, h is an effective Hodge isometry on L. Thus
the result follows from Torelli’s theorem. �

REMARK 4.2.9. G is canonically isomorphic to the subgroup of O(L) which fixes ω

and Ω .

Next we define a sublattice 〈ω〉 such that ω is ‘general’ in (〈ω〉)C.

DEFINITION 4.2.10. For a fixed α ∈ LC, we denote by 〈α〉 the minimum primitive
sublattice of L such that (〈α〉)C contains α.

REMARK 4.2.11. In fact, 〈α〉 is determined by the set of all rational equalities which
the coefficients of α satisfy, for an appropriate basis of L. When α ∈ L, 〈α〉 is nothing
but Zα. This definition works for an arbitrary torsion-free Z-module L and its extension of
coefficients by any field of characteristic 0.

〈ω〉 is independent of the choice of the complex structure X.

LEMMA 4.2.12. Let {xi} be a basis of 〈α〉.
(1) If α = ∑

i aixi (ai ∈ C) then the ai’s are linearly independent over Q.

(2) α⊥ coincides with 〈α〉⊥ in L.

PROOF. The first statement follows directly from the definition. The second one follows
from the first one. �
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PROPOSITION 4.2.13. If α ∈ LG, then 〈α〉 is contained in LG.

PROOF. Take a Z-basis {xi} of 〈α〉 and write α as an R-linear combination
∑

i aixi .
From the minimality of 〈α〉, the ai’s are linearly independent over Q. Let g be an element
of G. Then we have α = ∑

i aig∗xi . The lattice generated by {g∗xi} is also primitive, thus
it coincides with 〈α〉 from the minimality. We can write g∗xi as a Z-combination

∑
j bij xj .

From the equality
∑

i aig∗xi = α = ∑
j aj xj and torsion-freeness of L, we get bij = δij .

Thus g∗xi = xi and we are done.

REMARK 4.2.14. Thus we have LG ⊃ 〈ω〉 + 〈Ω〉. By adding to ω a small general

element in V := (LG)C ∩ ((〈ω〉 + 〈Ω〉)⊥)C, one can arrange LG = 〈ω〉 + 〈Ω〉, since V is
rationally defined and V ∩ L is negative definite.

REMARK 4.2.15. The lattice LD in the next section is nothing but 〈ω〉 when ω is the
restriction of the cohomology class of a ‘general’ ample R-divisor of an embedded variety,
and the lattice L0 is 〈ω〉⊥ ∩ 〈Ω〉⊥ in L, and in fact, (LG)⊥ in L.

When ω is general in SX , 〈ω〉 = SX and L0 = 0.

4.3. Mirror symmetry for K3 toric hypersurfaces. In this section, we will treat the
algebraic K3 surfaces which are the minimal resolutions of toric hypersurfaces.

DEFINITION 4.3.1. A polyhedron is a polytope of dimension three.

For a given reflexive polyhedron �, we use Θ and Γ for 2- and 1-dimensional faces of
�. The dual face Γ ∗ of Γ is a 1-dimensional face of �∗, so a summation over Γ is same as
that over Γ ∗.

We denote by Z the intersection of a �-regular anticanonical section of P� and the n-

dimensional orbit of the torus, and by Z̄ its closure, namely the section itself. Z̄ has only

canonical Gorenstein singularities by Theorem 1.1.8 due to Batyrev. Let Z̃ be the minimal

resolution of Z̄. X = Z̃ is an algebraic K3 surface.

We define the following sublattices of H 2(X, Z) for a toric hypersurface K3 surface X.

DEFINITION 4.3.2. LD := Im(H 1,1(P̃�) → H 1,1(X))∩H 2(X, Z), L0 := L⊥
D in SX,

where P̃� is a toric resolution of P�.

From a result of [12] [4] [2], we get

PROPOSITION 4.3.3. Let � be a three-dimensional reflexive polytope and Z̃ be the
K3 surface which is the minimal resolution of a �-regular anticanonical section of P�. Then

(1) LD(Z̃) = Z[�∗[1] ∩ N]/N ,

(2) L0(Z̃) = ⊕
dim Γ =1 Z(Int Γ ∩ M) × (Int Γ ∗ ∩ N),

(3) rk TZ̃ − 2 = l(�[1]) − 3.
In particular,

(4) rk LD(Z̃) = l(�∗[1]) − 3,
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(5) rk L0(Z̃) = ∑
dim Γ =1 l∗(Γ ∗)l∗(Γ ).

PROOF. Following the same argument for the calculation of H
1,1
toric in [2], one can show

that LD(Z̃) = Z[�∗[1] ∩ N]/N and in particular, rk LD(Z̃) = l(�∗[1]) − 3.
By [12] (5.11), we have dim H 2(Z) = l(�[1]) − 1, which is generated by vanishing

cycles whose image is rk TZ̃.
The toric compactification T → P� adds a divisor for each vertex of �∗.
A toric resolution of the ambient space produces the divisors corresponding to the inte-

gral points P of �∗ − ((�∗)(0) ∪ {0}). We denote by CP the support of the center of blowing
up in P� corresponding to P . If P is in the interior of some 2-dimensional face of �∗, CP is

a point which is disjoint from Z̄, since Z̄ is �-regular.

If P is in some Int Γ ∗, CP is a curve in P� which intersects normally with Z̄ at (l∗(Γ )+
1) points. Since each toric blowing-up corresponding to P creates one ambient divisor, its
orthogonal complement increases L0 by l∗(Γ ) divisors. Thus we have the description of L0

and rk L0(Z̃) =
∑

Γ l∗(Γ )l∗(Γ ∗). �

REMARK 4.3.4. In fact, we can easily determine the lattices LD and L0 from the data

(�,M). For instance, the dual graph of LD is obtained from �∗[1] by removing three integral
points which consist a basis of N . Each remaining vertex is a (−2)-curve and each remaining
integral point on a edge Γ is a sum of (l∗(Γ ∗) + 1) disjoint (−2)-curves. Each edge in Γ

joining integral points shows the intersection number of the two end-points is (l∗(Γ ∗) + 1).

We conjecture that the same rule of intersection product holds for LG and �[1].

COROLLARY 4.3.5. For a fixed reflexive polyhedron �, rk TZ̃ , LD(Z̃) and L0(Z̃) are
independent of the choice of �-regular hypersurface Z.

We will thus write them as LD(�) and L0(�), respectively.

COROLLARY 4.3.6. rk T (�) − 2 = rk LD(�∗), L0(�) = L0(�
∗).

REMARK 4.3.7. Since the rank of H 2 is 22, rk T (�) + rk LD(�) + rk L0(�) = 22.
That formula gives a relation

∑
Γ (l∗(Γ ) + 1)(l∗(Γ ∗) + 1) = 24.

We have rk T (�)− 2 = l(�[1])− 3 = rk(�[1] ∩M)/M , which is the expected dimension

for H
1,1
poly in [2].

REMARK 4.3.8. In the case of Arnold’s strange duality, the lattice structure of LG(�)

is isomorphic to that of LD(�∗).
In general, LG ⊕U is not isomorphic as a lattice over Z to the Milnor lattice but it seems

so over 1
|G|Z. This may be worth further investigation.

THEOREM 4.3.9. Let X0 be one of Arnold’s singularities and Wa = (a1, a2, a3; h) be
the corresponding weight system.

(1) There exists a unique dual weight system Wb.
(2) Wb coincides with the weight system of the dual singularity in the sense of Arnold.
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(3) The full Newton polyhedron, namely the convex hull of �(a) ∩ M(Wa) in M(Wa)Q

is a reflexive polyhedron containing (∇)∗ with the dual correspondence above.

(4) Let � be any reflexive polyhedron in �(a) which contains (∇)∗. The intersection

with � and the plane
∑3

i=1 aiαi = 1 is a facet which determines the equivalent
singularity to X0.

(5) �∗ is a reflexive polyhedron in ∇ containing (�)∗.
(6) There exists a � such that L0(�) = 0.

PROOF. Parts (1), (2) and (5) have been done in previous sections. (3) is well-known
and (4) is an easy case-by-case check. For 6, we give an example of a choice of � with
L0 = 0. For dual singularities, these reflexive polytopes are dual to each other. For self-
dual singularities, these examples satisfy �∗ ∼= �. These choices of � are not unique in
general. �

REMARK 4.3.10. One should choose the polyhedron rather carefully, since the re-

stricted Kähler class ω of a general Kähler class of P̃� is sometimes not general in (SX)R.
Namely, there might be some non-zero (non-effective) integral algebraic 2-cocycle α such
that ω ∪ α = 0. This is where L0 appears. Thus it is necessary to resort to a subpolytope of
the full Newton polytope.

class a1 a2 a3 h vertices of �

E12 6 14 21 42 W42, X7, Y 3, Z2

E13 4 10 15 30 W30, W6X6, X5Y , Y 3, Z2

Z11 6 8 15 30 W30, W6Y 3, X5, XY 3, Z2

E14 3 8 12 24 W24, W6X6, X4Z, Y 3, Z2

Q10 6 8 9 24 W24, W6Z2, X4, Y 3, XZ2

Z12 4 6 11 22 W22, W6X4, W4Y 3, X4Y , XY 3, Z2

W12 4 5 10 20 W20, W10Y 2, W2X2Y 2, X5, Y 2Z, Z2

Z13 3 5 9 18 W18, W6X4, W3Y 3, X3Z, XY 3, Z2

Q11 4 6 7 18 W18, W6X3, W4Z2, X3Y , Y 3, XZ2

W13 3 4 8 16 W16, W4X4, W4Y 3, X4Y , Y 4, Z2

S11 4 5 6 16 W16, W6Y 2, W4Z2, X4, XZ2, Y 2Z

Q12 3 5 6 15 W15, W6X3, W3Z2, X3Z, XZ2, Y 3

S12 3 4 5 13 W13, W4X3, W3Z2, WY 3, X3Y , XZ2, Y 2Z

U12 3 4 4 12 W12, W4Y 2, W4Z2, X4, Y 2Z, YZ2

4.4. Examples. We give some illuminating examples other than Arnold’s singulari-
ties.

EXAMPLE 4.4.1. Let us consider a pair of dual weight systems Wa = (2, 3, 6; 12) and
Wb = (2, 4, 5; 12). In these cases a0 = b0 = 1. We will denote the homogeneous coordinates
by W = X0, X = X1, Y = X2 and Z = X3 and the inhomogeneous ones by small letters. A
polytope is represented by its vertex set 〈vertices〉.
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The weighted magic square C is


0 2 1

3 2 0
0 0 2


 whose determinant is (−12). Thus B =


−1 1 0

2 1 −1
−1 −1 1


, −B−1 =


0 1 1

1 1 1
1 2 3


.

We use (α1, . . . , αn) for the coordinates coming from M(Wa) = Z⊕n and [β1, . . . , βn]
for those from M(Wb). Then [β1, . . . , βn]B = (α1, . . . , αn) holds for the vertices in MQ and
the hyperplanes in NQ.

� = 〈W 12,X6, Y 4, Z2〉. The coordinates of the vertices are : (−1,−1,−1),
(5,−1,−1), (−1, 3,−1), (−1,−1, 1); [−2,−3,−5], [−2, 2, 1], [2, 0,−1], [0, 0, 1], re-
spectively. This is a reflexive simplex. In fact, the dual is given by (�)∗ =
〈W 12, Y 3,X2Y 2,XZ2〉.

Let X0 be the singularity {x6 + y4 + z2 = 0} in C3. This is an isolated hypersurface
singularity with Milnor number µ = 15. In the table of Arnold [1], X0 belongs to class W1,0.

Z = {x6 + y4 + z2 + 1 = 0} is a smooth surface in C3 thus a Milnor fiber of X0.
Ebeling [16] has calculated Milnor lattices of isolated bimodal singularities. The Milnor

lattice H2(Z) is a direct sum of U and the lattice LG(�) represented by Figure 1,

� � � � � � � � � � �

� �

FIGURE 1.

where the circles are vanishing cycles.
The resolution graph of X → Z̄ is as in Figure 2.

� �

�

�

�

� �

a b b′ a′

c′

c

FIGURE 2.

where a circle represents a smooth rational curve with self-intersection (−2) and the central
curve is {W = 0}. LD is generated by the central curve and three (−4)-elements a+a′, b+b′
and c+c′. L0 is generated by three (−4)-elements e1 := a−a′, e2 := b−b′ and e3 := c−c′.
The set of all the (−4)-elements of L0 are {±e1,±e2,±e3,±(e1 + e2)} and the orthogonal
group O(L0) preserves this set. The elements of O(L0) which extend to elements of O(L)



DUALITY OF WEIGHTS, MIRROR SYMMETRY AND ARNOLD’S STRANGE DUALITY 247

as in 4.2 are : id, σ(e1 �→ e1, e2 �→ e2, e3 �→ −e3), τ (e1 �→ −e1, e2 �→ −e2, e3 �→ e3) and
στ . Thus G ∼= Z/2Z × Z/2Z and in fact each isomorphism is realized by a multiplication of

coordinates: σ(W : X : Y : Z) = (iW : X : iY : −Z), τ (W : X : Y : Z) = (ζ 2W : ζX : Y :
−Z) where i := exp(πi/2) and ζ := exp(πi/3).

Next we consider the dual polyhedron �
∗
. The singularity {y3 + x2y2 + xz2 = 0}

has a singular curve {x = 0}. We have a Milnor fiber {y3 + x2y2 + xz2 + 1 = 0} and its

weighted compactification Z̄ = {Y 3 + X2Y 2 + XZ2 + W 12 = 0} in P(1, 2, 4, 5). In this
case, the restriction of the divisor {X = 0} decomposes as a sum of three divisors Ei : {X =
Y +ζ iW 4 = 0} (i = 0, 1, 2) where ζ is a nontrivial cubic root of unity. The other intersections
with singular 2-dimensional strata of P are irreducible.

The singular set of Z̄ consists of one D8 at {W = Y = Z = 0}, one A4 at {W = X =
Y = 0} and one A1 at {W = X2 + Y = Z = 0}. The resolution graph at infinity (including
the divisor W = 0) becomes as in Figure 3.

� � � � � � � � � � � �

� �

a b c

a′

FIGURE 3.

This graph is one vertex longer than that of LG(�). L0 is generated by a−a′, E0−E1 and
E1−E2. LD is generated by a+a′ and other circles. Changing the base by a+a′ → a′+a+b

(other circles are the same), we have the same graph as that of LG(�).
Let us take other polyhedra. In our duality, every reflexive polyhedron in MQ should

contain ∇∗ = 〈W 12,X3Y 2, Y 2Z,Z2〉, or rather ∇∗ = 〈W 12, Y 2W 6,X3Y 2, Y 2Z,Z2〉, where
∇ is the maximum Newton polyhedron in N , that is the convex hull of ∇ ∩ N .

Take � = 〈W 12,W 3Y 3,W 2X5,WXY 3,X3Y 2,X3Z, Y 2Z,Z2〉, which has the same
LG as � and L0(�) = 0. Thus � represents a Milnor fiber of the singularity of class
W1,0 and the dual graph of LD coincides with the resolution graph as above. Its dual �∗

is 〈W 12,W 7Z,W 6XY,W 5XZ,W 3YZ,X2Y 2, Y 3,XZ2〉.
EXAMPLE 4.4.2. The weight system W = (2, 3, 4; 10) is self-dual. Take the follow-

ing six reflexive polyhedra (cf. Figure 4):

�1 =〈W 10,W 2X4,X3Z,X2Y 2,XZ2, Y 2Z,W 2Z2,WY 3〉 ,

�2 =〈W 10,W 4X3,WX3Y,X2Y 2,XZ2, Y 2Z,W 2Z2,WY 3〉 ,

�3 =〈W 10,W 6X2,W 2X2Z,X2Y 2,XZ2, Y 2Z,W 2Z2,WY 3〉 ,

�4 =〈W 10,W 6X2,W 2X2Z,X2Y 2,XZ2, Y 2Z,W 6Z,W 4Y 2〉 ,

�5 =〈W 10,W 8X,W 3X2Y,X2Y 2,XZ2, Y 2Z,W 6Z,W 4Y 2〉 , and
�6 =〈W 10,W 4XZ,X2Y 2,XZ2, Y 2Z,W 6Z,W 4Y 2〉 .



248 MASANORI KOBAYASHI

FIGURE 4. W = (2, 3, 4; 10). The black circle represents the origin XYZW .

These polyhedra all satisfy L0(�i) = 0 and �∗
i

∼= �7−i . �1 corresponds to the Milnor fiber
of the singularity of class S1,0.

The dual graphs of LD(�i) is as in Figure 5.
There are inclusions of reflexive polyhedra: �i ⊃ �j for i < j and thus specializations

of the families of weighted hypersurfaces. As the family specializes, 2A1 singularities at
infinity get ‘closer’ to A3, D4, D5 and finally to D6 singularities.
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