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Abstract. We prove a theorem about elliptic operators with symmetric potential functions, defined on a func-
tion space over a closed loop. The result is similar to a known result for a function space on an interval with Dirichlet
boundary conditions. These theorems provide accurate numerical methods for finding the spectra of those operators
over either type of function space. As an application, we numerically compute the Morse index of constant mean

curvature tori of revolution in the unit 3-sphere S3, confirming that every such torus has Morse index at least five,
and showing that other known lower bounds for this Morse index are close to optimal.

1. Introduction

Our goal is to study the Morse index of constant mean curvature (CMC) tori of revolu-

tion in the spherical 3-space S3, where the Morse index is the number of negative eigenvalues
of the Jacobi operators of those surfaces. The central tool we use is a result about the number
of nodes of eigenfunctions of those Jacobi operators. The result, proven with the standard
Sturm comparison technique in ordinary differential equations and closely related to classi-
cally known results, is proven here before being applied to the index of CMC surfaces of

revolution in S3. So let us start by considering an operator of the form

L = − d2

dx2
− V , i.e. L(f ) = − d2

dx2
f − V · f ,

on function spaces Fp over a closed loop or F0 over an interval [0, a] with Dirichlet boundary
conditions:

Fp =Fp(a) = {f : R
C∞−→ R | f (x) = f (x + a)} ,

F0 = F0(a) = {f : [0, a] C∞−→ R | f (0) = f (a) = 0} , a > 0 .

We assume the potential function V = V (x) is real-valued and real-analytic on the closed
interval [0, a], and V ∈ Fp when the function space Fp is used. However, we do not assume
V is in F0 when the function space F0 is used, that is, we do not assume V (0) and V (a) are
zero.
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The eigenvalue problem is to find λ ∈ R and f ∈ Fp (or F0) that solve the second-order
ordinary differential equation (ODE)

(1.1) L(f ) = λf .

The operator −L is elliptic and it is well-known ([2], [3], [12], [20]) that the eigenvalues
of L are real and form a discrete sequence

λ1 < λ2 ≤ λ3 ≤ ... ↑ +∞
(each considered with multiplicity 1) whose first eigenvalue λ1 is simple. The eigenvalues
form a discrete spectrum, and corresponding eigenfunctions

f1, f2, f3, ... in Fp or in F0 , L(fj ) = λjfj ,

can be chosen to form an orthonormal basis with respect to the standard L2 norm on Fp or
F0 over [0, a].

Let

Σp = R/(x ∼ x + a) and Σ0 = [0, a]
denote the domains of the functions in Fp andF0, respectively. The nodes of an eigenfunction
f ∈ Fp (or F0) are those points of Σp (or Σ0) at which f vanishes. When f is not identically
zero, the fact that L is second-order and linear implies all zeros of f are isolated and of lowest

order, i.e. if f (0) = 0, then ( d
dx

f )(0) �= 0.
We have the following two theorems, the second of which uses a symmetry condition on

V . The first theorem is well-known and can be proven using Sturm comparison and Courant’s
nodal domain theorem (see [5], [6], [7], [8], for example):

THEOREM 1.1. Consider the operator L on the function space F0 of C∞ functions
over Σ0 with Dirichlet boundary conditions. Then all eigenspaces are 1-dimensional, and
to find a nonzero solution f ∈ F0 of L(f ) = λf for some eigenvalue λ, without loss of
generality we may assume:

f (0) = 0 ,

(
d

dx
f

)
(0) = 1 .

Furthermore, any eigenfunction associated to the j ’th eigenvalue λj of L has exactly j + 1
nodes.

The following theorem can be similarly proven, but is a bit more complicated, because
in this case the eigenvalues are not always simple. We will prove Theorem 1.2 here (and in
the process also prove Theorem 1.1). The conclusions about the initial conditions in these two
theorems are quite trivial; it is the conclusions about the number of nodes of the eigenfunctions
that are of the most interest to us.
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THEOREM 1.2. Consider the operator L on the function space Fp of C∞ periodic
functions over Σp . Suppose the real-analytic function V ∈ Fp has the symmetry

(1.2) V (x) = V (−x) ∀x ∈ R .

Let λ1 < λ2 ≤ λ3 ≤ ... ↑ +∞ be the spectrum of L with a corresponding basis
f1, f2, f3, ... ∈ Fp of eigenfunctions. Then the eigenspaces are each at most 2-dimensional,
and to find a basis for the eigenspace associated to λj , we may assume:

• When the eigenspace for λj is 1-dimensional, we may take fj so that one of

fj (0) = 1 ,

(
d

dx
fj

)
(0) = 0 or fj (0) = 0 ,

(
d

dx
fj

)
(0) = 1 holds.

• When the eigenspace for λj is 2-dimensional, and λj = λj+1, we may take

fj (0) = 1 ,

(
d

dx
fj

)
(0) = 0 and fj+1(0) = 0 ,

(
d

dx
fj+1

)
(0) = 1 .

Furthermore, any eigenfunction in Fp associated to λj has exactly j nodes if j is even, and
j − 1 nodes otherwise.

After proving these results in Section 2, we will see in Section 3 that Theorem 1.2 gives
a method to numerically compute the spectra of the operator L. Then, in Section 4, we apply
that method to study the index of CMC surfaces of revolution in the round 3-sphere.

In [13], a method was given for computing the eigenvalues for the Jacobi operator of
a Wente torus, involving the Rayleigh-Ritz method and restricting to finite dimensional sub-
spaces of function spaces defined over tori. Then in [14], both this method and a second
more direct method were given for computing the first eigenvalue of the Jacobi operator of a
Delaunay surface with respect to periodic functions, and the second method depended on De-
launay surfaces being surfaces of revolution. It was argued in [14] that, although the second
method was clearly the simpler of the two, the first method was still of value because it could
compute any eigenvalue of the Jacobi operator, while the second method computed only the
first eigenvalue. However, via Theorem 1.2, the second method in [14] in fact extends to a
method that gives any eigenvalue and hence is both simpler and equally as robust as the first
method. Additionally, this extended second method involves only using any standard ODE
solver, such as the Euler algorithm or the Runge-Kutta algorithm, and so has only as much nu-
merical error as those algorithms have, whereas the first method involves restrictions to finite
dimension subspaces for which the numerical error cannot be easily estimated and appears to
be very much larger than for the extended second method. (This can be seen by comparing
the respective errors of the two methods in cases where the spectra are explicitly known.)

Certainly the first method was necessary in [13], because Wente surfaces are not surfaces
of revolution. But for the above reasons, the method we give here is in every way superior to
the methods found in [13] and [14], in the case of CMC surfaces of revolution.

A surface of revolution in the unit 3-sphere S3 is generated by revolving a given planar
curve about a geodesic line in the geodesic plane containing this given curve. The given
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FIGURE 1. Profile curves for surfaces that we label Ui for i = 1, 2, ..., 17 (U1,...,U9 from left to right
in the upper row, U10,...,U17 from left to right in the lower row). These are profile curves
of CMC tori of revolution, shown in totally geodesic hemispheres having the rotation axis as
boundary. The images are stereographic projections from S3 to R3 ∪ {∞}. The outer circle is
the rotation axis, with profile curve inside. All of these surfaces are unduloidal, in the sense
that the projections of these curves to the nearest points in the rotation axis are everywhere
continuous local injections.

curve is called the profile curve and the geodesic line is called the axis of revolution. The

profile curves of non-spherical non-flat CMC surfaces of revolution in S3 will periodically
have minimal and maximal distances to the axis of revolution [9]. We call the points of
minimal distance the necks, and the points of maximal distance the bulges. In general, when
these surfaces close to become compact surfaces without boundary, they are of the following
3 types:

• round spheres, every point of which is the same distance from a fixed point (the
center),

• flat CMC tori, every point of which is the same distance from a closed geodesic (the
axis of revolution),

• non-flat CMC tori, where the distances from the axis of revolution to the necks and
bulges are not equal.

Because these surfaces are closed, the number of negative eigenvalues of their Jacobi
operators, counted with multiplicity and called the Morse index, is finite. The Morse index is
of interest because it is a measure of the degree of instability of the surface. In the first two
cases above, the Morse index is easily explicitly computed [16], being 1 for the first case (this
is closely related to the fact that spheres are stable [1]) and always at least 5 for the second
case. Regarding the third case, the authors proved the following in [16]:

THEOREM 1.3. Let S be a non-flat closed CMC torus of revolution in S3, with k bulges
and k necks. Let w denote the wrapping number of the projection of a profile curve of S to
the axis circle of revolution. Then:

• S has index at least max(5, 2k + 1).
• If S is nodoidal with k ≥ 2, then S has index at least max(11, 2k + 5).
• If S is unduloidal with w ≥ 2, then S has index at least max(6w − 1, 2k + 4w − 3).
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FIGURE 2. Profile curves for surfaces that we label Ni for i = 1, 2, ..., 11 (N1,...,N9 from left to right
in the upper row, N10, N11 from left to right in the lower row). All of these surfaces are
nodoidal, i.e. they are not unduloidal.

The numerical results here show the lower bounds in the above theorem are very close
to the true value for the Morse index in the case of unduloids. For example, using Table 4 and
Lemma 4.2 (see also [17] for more complete data lists), the numerically computed index of
the unduloid U1 (resp. U2, U3, ..., U17) is 6 (resp. 8, 10, 12, 14, 12, 16, 20, 24, 20, 24, 32, 28,
32, 36, 36, 44), while the above theorem gives the lower bound 5 (resp. 7, 9, 11, 13, 11, 15,
19, 23, 19, 23, 31, 27, 31, 35, 35, 43) for the index. In all cases, the lower bound in Theorem
1.3 differs from the numerically computed value for the index by only 1, thus the lower bound
is quite sharp.

The lower bounds in Theorem 1.3 are not as sharp in the case of nodoids, but still are
greater than half of the numerically computed value for all of the surfaces shown in Figure 2.
The numerically computed index of the nodoid N1 (resp. N2, N3, ..., N11) is 12 (resp. 12, 18,
18, 24, 30, 20, 32, 34, 52, 48), while the above theorem gives the lower bound 11 (resp. 11,
13, 13, 15, 17, 15, 19, 21, 27, 27) for the index.

2. Proofs of the Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we give a series of lemmas. We first note that:

• For each λ, it is easily shown that the space of solutions of (1.1) amongst functions
f : R → R is 2-dimensional.

• Consider the eigenvalue problem (1.1) over the function space F0 on the interval

Σ0 with Dirichlet boundary conditions. Suppose f̂1 and f̂2 are two linearly inde-

pendent eigenfunctions corresponding to some eigenvalue λ. Noting that ( d
dx

f̂1)(0)

and ( d
dx

f̂2)(0) are both nonzero, take the linear combination f̂3 = ( d
dx

f̂2)(0) · f̂1 −
( d
dx

f̂1)(a) · f̂2. Then f̂3(0) = ( d
dx

f̂3)(0) = 0, and it follows that f3 is identically
zero, contradicting the linear independence of f1 and f2. Hence the eigenvalues are
simple. Hence the eigenvalues are always simple for the Dirichlet eigenvalue prob-
lem. Furthermore, multiplying by a scalar factor if necessary, we may assume the

initial conditions for an eigenfunction f is f (0) = 0 and ( d
dx

f )(0) = 1.
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FIGURE 3. Half of each of the surfaces U1, U2, U7.

FIGURE 4. Half of each of the surfaces N1, N6.

For the closed eigenvalue problem (1.1) with f ∈ Fp, the eigenspace associated to any
eigenvalue λ is either 1 or 2 dimensional, and we have the following lemma regarding the
initial conditions to find a basis for the eigenspace:

LEMMA 2.1. Suppose V ∈ Fp has the symmetry (1.2). Let λ1 < λ2 ≤ λ3 ≤ ... ↑
+∞ be the spectrum of L over the space Fp with a corresponding basis f1, f2, , f3, ... of
eigenfunctions. Then the eigenspaces are each at most 2-dimensional, and to find a basis for
{f ∈ Fp |L(f ) = λjf } for some eigenvalue λj , we may assume:

• When the eigenspace for λj is 1-dimensional, we may take a single eigenfunction
fj ∈ Fp such that

either fj (0) = 1 ,

(
d

dx
fj

)
(0) = 0 or fj (0) = 0 ,

(
d

dx
fj

)
(0) = 1 .
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• When the eigenspace for λj = λj+1 is 2-dimensional, we may take two eigenfunc-
tions fj , fj+1 ∈ Fp such that

fj (0) = 1 ,

(
d

dx
fj

)
(0) = 0 and fj+1(0) = 0 ,

(
d

dx
fj+1

)
(0) = 1 .

PROOF. First we consider the case of a 1-dimensional eigenspace. Let fj ∈ Fp be
a basis element of this eigenspace. If fj has neither the symmetry fj (x) = fj (−x) nor
fj (−x) = −fj (x), then fj (x) and fj (−x) would be two linearly independent eigenfunctions
with eigenvalue λj , a contradiction. Hence fj (x) = fj (−x) or fj (−x) = −fj (x) for all

x ∈ R, and so fj (0) = 0 or ( d
dx

fj )(0) = 0. Furthermore, because multiplying fj by a
real constant still gives a solution to (1.1) with λ = λj , we may assume either fj (0) = 1 or

( d
dx

fj )(0) = 1. Hence the first part of the lemma is shown.
For the case of a 2-dimensional eigenspace, any C∞ solution f : R → R to (1.1) with

λ = λj lies in Fp, hence we can choose a basis fj , fj+1 ∈ Fp with the initial conditions as
in the second part of the lemma. �

The following lemma is known as Courant’s nodal domain theorem, and the proof, which
applies in our setting with either function space Fp or F0, can be found in [4] (see also [15]).

LEMMA 2.2 (Courants nodal domain theorem). The number of nodes of any eigen-
function for (1.1) in Fp (resp. F0) associated to the j ’th eigenvalue λj is at most j (resp.
j + 1).

Lemma 2.2 may be strengthened using Sturm comparison, as we will see in the course
of proving Theorems 1.1 and 1.2.

The following lemma is a slight generalization of a result in [8]:
LEMMA 2.3. Consider the following two equations

(2.1)
d2

dx2
f + (V + λ)f = 0 ,

d2

dx2
f̂ + (V + λ̂)f̂ = 0

with V as in (1.1) and λ < λ̂. Suppose that the first equation in (2.1) has a solution f (x) �≡ 0

having two consecutive zeros at x = ξ1 and x = ξ2, with ξ1 < ξ2. Let f̂ (x) be a solution of

the second equation in (2.1), then f̂ (x) has at least one zero x = ξ3 with ξ1 < ξ3 < ξ2.

PROOF. Multiplying the first equation in (2.1) by f̂ and the second equation in (2.1) by
f , then subtracting the first expression from the second and integrating, we have

∫ ξ2

ξ1

(λ̂ − λ)f f̂ dx =
[(

d

dx
f

)
f̂ −

(
d

dx
f̂

)
f

]ξ2

ξ1

=
(

d

dx
f

)
(ξ2)f̂ (ξ2) −

(
d

dx
f

)
(ξ1)f̂ (ξ1) ,

(2.2)
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as here f (ξ1) = f (ξ2) = 0. Multiplying by the scalar −1 if necessary, we may assume

f (x) > 0 for x ∈ (ξ1, ξ2), so ( d
dx

f )(ξ1) > 0 and ( d
dx

f )(ξ2) < 0. If f̂ (x) is positive

everywhere in (ξ1, ξ2), then
∫ ξ2
ξ1

(λ̂ − λ)f f̂ dx > 0 and ( d
dx

f )(ξ2)f̂ (ξ2) − ( d
dx

f )(ξ1)f̂ (ξ1) ≤
0, contradicting (2.2). Similarly, f̂ (x) cannot be negative everywhere in (ξ1, ξ2). �

LEMMA 2.4. Consider the eigenvalue problem (1.1) on F0 over the interval Σ0 with
Dirichlet boundary conditions, and with corresponding spectrum λ1 < λ2 < ... of simple
eigenvalues. Then any eigenfunction associated with λj has exactly j + 1 nodes.

PROOF. Denote a nonzero eigenfunction corresponding to eigenvalue λj by fj . Lemma
2.2 implies f1 has exactly two nodes (at x = 0 and x = a). Assume fj has exactly j + 1

nodal domains and let us prove fj+1 has exactly j + 2 nodes. From (1.1) we have d2

dx2 fj +
Vfj + λjfj = 0 and d2

dx2 fj+1 + Vfj+1 + λj+1fj+1 = 0. Let ξ1, ξ2, ..., ξj−1 be the zeros of

fj in the interval (0, a). Since λj+1 > λj , applying Lemma 2.3, we conclude that fj+1 must
vanish in each the intervals (0, ξ1), (ξ1, ξ2), ..., (ξj−1, a) and hence that it has at least j + 2
nodes. Lemma 2.2 implies it has exactly j + 2 nodes. �

The following lemma is proven in [8]:
LEMMA 2.5. Let f and f̂ be two linearly independent solutions of Equation (1.1) for

the same λ, and suppose that f has two consecutive zeros ξ1 and ξ2 such that ξ1 < ξ2, then f̂

has one and only one zero in (ξ1, ξ2).

PROOF. We may assume f is positive for all x ∈ (ξ1, ξ2), then we have ( d
dx

f )(ξ1) > 0

and ( d
dx

f )(ξ2) < 0. Because f and f̂ are independent, f̂ (ξk) �= 0 for k = 1, 2. Here
d
dx

(( d
dx

f̂ )f − ( d
dx

f )f̂ ) = 0 for all x, so ( d
dx

f )(ξ1)f̂ (ξ1) = ( d
dx

f )(ξ2)f̂ (ξ2). Hence f̂

cannot keep a constant sign throughout the interval (ξ1, ξ2), i.e. f̂ has at least one zero in
(ξ1, ξ2).

Now suppose η1 and η2 are two zeros of f̂ in (ξ1, ξ2). If we interchange the roles of f and

f̂ in the above argument, we conclude that f has at least one zero in (η1, η2), a contradiction.

Hence f̂ has exactly one zero in (ξ1, ξ2). �

LEMMA 2.6. Any two eigenfunctions of (1.1) in Fp associated with equal eigenvalues
have the same number of nodes.

PROOF. Let f and f̂ be two eigenfunctions associated with λj = λj+1 in the spectrum

of L over Fp. If f and f̂ are linearly dependent, then the lemma clearly holds, so we assume
they are linearly independent.

Suppose f has k nodes ξ1, ξ2, ..., ξk ∈ [0, a). Then f̂ (ξ�) �= 0 for � = 1, ..., k, and by

Lemma 2.5, f̂ has a unique node in each of (ξ1, ξ2), (ξ2, ξ3), ..., (ξk−1, ξk) and (ξk, ξ1 + a).

Hence f̂ has exactly k nodes. �
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LEMMA 2.7. Take λj as in Theorem (1.2). Let fj and fk in Fp be two eigenfunctions
of L corresponding to eigenvalues λj and λk with λj < λk , and with either of the initial
conditions as in Lemma (2.1). Let nj and nk denote the number of nodes in Σp of fj and fk ,
respectively. If fj and fk have the same initial conditions, resp. different initial conditions,
then nk ≥ nj + 2, resp. nk ≥ nj .

PROOF. Suppose fj (0) = fk(0) = 0, ( d
dx

fj )(0) = ( d
dx

fk)(0) = 1. So fj has nj − 1
nodes between x = 0 and x = a. Then by Lemma 2.3, fk has at least nj nodes in the open
interval (0, a), and so nk > nj . Since nj and nk are both even, nk ≥ nj + 2.

Now suppose fj (0) = fk(0) = 1, ( d
dx

fj )(0) = ( d
dx

fk)(0) = 0, then fj has nj nodes
ξ1, ..., ξj in the open interval (0, a). Also, fj and fk have the symmetry fj (x) = fj (−x) and
fk(x) = fk(−x) for all x ∈ [0, a], by the symmetry (1.2). By Lemma 2.3, fk has a node in
each interval (ξ�, ξ�+1) for � = 1, ..., nj − 1. Also, it has a node in (−ξ1, ξ1), so by the above
symmetry, it has at least two nodes in (−ξ1, ξ1), implying nk > nj and so nk ≥ nj + 2.

If fj and fk have different initial conditions, then Lemma 2.3 immediately implies nk ≥
nj . �

LEMMA 2.8. Take λj as in Theorem (1.2). Let fj−1, fj and fj+1 in Fp be three
consecutive eigenfunctions associated with λj−1, λj and λj+1, respectively, each with either
of the initial conditions as in Lemma (2.1). Let nj−1, nj and nj+1 denote the number of nodes
of fj−1, fj and fj+1 respectively. Then nj+1 ≥ nj−1 + 2.

PROOF. Here each of the eigenfunctions fj−1, fj and fj+1 has either of the two initial
conditions given in Lemma (2.1). Thus two of these functions will have the same initial
conditions, hence by Lemma 2.7 we have at least one of nj ≥ nj−1 + 2 or nj+1 ≥ nj−1 + 2
or nj+1 ≥ nj + 2. Lemma 2.7 also implies nj−1 ≤ nj ≤ nj+1, hence the result is shown. �

All of the lemmas in this section (Section 2) immediately imply Theorems 1.1 and 1.2.

3. Computation of the spectrum of L over Fp with symmetric V

A numerical method for computing the spectrum of L on the function space Fp is as
follows:

(1) The eigenfunctions are in Fp and so are periodic, and the real-analytic V ∈ Fp is
assumed to have the symmetry (1.2). Theorem 1.2 implies we can numerically solve (1.1) for

f with the initial conditions just either f (0) = 1, ( d
dx

f )(0) = 0 or f (0) = 0, ( d
dx

f )(0) = 1
by a numerical ODE solver, and search for the values of λ that give periodic solutions f , i.e.
give f ∈ Fp. Such values of λ are amongst the λj .

(2) By Theorem 1.2, we know the eigenspaces are at most 2-dimensional. If, for some
λ = λj , one of the two types of initial conditions in Theorem 1.2 for f gives a solution
f ∈ Fp and the other does not, then the eigenspace of λj is 1-dimensional; if both types of
initial conditions give solutions f ∈ Fp, then the eigenspace of λj is 2-dimensional.
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(3) From Theorem 1.2, we know that any eigenfunction f associated to λj has exactly
j nodes when j is even, and j − 1 nodes otherwise. So the value of j is determined simply
by counting the number of nodes of f . Because we can determine j , we will know when we
have found all λj ≤ M for any given M ∈ R.

4. Application to CMC surfaces of revolution in S3

As an application of the numerical approach described in Section 3, we consider CMC

tori of revolution in the unit 3-sphere S3 ⊂ R4 and compute the spectra of their Jacobi opera-
tors. This gives us a numerical evaluation of the Morse index of these surfaces.

Let S(x, y) : T = {(x, y) ∈ R2|(x, y) ≡ (x + a, y) ≡ (x, y + 2π)} → S3 be a

conformal immersion from the torus T to S3, with mean curvature H and Gauss curvature K .
When H is constant, S is critical for a variation problem whose associated Jacobi operator is

−∆ − V̂ with V̂ = 4 + 4H 2 − 2K ,

where ∆ is the Laplace-Beltrami operator of the induced metric ds2 = g(dx2 +dy2) for some
smooth function g = g(x, y) (g is in fact real-analytic in the application here). We take S to
be a non-flat CMC torus of revolution.

Let us define

L = −g∆ − gV̂ = ∂2

∂x2 − ∂2

∂y2 − V ,

where V = gV̂ . Then the eigenvalues of L form a discrete sequence whose corresponding

eigenfunctions can be chosen to form an orthonormal basis for the L2 norm over T with

TABLE 1. Numerical estimates for the nonpositive eigenvalues of the operator L̂ for the specific examples
of CMC non-flat tori of revolution shown in Figures 1 and 2. The values are rounded off to the
nearest hundredth or thousandth. (See Table 1 in [17] for further data.)

surface nonpositive eigenvalues λ1,0, λ2,0, ..., λk,0 (where λk,0 = 0 and λk+1,0 > 0), for the operator L̂
U1 −1.28, −1,−1,−0.25, 0
U2 −1.08, −1,−1,−0.76,−0.76, −0.51, 0
U3 −1.04, −1,−1,−0.87,−0.87, −0.67, −0.67, −0.52, 0
U4 −1.03, −1,−1,−0.91,−0.91, −0.78, −0.78, −0.6,−0.6, −0.48, 0
U5 −1.02, −1,−1,−0.94,−0.94, −0.84, −0.84, −0.714, −0.714, −0.57,−0.57, −0.48, 0
U6 −1.64, −1.48,−1.48, −1,−1,−0.36, 0
U7 −1.13, −1.1,−1.1, −1,−1,−0.84,−0.84, −0.64, −0.64, −0.5, 0
N1 −1.26, −1.19,−1.19, −1,−1,−0.85, 0
N2 −1.42, −1.31,−1.31, −1,−1,−0.696, 0
N3 −1.43, −1.37,−1.37, −1.22, −1.22, −1,−1,−0.85, 0
N4 −1.85, −1.76,−1.76, −1.47, −1.47, −1,−1,−0.55, 0
N5 −1.67, −1.62,−1.62, −1.49, −1.49, −1.27,−1.27, −1,−1,−0.83, 0
N6 −1.7,−1.67, −1.67, −1.58, −1.58,−1.43, −1.43, −1.22, −1.22,−1,−1,−0.88, 0



THE SPECTRA OF JACOBI OPERATORS FOR CMC TORI OF REVOLUTION IN S3 171

respect to the Euclidean metric dx2 + dy2. Let

λ1 < λ2 ≤ λ3 ≤ ... ↑ +∞
be the spectrum of L.

By using Rayleigh quotient characterizations for eigenvalues it can be shown that L
and −∆ − V̂ will give the same number of negative eigenvalues (counted with multiplicity),
although these two operators will have different eigenvalues. Hence we can use either L or

−∆ − V̂ to find the Morse index of the surface S:

DEFINITION 4.1. The Morse index Ind(S) of S is the sum of multiplicities of the

negative eigenvalues of −∆ − V̂ with function space the smooth functions from T to R.
Equivalently, it is the sum of the multiplicities of the negative eigenvalues of L over the same
function space.

A C∞ function f = f (x, y) : T → R can be decomposed into a series of spherical
harmonics as follows:

(4.1) f =
∞∑

j=0

uj,1(x) cos(jy) + uj,2(x) sin(jy) ,

where uj,1, uj,2 ∈ Fp for Σp with the given a > 0. The operator L̂ on the function space Fp

is defined by

L̂ = − d2

dx2 − V ,

and the spectrum

λ1,0 < λ2,0 ≤ λ3,0 ≤ ... ↑ +∞
of L̂ has all the analogous properties as those of the spectrum for L. Furthermore, by unique-
ness of the spherical harmonics decomposition, f is an eigenfunction of L for the eigenvalue

λ if and only if each uj,k , k = 1, 2, is an eigenfunction of L̂ for the eigenvalue λ − j2. And if
f is not identically zero, then some uj,k will also be not identically zero. Thus we can say:

• λ is an eigenvalue for the operator L if and only if λ − n2 is an eigenvalue for the

operator L̂ for some n ∈ N ∪ {0}.
• For any eigenvalue λj,0 < −n2, n ∈ N ∩ [2,∞), of L̂, with associated eigenfunction

fj ∈ Fp, the eigenvalues of L associated to the eigenfunctions fj · cos(ky) and
fj · sin(ky), for integers k ≤ [0, n], will be negative.

Furthermore, we can conclude the following:
LEMMA 4.2. We have

Ind(S) =
∑
j∈N

λj,0 ·�(λj,0) , where �(λ) =
{

0 if λ ≥ 0 ,

2i − 1 if λ ∈ [−i2,−(i − 1)2) for i ∈ N .
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TABLE 2. Here B1 is the number of eigenvalues less than −4, B2 is the number of eigenvalues in
[−4,−1), and B3 is the number of eigenvalues in (−1, 0), all counted with multiplicity. (See
Table 2 in [17] for further data.)

numerical
surf- value
ace s t a k w B1 B2 B3 for
S Ind(S)
U1 0.4078 0.1583 11.7053 2 1 0 1 1 6
U2 0.4392 0.0812 21.1215 3 1 0 1 3 8
U3 0.4352 0.0758 28.9593 4 1 0 1 5 10
U4 0.4275 0.0796 36.0835 5 1 0 1 7 12
U5 0.4259 0.0789 43.5185 6 1 0 1 9 14
U6 0.4703 0.1697 15.6572 3 2 0 3 1 12
U7 0.4431 0.0881 34.0978 5 2 0 3 5 16
N1 0.5112 −0.0502 21.7946 3 1 0 3 1 12
N2 0.5061 −0.089 18.6334 3 1 0 3 1 12
N3 0.5292 −0.068 26.0688 4 1 0 5 1 18
N4 0.5257 −0.155 20.1429 4 1 0 5 1 18
N5 0.5501 −0.095 28.6743 5 1 0 7 1 24
N6 0.56002 −0.092 34.3367 6 1 0 9 1 30

PROOF. Let E(λ), resp. E0(λ), denote the eigenspace of solutions of L(f ) = λf for

smooth f : T → R, resp. L̂(f ) = λf for f ∈ Fp. Then dim E(λ) = 0, resp. dim E0(λ) = 0

whenever λ is not an eigenvalue of L, resp. L̂, and is a positive integer otherwise. Then, by
the uniqueness of the spherical harmonics decomposition,

∑
λ<0

dim E(λ) =
∑
λ<0

(
dim E0(λ) + 2

∑
j≥1

dim E0(λ − j2)

)

=
( ∑

λ<0

dim E0(λ)

)
+ 2

∑
j≥1

∑
λ<−j2

dim E0(λ) .

�

Here S is a CMC surface of revolution, so, following [16], we can consider

L = − ∂2

∂x2 − ∂2

∂y2 − 2v2 − 32s2t2v−2 and L̂ = − d2

dx2 − 2v2 − 32s2t2v−2 ,

where s ∈ R+, t ∈ (−s, s) \ {0}, γ ∈ (0, π/4], and s, t , γ (we note that cot(2γ ) is the mean

curvature of S) satisfy the conditions (s + t)2 − 4st sin2 γ = 1/4 and

st ∈ (−(16 sin2 γ )−1, 0) ∪ (0, (16 cos2 γ )−1) ,

and v = v(x) is the elliptic function

v = 2t

dnτ (2sx)
with period x0 = 1

s

∫ 1

0

d�√
(1 − �2)(1 − τ 2�2)

, where τ =
√

1 − t2/s2 .
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FIGURE 5. Eigenfunctions associated to the eigenvalues λ1,0, ..., λ4,0, λ5,0 = 0 of the surface U1.

FIGURE 6. Eigenfunctions associated to the eigenvalues λ1,0, ..., λ6,0, λ7,0 = 0 of the surface U2.

FIGURE 7. Eigenfunctions associated to the eigenvalues λ1,0, ..., λ6,0, λ7,0 = 0 of the surface N1.

When st > 0, we have unduloidal surfaces. When st < 0, we have either nodoidal or
unduloidal surfaces (see [16]).

Using the method in Section 3, we can numerically compute the negative eigenvalues of

L̂, and can then apply Lemma 4.2 to find Ind(S). We do this for the CMC tori of revolution

shown in Figures 1 and 2. In [16], it is shown that 0 is an eigenvalue of L̂, and −1 is an

eigenvalue of L̂ with multiplicity 2. Since �(λ) is discontinuous at λ = 0 and λ = −1,

it is crucial to know that both 0 and −1 are eigenvalues of L̂ in order to determine Ind(S).
Furthermore, as the eigenvalue −1 has multiplicity 2 and λ1,0 must be simple, we have λ1,0 <

−1. (In the numerical experiments here, we find that 0 is always a simple eigenvalue.)
Tables 1, 2 and Figures 5–7 (see also [17] for further data) show results of our numerical

computations.
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