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Abstract. We shall consider IBVP to a nonlinear equation of suspended string with uniform density to which
anonlinear time-independent outer force works. We shall show the existence of time-global weak solutions of IBVP.

To prove our result we shall use the function spaces defined by [Yal], and apply the method due to Sattinger [Sat]
based on the potential-well and the Galerkin method.

1. Introduction

Let £2 beacylindrical domain (0, a) x (0, T'). Consider IBVP for a nonlinear equation
of aflexible and heavy suspended string of finite length a with uniform density

2u(x,0) + Lu(x,t)+ f(x,ux,0) =0, (x,1) €,
(P) u(a,t)=0, te(O,7),
ux,0 =¢x), ohukx,00=vx), xe€(@,a),
where L = Lo(x, ;) isasecond order differential operator of the form
L=—(xd2+0),

and f(x,u) is of C1 and monotone decreasing, and has the zero point of p-order at u = 0
(p > 1). The exact assumption on f will be given as (A) in section 3. Clearly u = Oisa
steady state solution of the equation. For the derivation of the equation of the suspended string,
see Koshlyakov-Gliner-Smirnov [K-G-S] and Korenev [Ko]. See also Yamaguchi [Yal].

[K-G-9], [Ko] and [Yal] deal with IBVP to linear equations of suspended string with a
power density x*, u > —1:

2u+Lyu+ fx,1)=0, (x,1) € (0,a) x R},
(LP) u(a,t)=0, 1eR:,
u(x,0)=¢x), dux,0=y(x), xe(0a),
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where L, is asecond order differential operator of the form

Ly=—(——d2+3
n = M+1X X )

[K-G-§] and [Ko] studied the case where u > —1 and f isatime-periodic single mode
of theform f(x, 1) = A sinwt Jo(ui+/x/a), where Jg isthe 0-order Bessel function and iy
isazero point of Jo. [Yal] treated the case where u > O and f istime quasiperiodic. They
showed that (LP) has a unique time-global solution which is represented by the Fourier series.
In [K-G-§] and [Ko] the solutions are formal in the sense that the convergence of the Fourier
series is not shown. In [Yal] the solutions belong to some suitable weighted Sobolev type
function spaces so that every solutionisclassical. In[Yal] it is also shown that every solution
of (LP) isalmost periodic in ¢ under the Diophantine conditions. Besides the almost periodic
structure of solutionsis clarified.

On the other hand, it seems to authors that there have been no researches on IBVP when
the equation is nonlinear. The purpose of this paper is to show that nonlinear IBVP (P) has a
time-global solution that liesin the potential well around the origin. It followsthat the energy
of every solution is bounded in r € (0, T). In this paper we shall treat weak solutions (the
definition will be given in section 3).

In order to show our result, first we shall introduce function spaces defined by [Yal]
and use properties like compact or continuous embedding and estimates in the spaces like a
generalized Sobolev inequality, a generaized Poincaré inequality. Secondly we shall apply
the method due to Sattinger [Sat] to (P) based on the potential well and the Galerkin method.
[Sat] developed his method to show the existence of global solutions of IBVP to nonlinear
wave equations. Seealso [L].

To apply a generalized Sobolev inequality to our problem, we need to restrict ourselves
to a uniform density p(x) = ax9, i.e., u = 0.

For the existence of infinitely many time-periodic solutions of nonlinear equations, see
[Ya2]. See dso[YaNa-Ma] for the periodic problem to nonlinear damped equations with
periodic forcing term.

This paper will be organized as follows. In section 2 we shall give notation and defini-
tions of function spaces, and some properties of the function spaces and inequalities used in
later sections. Also a brief sketch to the eigenvalue problem for L, will be given. In section
3 our theorem will be formulated. We shall define the potential well corresponding to (P) and
study its properties. In section 4 using the Galerkin method and the compactness method, the
theorem will be proved.

2. Function Spaces, Operator L, the Basic Inequalities

Let R and Z.;. be the set of nonnegative numbers and nonnegative integers, respectively.
Inthefollowing welet . = 0, and all the functions are real-valued.
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2.1. Définitions of Function Spaces. Let O beany opensetin R". Let p = 1 and
s € Z4. LP(0) and HS(O) arethe usua Lebesgue and Sobolev spaces, respectively.

We shall set function spaces defined in [Yal]. L”(0, a; x*) is a Banach space whose
elements f (x) are measurable in (0, @) and satisfy x*/? f(x) € L?(0, a), wherethe norm is

defined by
a 1/p
| flLr©.a;xm) = </o X"If(X)I”dX) :

Clearly L?(0,a; x% = L?(0,a). L2(0,a; x") is a Hilbert space with the inner product
defined by

(f’ g)LZ(O,a;xM) - \/(; xﬂf(-x)g(-x)d-x .

H*(0, a; x*) is a Hilbert space whose elements f and their weighted derivatives
X2 @) j = 1,..., s, belong to L2(0, a; x*), where f) means the j-th derivative of
f. Itsnorm is defined by

IfIHS(O,a;x“)

. 12
Jj/2 £(j)2
Z X 200, a50m)
j=0

.o 1/2
(Z/ XMt f(j)(x)de) )
j=070

LetT > 0. Let 2 = (0,a) x (0, T). LP(£2; x*) is aBanach space whose elements
f(x,t) are measurablein £2 and satisfy x*/? f (x, t) € L?(§2), where the norm is defined by

1/p
| flLr(@:xmy = (/ x| f (e, 0P dxdf) .
2

In particular, L” (£2; x% = L7 (£2) holds.
H*(£2; x*) is a Hilbert space whose elements f and their weighted derivatives
xi29] 9k . 0< j+k < s, belongto L2(£2; x*). Its norm is defined by

1/2
| f1Hs (@iamy) = ( > k2o 3ff|iz(9;xﬂ))

j+kSs

1/2
- ( > /x“+j (3] a,"f(x,t))zdxdt) )
2

j+kSs

Hi (0, a; x*) is a subspace as Hilbert space of H(0, a; x*) whose elements f satisfy
f(a) = 0. Also H}(£2; x*) isasubspaceof H1(£2; x*) whose elements f satisfy f(a,t) =
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0 for aimost al 7. K9(0,a; x*) is a subspace of H*(0, a; x*) whose elements f satisfy
Li f € H}O,a; x*)for j =0,..., [(s — 1)/2]. Note that
K0, a; x") = L%0,a; x"*), K0, a;x") = H&(O, a; x*y,
@1 K2(0, a; x"y = H%0, a; x") N Hol(O, a; x™y.
PropPosITION 2.1 ([Yal]). L, hasthefollowing properties:
(i) For fe KZ(O, a;x*)yand g € Kl(O, a; x*),

a xll+l
L,f, oy = a a dx .
(L. iz = || gt f ) Do

(i) L, isapositive definite self-adjoint elliptic operator in L2(0, a; x*) with domain
D(L) = K?(0,a; x"),i.e,

(Lﬂf’ f)Lz(O,a;xﬂ) 2 0, (Lufa g)Lz(O,a;xﬂ) = (f, L;,Lg)Lz(O!a;X[J,)

holdfor f, g € K2(0, a; xH).

ProPOSITION 2.2. Thefollowing holds:

(i) Ifs =1, H5(0, a; x*) is embedded continuously in L2(0, a; x*~%) for any § with
d<landé < pu—+1.

(i) Ifs=>1andl < r < +oo, H¥(0, a; x9) is embedded continuously in L (0, a) N
C*~1((0, a)). For u € H*(0, a; x°)

(22) |M|L’(0,a;xk) § C |M|H5(0!a;XO) s k z 0,

where C dependson r, a and isindependent of s.

PROOF. Thefirst partisseenin[Yal], LemmaZ2.1. We prove the second part. First let
r = +oo0. It followsfrom [A] that

a a
sup f()?=C ( f xf(x)%dx + / xf’(x)zdx) :
x€(0,a) 0 0

which implies that H1(0, a; x°) is continuously embedded in L>°(0, a; x9). It is clear by
the Sobolev lemma that H*(0, a; x°) is continuously embedded in C*~1((0, a]). The case
r < +ooisclear from |f|r < C|flr~. (2.2) for k > 0 follows from the inequality
|”|L"(O,a;xk) = ak|M|L’(0,a;xo) U

COROLLARY 2.1. Lets 21andk = 0. Let1 < r < +o0. For u € H*(£2; x*) we
have

(2.3 [ulpr(@ixntiy = C lulms(@;amy »
( )

where C dependsonr, u, a andisindependent of s, 7.
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LEMMA 2.1 ([Yal]). Foru e HJ(0,a;x")
|l 20,010y = @ |0xtt| 1200 4:xnt1y -

Thisis the Poincaré type inequality in H}(0, a; x™).
2.2. Eigenvalue Problemfor L,,. We shall consider the eigenvalue problemfor L ,:

Ligp(x)=2¢x), xe€(0a),

(2.9
¢(a)=0.
Then we obtain the eigenvalues and the corresponding eigenfunctions (see [Yal], section 3)

2
. M () = 1 Ju(pj/x/a)
T Au+Da aa(uy)  xi?

9

where j € N. Here{u; : j € N} isthe set of al positive zero points of the p.-order Bessel
function J, (x) with

1< p2 <.

For the Bessel functions and their zero points, see[T] and [W].

PropPosITION 2.3 ([Yal]). {¢;}isCONSin L?(0, a; x*) and a complete and orthog-
onal systemin H(0, a; x*).

3. Formulation of Theorem

In this section we shall consider IBVP

atzu(x, )+ Lu(x,t)+ f(x,u(x,t)) =0, (x,1) €82,
P u(a,t) =0, re(71),
M(X,O)=¢(X), 8t”(x’0)=‘ﬁ(x)’ xe(07a)7

and we shall show the existence of time-global wesk solutions of (P) that lie in the potential
well. To formulate our theorem we shall define aweak solution and the potential well for (P)
and study its properties.

Weak Solutions. We define aweak solution of (P) as follows. Let ¢ € H}(0, a; x°%)
and ¥ e L?%(0,a;x%. Let Y be a space of test functions whose elements ¢ belong to
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H}(£2; x%) and satisfy ¢(x,7) = Oneart = T for any x € (0,a). We call u a weak so-
lution of (P) if u € H}($2; x®) and the following identities hold:

/(—8tu(x,t)8,§(x,t)—xaxu(x,t)axg(x,t)
Q2
3.1 4+ f(x,u(x,1)¢(x, t))dxdt
Z/o Y(x) ¢(x, 0)dx,
/ (u(x, 1) 0,C(x, 1) + du(x, )¢ (x, t))dxdt
2

(3.2) .
= —/0 ¢ (x)¢(x, 0)dx

forany ¢ e Y. If u isof C? and aweak solution of (P), then u isthe classical solution.
The Potential Well for (P). We denote the potential of f by

i
F(x.y) =/0 Fx. p)dp.

We shall define the potential energy J (v) for v € HZ(0, a; x% and the kinetic energy
K (w) for w € H}(£2; x°) of our problem:

(3.3 J(v) = / <%xv'(x)2+ F(x, v(x)))dx
0
forv e Hol(O, a: x9), and
a 1 2
(3.4) K(w) = / 5 @rw(x. 0)%dx
0

for w € H3($2; x%). Clearly J(0) = 0.
Let £(u, v) be denoted by

(35) E(u,v) = % / v(x)%dx + J (u).

0
Thetotal energy E(¢; u) of the solutionu € H&(Q; x0) of (P) isdefined by
(3.6) E(tiu) = E@(.0),%u(,0) = K@, 0) + Ju(,1).

PropPOsSITION 3.1. Assumethat f(x, u) iscontinuousin (x, u) € [0, a] x RL}. Then
J () is continuousin H}(0, a; x9).
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PROOF. Let {u;} be asequence of H}(0, a; x%) tendingto u as j — +oo. Thenitis
clear that
(3.7) |ﬁ8x(uj —)|1200,4:20) > 0, j — +00.

Next we see, by the mean value theorem,

a a 1
/ (F(x,uj)— F(x,u)dx = / / fO,0u;+ QA —=0u)(u; —u)dbdx .
0 0 JO

Sinceu j(x), u(x) areuniformly boundedin (0, a) by Proposition 2.2 (ii), f (x, Qu j+(1—0)u)
isalso uniformly bounded in (0, a). From this and the Schwarz inequality we see

(3.8 / (F(x,uj) — F(x,u)dx - 0, j— 4o00.
0

By (3.7) and (3.8) the conclusion holds. |
We assume the following conditions on the outer force f and its potential F'.

(A)  f(x,u)isof Cl-classin (x,u) € [0, a] x R} and monotone decreasinginu € RY, and

satisfies

(39 —Colu|”*t S uf(x,u) £ —Clu|P*,

(3.10) yf(x,u)u—F(x,u) <M

forany x € [0,a] andu € RY. Herey € (0,1/2) and M, Co, C > O areconstantsand p > 1.

It follows from (A) that f (x, u) hasthe zero point of p-order at u = 0. We have f and
F of theform

(3.11) Foou) = ulPYuh(e,u)y, FG,u) =ulP ™ Hx, ),

where p > 1, h(x,u) and H(x,u) are continuous in u € R} \ {0} and satisfy —Cp <

h(x,u) < —C and—% <H(x,u) < —ﬁ in[0,a] x RL.

ExampPLE 3.1. Asatypica example of f we take
fx,u)= —A(x)u3.
Here A(x) isapositive C* function, and its derivative is bounded in (0, a].

ExamMPLE 3.2. Asanother typical example of f we take

S uw) = —lul”
for p > 1.
LEMMA 3.1. Assume (A). Then there exists a neighborhood V of v = 0 such that
J(v) 2 C|v|§11(0a_xo) with a certain constant C > Ofor all v € V.
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PROOF. For brevity we write | - | g1(0,4:,0) DY | - |g1. Noting that sup, ¢ g 4 [v(x)| =
C |v| 1 by Proposition 2.2 (ii), we have

sup [H(x, v(x))| = M(Jv|g1),
x€(0,a]

where M (s) is a continuous monotone increasing function of s € [0, +00) and hence, for
p>1

/a [F(x, v(x))|dx = / )P H (x, v(x))| dx
0 0

§M(|v|H1)/ )P+ dx
0

+1
< eM(Jvl ) 0,

where ¢ is a positive constant. Here we have used Proposition 2.2 (ii) in the last stage. Using
Lemma?2.1, we have

= 1
J() 2 C vl — eM(vlga) [vlb it = Cluf,

aslongasv € V = {v; eM[v|’;" < ¢} for p > land e > Ois suitably small. Thus the
proof is complete. m]

LEMMA 3.2. Assume (A). Letu € Hol(O,a; x9 \ {0}. Then J(ix) is monotone in-
creasingin A = 0inaneighborhood of » = 0.

ProoF. It followsthat

(3.12) %J(x u) = /a(xxu’(x)z + F(x, du(x)u(x))dx .
0

Using (A), we can prove %J(A u) > 0for smal A > 0 by the similar argument as in the
proof of Lemma3.1. This shows the conclusion. |

Now according to [Sat] with nonlinear wave equation, we shall define the potential well
for (P) around the originu = 0. Letu # 0in H}(0, a; x°) be fixed. Consider J(u) asa
function of A > 0. Then from (A), we have J (Au) isof C1-classin A > 0 and from Lemma
3.2, J(Au) ismonactone increasing in A in a neighborhood of » = 0. Let A = Ag(#) > O be
thefirst value of A at which J (\u) starts to decrease strictly. By (3.9) we have Ao(u) < +o0.
Let us define

(3.13) d= inf J(ho(w)u) .
ueHE(0,a;x9)\{0}

From (A), Lemmas 3.1 and 3.2 we seethat 0 < d < +o0. Let us define the potential well W
by
(3.14) W ={ueH}O a;x° 0 J0w) <d, 0< 1 <1},
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d is called the depth of the potential well W.
PROPOSITION 3.2. W isbounded and openin H3(0, a; x°).

PROOF. First we shall show that W is bounded. The proof is done similarly to [Sat],
p.161 and p.163. Let u € W. Then u satisfies

(3.15) J(u) = /a (% )m’(x)z + F(x, u(x)))dx <d.
0

Since J (Au) ismonotoneincreasing in A € [0, 1] from the definition of the potential well, we
have

(3.16) ;—AJ(M)hzl = /a(xu'(x)z + f(x, u(x)u(x))dx = 0.
0
Hence it follows from (3.15), (3.16) and (A) that

}/a xu'(x)%dx < d — /a F(x, u(x))dx
2 Jo 0

sd +/ (f (e, u(x))u(x) — F(x, u(x)))dx
0

a
+/0 (=yf (e u(x))u(x))dx
a
§d+aM+)// xu'(x)%dx .
0
Sincey < 1/2, we have, by the Poincaré inequality in Lemma2.1
(3.17) |”|H1(0,a;x0) < M,

where M isindependent of u. This proves the boundedness of W.
Second we shall show that W isopen. Let vg € W be arbitrarily fixed. Then we see that

J(hv) < d

for A € [0, 1] and J (A vg) is monotone increasing in A € [0, 1]. We shall show that there
exists an open ball B(r; vg) with center vg and radius r such that B(r; vg) € W. We prove
this by contradiction. Assume the contrary. Then we can take {r;} tendingto O as j — +oo
such that there existsu ; € B(r;; vo) satisfyingu; ¢ W. Then

Jwj)2d.
Since {u;} convergesto vg, we have, by the continuity of J(u) inu,
Jwj)— J(vo), Jj— +00.

Hence we get J (vg) = d. Thisisthe contradiction. O
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Main Theorem. We assume the following conditions on the initial data ¢, .
(B) Letp € Wandy e L2(0, a; x0). ¢ and y satisfy the following condition

(3.18) /0 {% (W (x)? +x¢' ()% + F(x, ¢><x>)}dx <d.

Our result reads as follows.

MAIN THEOREM. Assume (A) and (B). Then IBVP (P) has a weak solution u €
H}($2; x0) satisfyingu(-, 1) € W for all t € (0, T).

REMARK 3.1. Clearly the energy of the above solution u is conserved
E(t;u) = E(O;u) = E(¢, ¥)

forr € (0, 7).

4. Proof of Main Theorem

4.1. Approximate Solutionsof (P). We shall construct approximate solutions of (P)
by using the Galerkin method. Since ¢ € H(0, a; x%) and v € L?(0, a; x©), we can expand
¢ and v into the Fourier series

o0
¢=> ai¢i in H0O a:x%,

i=1
W= ib»¢>- in L2(0,a; x°
i=1

wherea; = (¢, ¢i) andb; = (Y, ¢i), i=12,....
We define a sequence of approximate solutions of the form

m

(1) = Y al (1) i (x)

i=1
that satisfy
(4.2) (32U + Lt + f(x um). pp) =0, k=1,....m
with theinitial condition
(4.2 Um0 =ap . dum(-,0) =By .

Here a,, (x) and B, (x) are of theform

(4.3) () =Y aigi(x), Bulx) =) bigi(x).
i=1 i=1
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(4.1)—4.2) is IVP to a system of second-order ODEs with unknown functions
ai'(t),...,an(t). Notethat

(4.9 lom — dlg10,.a:x0 = O 1Bm — Vlr20,4:x0 = O

asm — +00.

PropPosITION 4.1. Assume (A) and (B). Then there exists mg € N such that for any
m 2 mg the following holds:

(i) 1VP (4.1)~(4.2) hasaunique solution u, (-, 1) € C2([0, T, H}(0, a; x9)),

(i) wum(-,t) e Wiort € (0, 7).

PROOF. Since f(x,u) is of CY, (f(x,un),¢x) is localy Lipschitz continuous in
(af',....a}). Therefore IVP (4.1)«(4.2) has alocal solution in someinterval [0, Top).
We shall show that the energy of u,, satisfies

(4.5 E(t;uy) <d
for al ¢+ € (0, Tp) and sufficiently large m. Note that from Lemma 3.1 E(t; u,,) = Oina

neighborhood V of u = 0. Multiplying (4.1) by ;" and summing up from k = 1 to m, we
have

(afzum + Luy + f(x, upm), drum) =0,
which implies that
d [*(1 5 2
— = @rum (x, 1) + x(Oxum(x, 1)) + F(x, up(x,1)) pdx = 0.
dt Jo |2
Integrating this with respect to ¢ from O to ¢, we get

(4.6) / {%(a,umu, 02+ x @t (x, 1)) 4+ F(x, tp (x, r))}dx
0

= / [% (Bn ()% + x (Bxotm ()%) + F(x,am(x»}dx.
0
Then, it follows from (3.18) in (B) and (4.4) that there exists mq such that for m = mg
(4.7) f {% (B () + x (Byom (x))?) + F(x, a (x))}dx <d.
0

Therefore we conclude from (4.6)—(4.7) that (4.5) istrue.

We shall show that the solution exists globally inz € (0, 7). We note that the initial
data satisfies E(0; u,,) < d. Then let Ty be the supremum of ¢ such that the solution u,,, (-, t)
existsfor ¢ € (0, 71). We shall show that 71 = T. Assume the contrary i.e.,, Ty < T. Since

um (-, B) satisfies (4.6), u, (-, 1) belongs to W for al + € (0, 2]. Replacing the data by
{tm (-, ), 8w (-, )}, we conclude that the corresponding (approximated) solution u, (-, t)
can be extended into the interval [%, Ty + %]. Therefore the solution can be extended over
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T1. Since T1 is the supremum of the existence time, this shows the contradiction. Therefore
IVP (4.1)—(4.2) hasaglobal solutionin (0, T).

We shall show that u,,(-,t) € W fort € (0, T). Notethat J (u,, (-, t)) iscontinuousin ¢
by Proposition 3.1 and ¢ € W by (B). Let 11 be the supremum of z such that u,, (-, t) belongs
to W. Since u,,(-,0) = ay, belongsto W, wehaver; € (0, T]. Thisshows u,,(-,t) € W
foral r € (0,¢1). We shal show 17, = T. Assume the contrary i.e,, 11 < T. Since W
is open in Hg (0, a; x°) by Proposition 3.2, we have u,, (-, 1) ¢ W by the continity of J.
Hence there exists Ao € [0, 1] such that J (Ao u,n (-, 1)) = d. On the other hand we have
im0 J(houm(-, 1)) = J(houn(-, t1)), and since J (A u, (-, 1)), t € (0, t1) is monotone
increasing with respect to A, we have J (Lo um (-, 1)) < J(un(-, 1)) < d. Combining these
facts, we have

Joum(-, 1)) = t_|>izr1n_o Joum(-, 1)

< lim OJ(um(-, 1) =Jun(, 1) <d.

T t—>t—

Here we have the last inequality, since J (u,, (-, t)) < d holdsfor all + € (0, T) from (4.5).
Thus the contradiction arises. ]

We shall proceed to extract a subsequence of {u,,} that tends to the weak solution of (P).
We write the subsequence as {u,, }, taking subsequences step by step.

LEMMA 4.1. Assume (A) and (B). Then there exist a subsequence of {u,, }, again writ-
tenas{u,}, andu € H}(£2; x% such that

(1) lum —ulp2i.0 — 0,

(i) [(Lum, )+ (x dcu, 3c¢)| — 0 for any ¢ € H}($2; x0)
asm — +00.

PROOF. Sinceu,, € W and satisfies (4.6), similarly to the proof of Proposition 3.2, we
have

/ (@t (x, )% + x @yt (¥, )% + 1w (x, )P)dx < My
0
Integrating thisinequality with respect to ¢ over [0, T'], we obtain

(4.8 / (Bt (x, )2 4 X @yt (x, )% + up (x, )%)dxdt < MiT .
2

This means that {u,,} is bounded in H(s2; x°). Since every bounded set in H}($2; x°) is
compact in L2(£2; x%) by Proposition 4.1 in [Ya-Na-Ma], we see that there exists a subse-
quence of {u,,}, again written as {u,,}, and u € L2(£2; x°) such that

| — ”|L2(.Q;x0) -0, m— +o0o.

This proves the assertion (i). It follows from (4.8) that we can extract a subsequence of {u,,}
that converges weakly in H3(£2; x°). Therefore u belongsto H3(£2; x9).
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In order to show the assertion (ii), we have only to note that {\/x 9, u,,} is bounded in
L2(£2; x%). Hence {(Lu,,, ¢)} is bounded so that by Proposition 2.1 (i), we can extract a
subsequence of {(Luy, ¢)} that convergesto —(x dyu, 3,¢) for any ¢ € H(82; x0). O

4.2. Weak Solutions. We shall show that the function « in Lemma 4.1 is a weak
solution of (P). Wefirst prove (3.1). Let&(x, 1) = n(t) ¢ (x) € Hy(2; x0) fork =1,...,m,

where 5 is of €2 in [0, T'] and vanishes near a neighborhood of + = T. Then we see, from
(4.2,

/ (02um + Lum + f(x, up))édxdt = 0.
2
Then we have, integrating by parts,

/Q(—a,um(x, 1) 0;E(x,t) + Luy (x, )E(x, t))dxdt
(4.9

:/a ,Bm(x)é(x,O)dx—/ S, um(x, )E(x, H)dxdt .
0 2

Lettingm — 400 in (4.9), we see from Lemma 4.1 that (3.1) holds for any & above. In fact,
Lemma4.1 (i) means

/ Luy,édxdt — —/ X0xu 0y Edxdt, m — +00.
2 2
Integrating [Q Ot (x, 1) 3;£(x, t)dxdt by partsint, we have

f it (x, D€ Cx, Ndxdr
2
= /d Um(x,0)0:E(x,0) dx — / U (x, t)8,2§(x, t)dxdt
0 2
— /“ ¢ (x)0:&(x, 0)dx —/ u(x, t)8t2§(x, t) dxdt
0 2

:/ oru(x,t)o&E(x, t)dxdt .

2

We shall show

(4.10) /f(x,um)gdxdt—>/ f(x,u)édxdtr .
2 2

Since a subsequence of {u,, (x, t)}, written as {u,, (x, t)} again, converges to u(x, t) almost
everywhere, f(x, u,;,(x, 1)) aso convergesto f(x, u(x, t)) amost everywhere. By u,, € W
int € (0, T) we have, similarly to the proof of (3.17), [um (-, )] 1(0.4:x9) < Mpfort € (0, T),
where Mg isindependent of ¢. Hence using Proposition 2.2 (ii), we have

(411) Iunl(-xs t)| é Cc |un1('1 t)|Hl(0,a;xo) § C MO



556 JAIPONG WONGSAWASDI AND MASARU YAMAGUCHI

for any (x, ) € £2. Therefore { f (x, u,, (x, t))} isuniformly bounded in £2. Hence using the
L ebesgue bounded convergence theorem, we obtain (4.10). Thus, letting m — o0 in (4.9)
we have (3.1) for & = n(t) ¢dr(x).

Let Z be the set of the linear combinations Zizl nk(7) ¢ (x), where n; are of C2 and
vanish near a neighborhood of + = T'. Then we have (3.1) forany & € Z. Since Z isdensein
Y, we have (3.1) for ¢ € Y. We can show (3.2) in the same way. Thus u is the weak solution
of (P).
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