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Abstract. In this paper we treat the intersection of fixed point subgroups by the involutive automorphisms
of exceptional Lie group G = F4, E6, E7. We shall find involutive automorphisms of G such that the connected
component of the intersection of those fixed point subgroups coincides with the maximal torus of G.

1. Introduction

It is known that the involutive automorphisms of the compact Lie groups play an impor-
tant role in the theory of symmetric space (c.f. Berger [1]). In [8], [9] Yokota showed that
the exceptional symmetric spaces G/H are realized definitely by calculating the fixed point
subgroup of the involutive automorphisms γ̃ , γ̃ ′, σ̃ , σ̃ ′, ι̃ of G, where γ̃ , γ̃ ′, σ̃ , σ̃ ′ are induced
by R-linear transformations γ, γ ′, σ, σ ′ of J and ι̃ is induced by C-linear transformation ι of

JC . Here γ, γ ′ ∈ G2 ⊂ F4 ⊂ E6 ⊂ E7 and σ, σ ′ ∈ F4 ⊂ E6 ⊂ E7 and ι ∈ E7. For
the cases of the graded Lie algebras g of the second kind and third kind, the corresponding
subalgebras g0, gev, ged of g are realized as the intersection of those fixed point subgroups
of the commutative involutive automorphisms ([3], [6], [7], [10], [11], [12]).

In [2], [4], [5] we determined the intersection of those fixed point subgroups of the
involutive automorphisms of G when G is a compact exceptional Lie group. We remark that
those intersection subgroups are maximal rank of G.

In general, let G be a connected compact Lie group and σ1, σ2, . . . , σm commutative
involutive elements of G. Set Gσ1,σ2,...,σk = {α ∈ G | σiα = ασi, i = 1, . . . , k}. We
expect that the group Gσ1,σ2,...,σk is a maximal rank subgroup of G. Consider the following
degreasing sequence of subgroups of G:

Gσ1 ⊃ Gσ1,σ2 ⊃ · · · ⊃ Gσ1,...,σm .

Let T l be the maximal tours of G. In this paper we would like to find σ1, σ2, . . . , σm such
that the connected component subgroup (Gσ1,σ2,...,σk )0 of the group Gσ1,σ2,...,σk is isomorphic
to T l when G is simply connected compact exceptional Lie groups G2, F4, E6 or E7. For the
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case G = G2, we prove that the group ((G2)
γ,γ ′

)0 ∼= T 2 by [5], Theorem 1.1.3. Then we
shall prove the following:

(1) ((F4)
γ,γ ′,σ,σ ′

)0 ∼= T 4 ,

(2) ((E6)
γ,γ ′,σ,σ ′

)0 ∼= T 6 ,

(3) ((E7)
γ,γ ′,σ,σ ′,ι)0 ∼= T 7 .

For the case G = E8, we conjecture that the group ((E8)
γ,γ ′,σ,σ ′,υ3)0 ∼= T 8, where υ3 ∈ E8

(As for υ3, see [3]).

2. Group F4

The simply connected compact Lie group F4 is given by the automorphism group of the
exceptional Freudenthal algebra J :

F4 = {α ∈ IsoR(J) | α(X × Y ) = αX × αY } .

We shall review the definitions of R-linear transformations γ, γ ′, σ, σ ′ of J([8], [10],
[12]).

Firstly we define R-linear transformations γ, γ ′ and γ1 of JC ⊕ M(3, C) = J by

γ (X + M) = X + γ (m1, m2, m3) = X + (γ m1, γ m2, γ m3) ,

γ ′(X + M) = X + γ ′(m1, m2, m3) = X + (γ ′m1, γ
′m2, γ

′m3) ,

γ1(X + M) = X̄ + M̄, X + M ∈ JC ⊕ M(3, C) = J ,

respectively, where JC = {X ∈ M(3, C) | X∗ = X}, the right-hand side transformations

γ, γ ′ : C3 → C3 are defined by

γ




 n1

n2

n3




 =


 n1

−n2

−n3


 , γ ′




 n1

n2

n3




 =


−n1

n2

−n3


 , ni ∈ C .

Then γ, γ ′, γ1 ∈ G2 ⊂ F4, and γ 2 = γ ′2 = γ1
2 = 1.

Further we define R-linear transfomations σ and σ ′ of JC ⊕ M(3, C) = J by

σ(X + M) = σX + (m1,−m2,−m3) ,

σ ′(X + M) = σ ′X + (−m1,−m2, m3) , X + M ∈ JC ⊕ M(3, C) = J ,

respctively, where the right-hand side transformations σ, σ ′ : JC → JC are defined by

σX = σ


 ξ1 x3 x̄2

x̄3 ξ2 x1

x2 x̄1 ξ3


 =


 ξ1 −x3 −x̄2

−x̄3 ξ2 x1

−x2 x̄1 ξ3


 , σ ′X =


 ξ1 x3 −x̄2

x̄3 ξ2 −x1

−x2 −x̄1 ξ3


 .
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Then σ, σ ′ ∈ F4 and σ 2 = σ ′2 = 1.
The group Z2 = {1, γ1} acts on the group U(1) × U(1) × SU(3) by

γ1(p, q,A) = (p̄, q̄, Ā) .

Hence the group Z2 = {1, γ1} acts naturally on the group (U(1) × U(1) × SU(3))/Z3.

Let (U(1) × U(1) × SU(3)) · Z2 be the semi-direct product of those groups under this
action.

Hereafter, ω1 denotes −1

2
+

√
3

2
e1 ∈ C.

PROPOSITION 2.1. (F4)
γ,γ ′ ∼= ((U(1) × U(1) × SU(3))/Z3) · Z2, Z3 = {(1, 1, E),

(ω1, ω1, ω1E), (ω1
2, ω1

2, ω1
2E)}.

PROOF. We define a mapping ϕ4 : (U(1) × U(1) × SU(3)) · Z2 → (F4)
γ,γ ′

by

ϕ4((p, q,A), 1)(X + M) = AXA∗ + D(p, q)MA∗ ,

ϕ4((p, q,A), γ1)(X + M) = AX̄A∗ + D(p, q)M̄A∗ ,

X + M ∈ JC ⊕ M(3, C) = J ,

where D(p, q) = diag(p, q, p̄q) ∈ SU(3). Then ϕ4 induces the required isomorphism (see
[5] for details). �

LEMMA 2.2. The mapping ϕ4 : (U(1) × U(1) × SU(3)) · Z2 → (F4)
γ,γ ′

satisfies

σ = ϕ4((1, 1, E1,−1), 1) , σ ′ = ϕ4((1, 1, E−1,1), 1) ,

where E1,−1 = diag(1,−1,−1), E−1,1 = diag(−1,−1, 1) ∈ SU(3).

We denote U(1) × · · · × U(1), (1, . . . , 1) and (ωk, . . . , ωk) (l-times) by U(1)×l , (1)×l

and (ωk)
×l , respectively.

Now, we determine the structures of the group (F4)
γ,γ ′,σ,σ ′ = ((F4)

γ,γ ′
)σ,σ ′

.

THEOREM 2.3. ((F4)
γ,γ ′,σ,σ ′

)0 ∼= U(1)×4.

PROOF. For α ∈ (F4)
γ,γ ′,σ,σ ′ ⊂ (F4)

γ,γ ′
, there exist p, q ∈ U(1) and A ∈ SU(3)

such that α = ϕ4((p, q,A), 1) or α = ϕ4((p, q,A), γ1) (Proposition 2.1). For the case of
α = ϕ4((p, q,A), 1), by combining the conditions of σασ = α and σ ′ασ ′ = α with Lemma
2.2, we have

ϕ4((p, q,E1,−1AE1,−1), 1) = ϕ4((p, q,A), 1)

and

ϕ4((p, q,E−1,1AE−1,1), 1) = ϕ4((p, q,A), 1) .
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Hence

(i) E1,−1AE1,−1 = A , (ii)




p = ω1p

q = ω1q

E1,−1AE1,−1 = ω1A ,

(iii)




p = ω1
2p

q = ω1
2q

E1,−1AE1,−1 = ω1
2A

and

(iv) E−1,1AE−1,1 = A , (v)




p = ω1p

q = ω1q

E−1,1AE−1,1 = ω1A ,

(vi)




p = ω1
2p

q = ω1
2q

E−1,1AE−1,1 = ω1
2A .

We can eliminate the case (ii), (iii), (v) or (vi) because p 
= 0 or q 
= 0. Hence we have
p, q ∈ U(1) and A ∈ S(U(1)×U(1)×U(1)). Since the mapping U(1)×U(1) → S(U(1)×
U(1) × U(1)),

h(a1, a2) = (a1, a2, a1a2)

is an isomorphism, the group satisfying with the conditions of case (i) and (iv) is

(U(1)×4)/Z3. For the case of α = ϕ4((p, q,A), γ1), from ϕ4((p, q,A), γ1)=ϕ4((p, q,A),

1)γ1, ϕ4((1, 1, E1,−1), 1)γ1 = γ1ϕ4((1, 1, E1,−1), 1) and ϕ4((1, 1, E−1,1), 1)γ1 = γ1ϕ4((1,

1, E−1,1), 1) , this case is in the same situation as above. Thus we have (F4)
γ,γ ′,σ,σ ′ ∼=

((U(1)×4)/Z3) · Z2, Z3 = {(1)×4, (w1)
×4, (w1

2)×4}. The group (U(1)×4)/Z3 is naturally

isomorphic to the torus U(1)×4, hence we obtain (F4)
γ,γ ′,σ,σ ′ ∼= (U(1)×4) · Z2. Therefore

we have the required isomorphism of the theorem. �

3. The group E6

The simply connected compact Lie group E6 is given by

E6 = {α ∈ IsoC(JC) | αX × αY = τατ(X × Y ), 〈αX, αY 〉 = 〈X,Y 〉} .

R-linear transformations γ, γ ′, γ1, σ and σ ′ of J = JC⊕M(3, C) are naturally extended

to the C-linear transformations of γ, γ ′, γ1, σ and σ ′ of JC = (JC)C ⊕ M(3, C)C . Then we
have γ, γ ′, γ1, σ, σ ′ ∈ E6.

The group Z2 = {1, γ1} acts on the group U(1) × U(1) × SU(3) × SU(3) by

γ1(p, q,A,B) = (p̄, q̄, B̄, Ā) .

Hence the group Z2 = {1, γ1} acts naturally on the group (U(1)×U(1)×SU(3)×SU(3))/Z3.
Let (U(1) × U(1) × SU(3) × SU(3)) · Z2 be the semi-direct product of those groups

under this action.

PROPOSITION 3.1. (E6)
γ,γ ′ ∼= ((U(1) × U(1) × SU(3) × SU(3))/Z3) · Z2, Z3 =

{(1, 1, E,E), (ω1, ω1, ω1E,ω1E), (ω1
2, ω1

2, ω1
2E,ω1

2E)}.
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PROOF. We define a mapping ϕ6 : (U(1) × U(1) × SU(3) × SU(3)) · Z2 → (E6)
γ,γ ′

by

ϕ6((p, q,A,B), 1)(X + M) = h(A,B)Xh(A,B)∗ + D(p, q)Mτh(A,B)∗ ,

ϕ6((p, q,A,B), γ1)(X + M) = h(A,B)X̄h(A,B)∗ + D(p, q)M̄τh(A,B)∗ ,

X + M ∈ (JC)C ⊕ M(3, C)C = JC .

Here D(p, q) = diag(p, q, pq) ∈ SU(3) and h : M(3, C) × M(3, C) → M(6, C)C is
defined by

h(A,B) = A + B

2
+ i

A − B

2
e1 .

Then ϕ6 induces the required isomorphism (see [5] for details). �

LEMMA 3.2. The mapping ϕ6 : (U(1) × U(1) × SU(3) × SU(3)) · Z2 → (E6)
γ,γ ′

satisfies

σ = ϕ6((1, 1, E1,−1, E1,−1), 1), σ ′ = ϕ6((1, 1, E−1,1, E−1,1), 1) .

The group Z2 = {1, γ1} acts on the group U(1)×6 by

γ1(p, q, a1, a2, a3, a4) = (p̄, q̄, ā3, ā4, ā1, ā2) .

Let (U(1)×6) · Z2 be the semi-direct product of those groups under this action.

Now, we determine the structures of the gruop (E6)
γ,γ ′,σ,σ ′ = ((E6)

γ,γ ′
)σ,σ ′

.

THEOREM 3.3. ((E6)
γ,γ ′,σ,σ ′

)0 ∼= U(1)×6.

PROOF. For α ∈ (E6)
γ,γ ′,σ,σ ′ ⊂ (E6)

γ,γ ′
, there exist p, q ∈ U(1) and A,B ∈ SU(6)

such that α = ϕ6((p, q,A,B), 1) or α = ϕ6((p, q,A,B), γ1) (Proposition 3.1). For the case
of α = ϕ6((p, q,A,B), 1), by combining the conditions σασ = α and σ ′ασ ′ = α with
Lemma 3.2, we have

ϕ6((p, q,E1,−1AE1,−1, E1,−1BE1,−1), 1) = ϕ6((p, q,A,B), 1)

and

ϕ6((p, q,E−1,1AE−1,1, E−1,1BE−1,1), 1) = ϕ6((p, q,A,B), 1) .

Hence

(i)

{
E1,−1AE1,−1 = A

E1,−1BE1,−1 = B ,
(ii)




p = ω1p

q = ω1q

E1,−1AE1,−1 = ω1A

E1,−1BE1,−1 = ω1B ,

(iii)




p = ω1
2p

q = ω1
2q

E1,−1AE1,−1 = ω1
2A

E1,−1BE1,−1 = ω1
2B
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and

(iv)

{
E−1,1AE−1,1 = A

E−1,1BE−1,1 = B ,
(v)




p = ω1p

q = ω1q

E−1,1AE−1,1 = ω1A

E−1,1BE−1,1 = ω1B ,

(vi)




p = ω1
2p

q = ω1
2q

E−1,1AE−1,1 = ω1
2A

E−1,1BE−1,1 = ω1
2B .

We can eliminate the case (ii), (iii), (v) or (vi) because p 
= 0 or q 
= 0. Thus we have
p, q ∈ U(1) and A,B ∈ S(U(1)×3). Since the mapping U(1)×4 → S(U(1)×5),

h(a1, a2, a3, a4) = (a1, a2, a3, a4, a1a2a3a4)

is an isomorphism, the group satisfying with the conditions of case (i) and (iv) is

(U(1)×6)/Z3. For the case of α = ϕ6((p, q,A,B), γ1), from ϕ6((p, q,A,B), γ1) =
ϕ6((p, q,A,B), 1)γ1, ϕ6((1, 1, E1,−1, E1,−1), 1)γ1 = γ1ϕ6((1, 1, E1,−1, E1,−1), 1) and
ϕ6((1, 1, E−1,1, E−1,1), 1)γ1 = γ1ϕ6((1, 1, E−1,1, E−1,1), 1), this case is in the same situ-

ation as above. Thus we have (E6)
γ,γ ′,σ,σ ′ ∼= ((U(1)×6)/Z3) · Z2, Z3 = {(1)×6, (w1)

×6,

(w1
2)×6}. The group (U(1)×6)/Z3 is naturally isomorphic to the torus U(1)×6, hence we

obtain (E6)
γ,γ ′,σ,σ ′ ∼= (U(1)×6) · Z2. Therefore we have the required isomorphism of the

theorem. �

4. Group E7

Let PC = JC ⊕ JC ⊕ C ⊕ C. The simply connected compact Lie group E7 is given by

E7 = {α ∈ IsoC(PC) | α(P × Q)α−1 = αP × αQ, 〈αP, αQ〉 = 〈P,Q〉} .

Under the identification (PC)C ⊕ (M(3, C)C ⊕ M(3, C)C) with PC : ((X, Y, ξ, η),

(M,N)) = (X + M,Y + N, ξ, η), C-linear transformations of γ, γ ′, γ1, σ and σ ′ of JC are

extended to C-linear transformations of PC as

γ (X + M,Y + N, ξ, η) = (X + γM, Y + γN, ξ, η) ,

γ ′(X + M,Y + N, ξ, η) = (X + γ ′M,Y + γ ′N, ξ, η) ,

γ1(X + M,Y + N, ξ, η) = (X̄ + M̄, Ȳ + N̄, ξ, η) ,

σ (X + M,Y + N, ξ, η) = (σX + σM, σY + σN, ξ, η) ,

γ (X + M,Y + N, ξ, η) = (σ ′X + σ ′M,σ ′Y + σ ′N, ξ, η) ,

where γM = diag(1,−1,−1)M, γ ′M = diag(−1,−1, 1)M, σM = Mdiag(1,−1,−1) and
σ ′M = Mdiag(−1,−1, 1).

Moreover we define a C-linear transformation ι of PC by

ι(X + M,Y + N, ξ, η) = (−iX − iM, iY + iN,−iξ, iη) .
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The group Z2 = {1, γ1} acts the group U(1) × U(1) × SU(6) by

γ1(p, q,A) = (p̄, q̄, (AdJ3)A) , J3 =
(

0 E

−E 0

)
.

Hence the group Z2 = {1, γ1} acts naturally on the group (U(1) × U(1) × SU(6))/Z3.
Let (U(1) × U(1) × SU(6)) · Z2 be the semi-direct product of those groups under this

action.

PROPOSITION 4.1. (E7)
γ,γ ′ ∼= ((U(1) × U(1) × SU(6))/Z3) · Z2, Z3 = {(1, 1, E),

(ω1, ω1, ω1E), (ω1
2, ω1

2, ω1
2E)}.

PROOF. We define a mapping ϕ7 : (U(1) × U(1) × SU(6)) · Z2 → (E7)
γ,γ ′

by

ϕ7((p, q,A), 1)P = f −1((D(p, q),A)(f P )) ,

ϕ7((p, q,A), γ1)P = f −1((D(p, q),A)(f γ1P)) , P ∈ PC .

Here D(p, q) = diag(p, q, p̄q) ∈ SU(3) and the mapping f is defined in [9], Section 2.4.
Then ϕ7 induces the required isomorphism (see [5] for details). �

LEMMA 4.2. The mapping ϕ7 : (U(1) × U(1) × SU(6)) · Z2 → (E7)
γ,γ ′

satisfies

σ = ϕ7((1, 1, F1,−1), 1) , σ ′ = ϕ7((1, 1, F−1,1), 1) ,

where F1,−1 = diag(1,−1,−1, 1,−1,−1), F−1,1 = diag(−1,−1, 1,−1,−1, 1) ∈ SU(6).

The group Z2 = {1, γ1} acts on the group U(1)×7 by

γ1(p, q, a1, a2, a3, a4, a5) = (p̄, q, ā4, ā5, ā1, ā2, ā3) .

Let (U(1)×7) · Z2 be the semi-direct product of those groups under this action.

Now, we determine the structures of the group (E7)
γ,γ ′,σ,σ ′,ι = ((E7)

γ,γ ′
)σ,σ ′,ι.

THEOREM 4.3. ((E7)
γ,γ ′,σ,σ ′,ι)0 ∼= U(1)×7.

PROOF. For α ∈ (E7)
γ,γ ′,σ,σ ′,ι ⊂ (E7)

γ,γ ′
, there exist p, q ∈ U(1) and A ∈ SU(6)

such that α = ϕ7((p, q,A), 1) or α = ϕ7((p, q,A), γ1) (Proposition 4.1). For the case of

α = ϕ7((p, q,A), 1), by combining the conditions σασ = α, σ ′ασ ′ = α and ιαι−1 = α

with Lemma 4.2, we have

ϕ7((p, q, F1,−1AF1,−1),1)=ϕ7((p, q,A),1), ϕ7((p, q, F−1,1AF−1,1),1)=ϕ7((p, q,A),1) .

and

ϕ7((p, q, Fe1AFe1
−1), 1) = ϕ7((p, q,A), 1) .

Hence

(i) F1,−1AF1,−1 = A , (ii)




p = ω1p

q = ω1q

F1,−1AF1,−1 = ω1A ,

(iii)




p = ω1
2p

q = ω1
2q

F1,−1AF1,−1 = ω1
2A ,
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(iv) F−1,1AF−1,1 = A, (v)




p = ω1p

q = ω1q

F−1,1AF−1,1 = ω1A ,

(vi)




p = ω1
2p

q = ω1
2q

F−1,1AF−1,1 = ω1
2A .

and

(vii) Fe1AFe1
−1 = A, (viii)




p = ω1p

q = ω1q

Fe1AFe1
−1 = ω1A ,

(ix)




p = ω1
2p

q = ω1
2q

Fe1AFe1
−1 = ω1

2A .

We can eliminate the case (ii), (iii), (v), (vi), (viii) or (ix) because p 
= 0 or q 
= 0. Thus we
have p, q ∈ U(1) and A ∈ S(U(1)×6). Since the mapping U(1)×5 → S(U(1)×6),

h(a1, a2, a3, a4, a5) = (a1, a2, a3, a4, a5, a1a2a3a4a5)

is an isomorphism, the group satisfying with the conditions of case (i), (iv) and (vii) is
(U(1)×7)/Z3. For the case of α = ϕ7((p, q,A), γ1), from ϕ7((p, q,A), γ1)=ϕ7((p, q,A),

1)γ1, ϕ7((1, 1, F1,−1), 1)γ1 = γ1ϕ7((1, 1, F1,−1), 1), ϕ7((1, 1, F−1,1), 1)γ1 = γ1ϕ7((1,

1, F−1,1), 1), and ϕ7((1, 1, Fe1), 1)γ1 = γ1ϕ7((1, 1, Fe1), 1), this case is in the same situation

as above. Thus we have (E7)
γ,γ ′,σ,σ ′ ∼= ((U(1)×7)/Z3) ·Z2, Z3 = {(1)×7, (w1)

×7, (w1
2)×7}.

The group (U(1)×7)/Z3 is naturally isomorphic to the torus U(1)×7, hence we obtain

(E7)
γ,γ ′,σ,σ ′,ι ∼= (U(1)×7) · Z2. Therefore we have the required isomorphism of the theo-

rem. �
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