The Intersection of Fixed Point Subgroups by Involutive Automorphisms of Compact Exceptional Lie Groups

Toshikazu MIYASHITA
Nagano Prefectual Komoro Senior high School
(Communicated by Y. Maeda)

Abstract

In this paper we treat the intersection of fixed point subgroups by the involutive automorphisms of exceptional Lie group $G=F_{4}, E_{6}, E_{7}$. We shall find involutive automorphisms of G such that the connected component of the intersection of those fixed point subgroups coincides with the maximal torus of G.

1. Introduction

It is known that the involutive automorphisms of the compact Lie groups play an important role in the theory of symmetric space (c.f. Berger [1]). In [8], [9] Yokota showed that the exceptional symmetric spaces G / H are realized definitely by calculating the fixed point subgroup of the involutive automorphisms $\tilde{\gamma}, \tilde{\gamma}^{\prime}, \tilde{\sigma}, \tilde{\sigma}^{\prime}, \tilde{\imath}$ of G, where $\tilde{\gamma}, \tilde{\gamma}^{\prime}, \tilde{\sigma}, \tilde{\sigma}^{\prime}$ are induced by \mathbf{R}-linear transformations $\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}$ of \mathfrak{J} and $\tilde{\iota}$ is induced by C-linear transformation ι of \mathfrak{J}^{C}. Here $\gamma, \gamma^{\prime} \in G_{2} \subset F_{4} \subset E_{6} \subset E_{7}$ and $\sigma, \sigma^{\prime} \in F_{4} \subset E_{6} \subset E_{7}$ and $\iota \in E_{7}$. For the cases of the graded Lie algebras \mathfrak{g} of the second kind and third kind, the corresponding subalgebras $\mathfrak{g}_{0}, \mathfrak{g}_{e v}, \mathfrak{g}_{e d}$ of \mathfrak{g} are realized as the intersection of those fixed point subgroups of the commutative involutive automorphisms ([3], [6], [7], [10], [11], [12]).

In [2], [4], [5] we determined the intersection of those fixed point subgroups of the involutive automorphisms of G when G is a compact exceptional Lie group. We remark that those intersection subgroups are maximal rank of G.

In general, let G be a connected compact Lie group and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ commutative involutive elements of G. Set $G^{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}}=\left\{\alpha \in G \mid \sigma_{i} \alpha=\alpha \sigma_{i}, i=1, \ldots, k\right\}$. We expect that the group $G^{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}}$ is a maximal rank subgroup of G. Consider the following degreasing sequence of subgroups of G :

$$
G^{\sigma_{1}} \supset G^{\sigma_{1}, \sigma_{2}} \supset \cdots \supset G^{\sigma_{1}, \ldots, \sigma_{m}} .
$$

Let T^{l} be the maximal tours of G. In this paper we would like to find $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ such that the connected component subgroup $\left(G^{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}}\right)_{0}$ of the group $G^{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}}$ is isomorphic to T^{l} when G is simply connected compact exceptional Lie groups G_{2}, F_{4}, E_{6} or E_{7}. For the
case $G=G_{2}$, we prove that the group $\left(\left(G_{2}\right)^{\gamma, \gamma^{\prime}}\right)_{0} \cong T^{2}$ by [5], Theorem 1.1.3. Then we shall prove the following:

$$
\begin{aligned}
& \text { (1) } \quad\left(\left(F_{4}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}}\right)_{0} \cong T^{4} \\
& \text { (2) } \quad\left(\left(E_{6}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}}\right)_{0} \cong T^{6} \\
& \text { (3) } \quad\left(\left(E_{7}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}, \iota}\right)_{0} \cong T^{7}
\end{aligned}
$$

For the case $G=E_{8}$, we conjecture that the group $\left(\left(E_{8}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}, v_{3}}\right)_{0} \cong T^{8}$, where $v_{3} \in E_{8}$ (As for v_{3}, see [3]).

2. Group F_{4}

The simply connected compact Lie group F_{4} is given by the automorphism group of the exceptional Freudenthal algebra \mathfrak{J} :

$$
F_{4}=\left\{\alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\}
$$

We shall review the definitions of \mathbf{R}-linear transformations $\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}$ of $\mathfrak{J}([8]$, [10], [12]).

Firstly we define \mathbf{R}-linear transformations γ, γ^{\prime} and γ_{1} of $\mathfrak{J}_{\mathbf{C}} \oplus M(3, \mathbf{C})=\mathfrak{J}$ by

$$
\begin{aligned}
\gamma(X+M) & =X+\gamma\left(\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}\right)=X+\left(\gamma \mathbf{m}_{1}, \gamma \mathbf{m}_{2}, \gamma \mathbf{m}_{3}\right), \\
\gamma^{\prime}(X+M) & =X+\gamma^{\prime}\left(\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}\right)=X+\left(\gamma^{\prime} \mathbf{m}_{1}, \gamma^{\prime} \mathbf{m}_{2}, \gamma^{\prime} \mathbf{m}_{3}\right), \\
\gamma_{1}(X+M) & =\bar{X}+\bar{M}, \quad X+M \in \mathfrak{J} \mathbf{C} \oplus M(3, \mathbf{C})=\mathfrak{J},
\end{aligned}
$$

respectively, where $\mathfrak{J}_{\mathbf{C}}=\left\{X \in M(3, \mathbf{C}) \mid X^{*}=X\right\}$, the right-hand side transformations $\gamma, \gamma^{\prime}: \mathbf{C}^{3} \rightarrow \mathbf{C}^{3}$ are defined by

$$
\gamma\left(\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)\right)=\left(\begin{array}{c}
n_{1} \\
-n_{2} \\
-n_{3}
\end{array}\right), \quad \gamma^{\prime}\left(\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)\right)=\left(\begin{array}{c}
-n_{1} \\
n_{2} \\
-n_{3}
\end{array}\right), \quad n_{i} \in \mathbf{C} .
$$

Then $\gamma, \gamma^{\prime}, \gamma_{1} \in G_{2} \subset F_{4}$, and $\gamma^{2}=\gamma^{\prime 2}=\gamma_{1}{ }^{2}=1$.
Further we define \mathbf{R}-linear transfomations σ and σ^{\prime} of $\mathfrak{J} \mathbf{C} \oplus M(3, \mathbf{C})=\mathfrak{J}$ by

$$
\begin{aligned}
\sigma(X+M) & =\sigma X+\left(\mathbf{m}_{1},-\mathbf{m}_{2},-\mathbf{m}_{3}\right), \\
\sigma^{\prime}(X+M) & =\sigma^{\prime} X+\left(-\mathbf{m}_{1},-\mathbf{m}_{2}, \mathbf{m}_{3}\right), \quad X+M \in \mathfrak{J}_{\mathbf{C}} \oplus M(3, \mathbf{C})=\mathfrak{J},
\end{aligned}
$$

respctively, where the right-hand side transformations $\sigma, \sigma^{\prime}: \mathfrak{J}_{\mathbf{C}} \rightarrow \mathfrak{J}_{\mathbf{C}}$ are defined by

$$
\sigma X=\sigma\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \sigma^{\prime} X=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & -\bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & -x_{1} \\
-x_{2} & -\bar{x}_{1} & \xi_{3}
\end{array}\right) .
$$

Then $\sigma, \sigma^{\prime} \in F_{4}$ and $\sigma^{2}=\sigma^{\prime 2}=1$.
The group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts on the group $U(1) \times U(1) \times S U(3)$ by

$$
\gamma_{1}(p, q, A)=(\bar{p}, \bar{q}, \bar{A})
$$

Hence the group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts naturally on the group $(U(1) \times U(1) \times S U(3)) / \mathbf{Z}_{3}$.
Let $(U(1) \times U(1) \times S U(3)) \cdot \mathbf{Z}_{2}$ be the semi-direct product of those groups under this action.

Hereafter, ω_{1} denotes $-\frac{1}{2}+\frac{\sqrt{3}}{2} e_{1} \in \mathfrak{C}$.
PROPOSITION 2.1. $\left(F_{4}\right)^{\gamma, \gamma^{\prime}} \cong\left((U(1) \times U(1) \times S U(3)) / \mathbf{Z}_{3}\right) \cdot \mathbf{Z}_{2}, \mathbf{Z}_{3}=\{(1,1, E)$, $\left.\left(\omega_{1}, \omega_{1}, \omega_{1} E\right),\left(\omega_{1}^{2}, \omega_{1}^{2}, \omega_{1}^{2} E\right)\right\}$.

Proof. We define a mapping $\varphi_{4}:(U(1) \times U(1) \times S U(3)) \cdot \mathbf{Z}_{2} \rightarrow\left(F_{4}\right)^{\gamma, \gamma^{\prime}}$ by

$$
\begin{aligned}
& \varphi_{4}((p, q, A), 1)(X+M)=A X A^{*}+D(p, q) M A^{*} \\
& \varphi_{4}\left((p, q, A), \gamma_{1}\right)(X+M)=A \bar{X} A^{*}+D(p, q) \bar{M} A^{*} \\
& X+M \in \mathfrak{J} \mathbf{C} \oplus M(3, \mathbf{C})=\mathfrak{J},
\end{aligned}
$$

where $D(p, q)=\operatorname{diag}(p, q, \overline{p q}) \in S U(3)$. Then φ_{4} induces the required isomorphism (see [5] for details).

LEMMA 2.2. The mapping $\varphi_{4}:(U(1) \times U(1) \times S U(3)) \cdot \mathbf{Z}_{2} \rightarrow\left(F_{4}\right)^{\gamma, \gamma^{\prime}}$ satisfies

$$
\sigma=\varphi_{4}\left(\left(1,1, E_{1,-1}\right), 1\right), \quad \sigma^{\prime}=\varphi_{4}\left(\left(1,1, E_{-1,1}\right), 1\right),
$$

where $E_{1,-1}=\operatorname{diag}(1,-1,-1), E_{-1,1}=\operatorname{diag}(-1,-1,1) \in S U(3)$.
We denote $U(1) \times \cdots \times U(1),(1, \ldots, 1)$ and $\left(\omega_{k}, \ldots, \omega_{k}\right)\left(l\right.$-times) by $U(1)^{\times l},(1)^{\times l}$ and $\left(\omega_{k}\right)^{\times l}$, respectively.

Now, we determine the structures of the group $\left(F_{4}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}}=\left(\left(F_{4}\right)^{\gamma, \gamma^{\prime}}\right)^{\sigma, \sigma^{\prime}}$.
THEOREM 2.3. $\left(\left(F_{4}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}}\right)_{0} \cong U(1)^{\times 4}$.
Proof. For $\alpha \in\left(F_{4}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \subset\left(F_{4}\right)^{\gamma, \gamma^{\prime}}$, there exist $p, q \in U(1)$ and $A \in S U(3)$ such that $\alpha=\varphi_{4}((p, q, A), 1)$ or $\alpha=\varphi_{4}\left((p, q, A), \gamma_{1}\right)$ (Proposition 2.1). For the case of $\alpha=\varphi_{4}((p, q, A), 1)$, by combining the conditions of $\sigma \alpha \sigma=\alpha$ and $\sigma^{\prime} \alpha \sigma^{\prime}=\alpha$ with Lemma 2.2, we have

$$
\varphi_{4}\left(\left(p, q, E_{1,-1} A E_{1,-1}\right), 1\right)=\varphi_{4}((p, q, A), 1)
$$

and

$$
\varphi_{4}\left(\left(p, q, E_{-1,1} A E_{-1,1}\right), 1\right)=\varphi_{4}((p, q, A), 1) .
$$

Hence
(i) $E_{1,-1} A E_{1,-1}=A$,
(ii) $\left\{\begin{array}{l}p=\omega_{1} p \\ q=\omega_{1} q \\ E_{1,-1} A E_{1,-1}=\omega_{1} A,\end{array}\right.$
(iii) $\left\{\begin{array}{l}p=\omega_{1}^{2} p \\ q=\omega_{1}^{2} q \\ E_{1,-1} A E_{1,-1}=\omega_{1}^{2} A\end{array}\right.$
and

$$
\text { (iv) } E_{-1,1} A E_{-1,1}=A, \quad \text { (v) }\left\{\begin{array} { l }
{ p = \omega _ { 1 } p } \\
{ q = \omega _ { 1 } q } \\
{ E _ { - 1 , 1 } A E _ { - 1 , 1 } = \omega _ { 1 } A , }
\end{array} \quad \text { (vi) } \left\{\begin{array}{l}
p=\omega_{1}^{2} p \\
q=\omega_{1}^{2} q \\
E_{-1,1} A E_{-1,1}=\omega_{1}^{2} A
\end{array}\right.\right.
$$

We can eliminate the case (ii), (iii), (v) or (vi) because $p \neq 0$ or $q \neq 0$. Hence we have $p, q \in U(1)$ and $A \in S(U(1) \times U(1) \times U(1))$. Since the mapping $U(1) \times U(1) \rightarrow S(U(1) \times$ $U(1) \times U(1))$,

$$
h\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{2}, \overline{a_{1} a_{2}}\right)
$$

is an isomorphism, the group satisfying with the conditions of case (i) and (iv) is $\left(U(1)^{\times 4}\right) / \mathbf{Z}_{3}$. For the case of $\alpha=\varphi_{4}\left((p, q, A), \gamma_{1}\right)$, from $\varphi_{4}\left((p, q, A), \gamma_{1}\right)=\varphi_{4}((p, q, A)$, 1) $\gamma_{1}, \varphi_{4}\left(\left(1,1, E_{1,-1}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{4}\left(\left(1,1, E_{1,-1}\right), 1\right)$ and $\varphi_{4}\left(\left(1,1, E_{-1,1}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{4}((1$, $\left.\left.1, E_{-1,1}\right), 1\right)$, this case is in the same situation as above. Thus we have $\left(F_{4}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \cong$ $\left(\left(U(1)^{\times 4}\right) / \mathbf{Z}_{3}\right) \cdot \mathbf{Z}_{2}, \mathbf{Z}_{3}=\left\{(1)^{\times 4},\left(w_{1}\right)^{\times 4},\left(w_{1}^{2}\right)^{\times 4}\right\}$. The group $\left(U(1)^{\times 4}\right) / \mathbf{Z}_{3}$ is naturally isomorphic to the torus $U(1)^{\times 4}$, hence we obtain $\left(F_{4}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \cong\left(U(1)^{\times 4}\right) \cdot \mathbf{Z}_{2}$. Therefore we have the required isomorphism of the theorem.

3. The group E_{6}

The simply connected compact Lie group E_{6} is given by

$$
E_{6}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{J}^{C}\right) \mid \alpha X \times \alpha Y=\tau \alpha \tau(X \times Y),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}
$$

\mathbf{R}-linear transformations $\gamma, \gamma^{\prime}, \gamma_{1}, \sigma$ and σ^{\prime} of $\mathfrak{J}=\mathfrak{J}_{\mathbf{C}} \oplus M(3, \mathbf{C})$ are naturally extended to the C-linear transformations of $\gamma, \gamma^{\prime}, \gamma_{1}, \sigma$ and σ^{\prime} of $\mathfrak{J}^{C}=\left(\mathfrak{J}_{\mathbf{C}}\right)^{C} \oplus M(3, \mathbf{C})^{C}$. Then we have $\gamma, \gamma^{\prime}, \gamma_{1}, \sigma, \sigma^{\prime} \in E_{6}$.

The group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts on the group $U(1) \times U(1) \times S U(3) \times S U(3)$ by

$$
\gamma_{1}(p, q, A, B)=(\bar{p}, \bar{q}, \bar{B}, \bar{A}) .
$$

Hence the group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts naturally on the group $(U(1) \times U(1) \times S U(3) \times S U(3)) / \mathbf{Z}_{3}$.
Let $(U(1) \times U(1) \times S U(3) \times S U(3)) \cdot \mathbf{Z}_{2}$ be the semi-direct product of those groups under this action.

PROPOSITION 3.1. $\left(E_{6}\right)^{\gamma, \gamma^{\prime}} \cong\left((U(1) \times U(1) \times S U(3) \times S U(3)) / \mathbf{Z}_{3}\right) \cdot \mathbf{Z}_{2}, \mathbf{Z}_{3}=$ $\left\{(1,1, E, E),\left(\omega_{1}, \omega_{1}, \omega_{1} E, \omega_{1} E\right),\left(\omega_{1}^{2}, \omega_{1}^{2}, \omega_{1}^{2} E, \omega_{1}^{2} E\right)\right\}$.

Proof. We define a mapping $\varphi_{6}:(U(1) \times U(1) \times S U(3) \times S U(3)) \cdot \mathbf{Z}_{2} \rightarrow\left(E_{6}\right)^{\gamma, \gamma^{\prime}}$ by

$$
\begin{array}{r}
\varphi_{6}((p, q, A, B), 1)(X+M)=h(A, B) X h(A, B)^{*}+D(p, q) M \tau h(A, B)^{*} \\
\varphi_{6}\left((p, q, A, B), \gamma_{1}\right)(X+M)=h(A, B) \bar{X} h(A, B)^{*}+D(p, q) \bar{M} \tau h(A, B)^{*} \\
X+M \in\left(\mathfrak{J}_{\mathbf{C}}\right)^{C} \oplus M(3, \mathbf{C})^{C}=\mathfrak{J}^{C}
\end{array}
$$

Here $D(p, q)=\operatorname{diag}(p, q, \overline{p q}) \in S U(3)$ and $h: M(3, \mathbf{C}) \times M(3, \mathbf{C}) \rightarrow M(6, \mathbf{C})^{C}$ is defined by

$$
h(A, B)=\frac{A+B}{2}+i \frac{A-B}{2} e_{1} .
$$

Then φ_{6} induces the required isomorphism (see [5] for details).
LEMMA 3.2. The mapping $\varphi_{6}:(U(1) \times U(1) \times S U(3) \times S U(3)) \cdot \mathbf{Z}_{2} \rightarrow\left(E_{6}\right)^{\gamma, \gamma^{\prime}}$ satisfies

$$
\sigma=\varphi_{6}\left(\left(1,1, E_{1,-1}, E_{1,-1}\right), 1\right), \quad \sigma^{\prime}=\varphi_{6}\left(\left(1,1, E_{-1,1}, E_{-1,1}\right), 1\right)
$$

The group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts on the group $U(1)^{\times 6}$ by

$$
\gamma_{1}\left(p, q, a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(\bar{p}, \bar{q}, \bar{a}_{3}, \bar{a}_{4}, \bar{a}_{1}, \bar{a}_{2}\right) .
$$

Let $\left(U(1)^{\times 6}\right) \cdot \mathbf{Z}_{2}$ be the semi-direct product of those groups under this action.
Now, we determine the structures of the gruop $\left(E_{6}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}}=\left(\left(E_{6}\right)^{\gamma, \gamma^{\prime}}\right)^{\sigma, \sigma^{\prime}}$.
THEOREM 3.3. $\left(\left(E_{6}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}}\right)_{0} \cong U(1)^{\times 6}$.
Proof. For $\alpha \in\left(E_{6}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \subset\left(E_{6}\right)^{\gamma, \gamma^{\prime}}$, there exist $p, q \in U(1)$ and $A, B \in S U(6)$ such that $\alpha=\varphi_{6}((p, q, A, B), 1)$ or $\alpha=\varphi_{6}\left((p, q, A, B), \gamma_{1}\right)$ (Proposition 3.1). For the case of $\alpha=\varphi_{6}((p, q, A, B), 1)$, by combining the conditions $\sigma \alpha \sigma=\alpha$ and $\sigma^{\prime} \alpha \sigma^{\prime}=\alpha$ with Lemma 3.2, we have

$$
\varphi_{6}\left(\left(p, q, E_{1,-1} A E_{1,-1}, E_{1,-1} B E_{1,-1}\right), 1\right)=\varphi_{6}((p, q, A, B), 1)
$$

and

$$
\varphi_{6}\left(\left(p, q, E_{-1,1} A E_{-1,1}, E_{-1,1} B E_{-1,1}\right), 1\right)=\varphi_{6}((p, q, A, B), 1)
$$

Hence
(i) $\left\{\begin{array}{l}E_{1,-1} A E_{1,-1}=A \\ E_{1,-1} B E_{1,-1}=B,\end{array}\right.$
(ii) $\left\{\begin{array}{l}p=\omega_{1} p \\ q=\omega_{1} q \\ E_{1,-1} A E_{1,-1}=\omega_{1} A \\ E_{1,-1} B E_{1,-1}=\omega_{1} B,\end{array}\right.$
(iii) $\left\{\begin{array}{l}p=\omega_{1}{ }^{2} p \\ q=\omega_{1}{ }^{2} q \\ E_{1,-1} A E_{1,-1}=\omega_{1}{ }^{2} A \\ E_{1,-1} B E_{1,-1}=\omega_{1}{ }^{2} B\end{array}\right.$
and
(iv) $\left\{\begin{array}{l}E_{-1,1} A E_{-1,1}=A \\ E_{-1,1} B E_{-1,1}=B,\end{array}\right.$
(v) $\left\{\begin{array}{l}p=\omega_{1} p \\ q=\omega_{1} q \\ E_{-1,1} A E_{-1,1}=\omega_{1} A \\ E_{-1,1} B E_{-1,1}=\omega_{1} B,\end{array}\right.$
(vi) $\left\{\begin{array}{l}p=\omega_{1}^{2} p \\ q=\omega_{1}^{2} q \\ E_{-1,1} A E_{-1,1}=\omega_{1}^{2} A \\ E_{-1,1} B E_{-1,1}=\omega_{1}^{2} B .\end{array}\right.$

We can eliminate the case (ii), (iii), (v) or (vi) because $p \neq 0$ or $q \neq 0$. Thus we have $p, q \in U(1)$ and $A, B \in S\left(U(1)^{\times 3}\right)$. Since the mapping $U(1)^{\times 4} \rightarrow S\left(U(1)^{\times 5}\right)$,

$$
h\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, \overline{a_{1} a_{2} a_{3} a_{4}}\right)
$$

is an isomorphism, the group satisfying with the conditions of case (i) and (iv) is $\left(U(1)^{\times 6}\right) / \mathbf{Z}_{3}$. For the case of $\alpha=\varphi_{6}\left((p, q, A, B), \gamma_{1}\right)$, from $\varphi_{6}\left((p, q, A, B), \gamma_{1}\right)=$ $\varphi_{6}((p, q, A, B), 1) \gamma_{1}, \varphi_{6}\left(\left(1,1, E_{1,-1}, E_{1,-1}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{6}\left(\left(1,1, E_{1,-1}, E_{1,-1}\right), 1\right)$ and $\varphi_{6}\left(\left(1,1, E_{-1,1}, E_{-1,1}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{6}\left(\left(1,1, E_{-1,1}, E_{-1,1}\right), 1\right)$, this case is in the same situation as above. Thus we have $\left(E_{6}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \cong\left(\left(U(1)^{\times 6}\right) / \mathbf{Z}_{3}\right) \cdot \mathbf{Z}_{2}, \mathbf{Z}_{3}=\left\{(1)^{\times 6},\left(w_{1}\right)^{\times 6}\right.$, $\left.\left(w_{1}^{2}\right)^{\times 6}\right\}$. The group $\left(U(1)^{\times 6}\right) / \mathbf{Z}_{3}$ is naturally isomorphic to the torus $U(1)^{\times 6}$, hence we obtain $\left(E_{6}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \cong\left(U(1)^{\times 6}\right) \cdot \mathbf{Z}_{2}$. Therefore we have the required isomorphism of the theorem.

4. Group E_{7}

Let $\mathfrak{P}^{C}=\mathfrak{J}^{C} \oplus \mathfrak{J}^{C} \oplus C \oplus C$. The simply connected compact Lie group E_{7} is given by

$$
E_{7}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\}
$$

Under the identification $\left(\mathfrak{P}_{\mathbf{C}}\right)^{C} \oplus\left(M(3, \mathbf{C})^{C} \oplus M(3, \mathbf{C})^{C}\right)$ with $\mathfrak{P}^{C}:((X, Y, \xi, \eta)$, $(M, N))=(X+M, Y+N, \xi, \eta), C$-linear transformations of $\gamma, \gamma^{\prime}, \gamma_{1}, \sigma$ and σ^{\prime} of \mathfrak{J}^{C} are extended to C-linear transformations of \mathfrak{P}^{C} as

$$
\begin{aligned}
\gamma(X+M, Y+N, \xi, \eta) & =(X+\gamma M, Y+\gamma N, \xi, \eta) \\
\gamma^{\prime}(X+M, Y+N, \xi, \eta) & =\left(X+\gamma^{\prime} M, Y+\gamma^{\prime} N, \xi, \eta\right) \\
\gamma_{1}(X+M, Y+N, \xi, \eta) & =(\bar{X}+\bar{M}, \bar{Y}+\bar{N}, \xi, \eta) \\
\sigma(X+M, Y+N, \xi, \eta) & =(\sigma X+\sigma M, \sigma Y+\sigma N, \xi, \eta) \\
\gamma(X+M, Y+N, \xi, \eta) & =\left(\sigma^{\prime} X+\sigma^{\prime} M, \sigma^{\prime} Y+\sigma^{\prime} N, \xi, \eta\right)
\end{aligned}
$$

where $\gamma M=\operatorname{diag}(1,-1,-1) M, \gamma^{\prime} M=\operatorname{diag}(-1,-1,1) M, \sigma M=M \operatorname{diag}(1,-1,-1)$ and $\sigma^{\prime} M=M \operatorname{diag}(-1,-1,1)$.

Moreover we define a C-linear transformation ι of \mathfrak{P}^{C} by

$$
\iota(X+M, Y+N, \xi, \eta)=(-i X-i M, i Y+i N,-i \xi, i \eta) .
$$

The group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts the group $U(1) \times U(1) \times S U(6)$ by

$$
\gamma_{1}(p, q, A)=\left(\bar{p}, \bar{q}, \overline{\left.\left(\operatorname{Ad}_{3}\right) A\right)}, \quad J_{3}=\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)\right.
$$

Hence the group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts naturally on the group $(U(1) \times U(1) \times S U(6)) / \mathbf{Z}_{3}$.
Let $(U(1) \times U(1) \times S U(6)) \cdot \mathbf{Z}_{2}$ be the semi-direct product of those groups under this action.

PROPOSITION 4.1. $\left(E_{7}\right)^{\gamma, \gamma^{\prime}} \cong\left((U(1) \times U(1) \times S U(6)) / \mathbf{Z}_{3}\right) \cdot \mathbf{Z}_{2}, \mathbf{Z}_{3}=\{(1,1, E)$, $\left.\left(\omega_{1}, \omega_{1}, \omega_{1} E\right),\left(\omega_{1}^{2}, \omega_{1}^{2}, \omega_{1}^{2} E\right)\right\}$.

Proof. We define a mapping $\varphi_{7}:(U(1) \times U(1) \times S U(6)) \cdot \mathbf{Z}_{2} \rightarrow\left(E_{7}\right)^{\gamma, \gamma^{\prime}}$ by

$$
\begin{aligned}
\varphi_{7}((p, q, A), 1) P & =f^{-1}((D(p, q), A)(f P)), \\
\varphi_{7}\left((p, q, A), \gamma_{1}\right) P & =f^{-1}\left((D(p, q), A)\left(f \gamma_{1} P\right)\right), \quad P \in \mathfrak{P}^{C} .
\end{aligned}
$$

Here $D(p, q)=\operatorname{diag}(p, q, \overline{p q}) \in S U(3)$ and the mapping f is defined in [9], Section 2.4. Then φ_{7} induces the required isomorphism (see [5] for details).

Lemma 4.2. The mapping $\varphi_{7}:(U(1) \times U(1) \times S U(6)) \cdot \mathbf{Z}_{2} \rightarrow\left(E_{7}\right)^{\gamma, \gamma^{\prime}}$ satisfies

$$
\sigma=\varphi_{7}\left(\left(1,1, F_{1,-1}\right), 1\right), \quad \sigma^{\prime}=\varphi_{7}\left(\left(1,1, F_{-1,1}\right), 1\right)
$$

where $F_{1,-1}=\operatorname{diag}(1,-1,-1,1,-1,-1), F_{-1,1}=\operatorname{diag}(-1,-1,1,-1,-1,1) \in \operatorname{SU}(6)$.
The group $\mathbf{Z}_{2}=\left\{1, \gamma_{1}\right\}$ acts on the group $U(1)^{\times 7}$ by

$$
\gamma_{1}\left(p, q, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(\bar{p}, \bar{q}, \bar{a}_{4}, \bar{a}_{5}, \bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right) .
$$

Let $\left(U(1)^{\times 7}\right) \cdot \mathbf{Z}_{2}$ be the semi-direct product of those groups under this action.
Now, we determine the structures of the group $\left(E_{7}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}, \iota}=\left(\left(E_{7}\right)^{\gamma, \gamma^{\prime}}\right)^{\sigma, \sigma^{\prime}, \iota}$.
THEOREM 4.3. $\left(\left(E_{7}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}, \iota}\right)_{0} \cong U(1)^{\times 7}$.
Proof. For $\alpha \in\left(E_{7}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}, \iota} \subset\left(E_{7}\right)^{\gamma, \gamma^{\prime}}$, there exist $p, q \in U(1)$ and $A \in S U(6)$ such that $\alpha=\varphi_{7}((p, q, A), 1)$ or $\alpha=\varphi_{7}\left((p, q, A), \gamma_{1}\right)$ (Proposition 4.1). For the case of $\alpha=\varphi_{7}((p, q, A), 1)$, by combining the conditions $\sigma \alpha \sigma=\alpha, \sigma^{\prime} \alpha \sigma^{\prime}=\alpha$ and $\iota \alpha \iota^{-1}=\alpha$ with Lemma 4.2, we have
$\varphi_{7}\left(\left(p, q, F_{1,-1} A F_{1,-1}\right), 1\right)=\varphi_{7}((p, q, A), 1), \varphi_{7}\left(\left(p, q, F_{-1,1} A F_{-1,1}\right), 1\right)=\varphi_{7}((p, q, A), 1)$.
and

$$
\varphi_{7}\left(\left(p, q, F_{e_{1}} A F_{e_{1}}^{-1}\right), 1\right)=\varphi_{7}((p, q, A), 1)
$$

Hence
(i) $F_{1,-1} A F_{1,-1}=A$,
(ii) $\left\{\begin{array}{l}p=\omega_{1} p \\ q=\omega_{1} q \\ F_{1,-1} A F_{1,-1}=\omega_{1} A,\end{array}\right.$
(iii) $\left\{\begin{array}{l}p=\omega_{1}^{2} p \\ q=\omega_{1}^{2} q \\ F_{1,-1} A F_{1,-1}=\omega_{1}^{2} A,\end{array}\right.$
(iv) $F_{-1,1} A F_{-1,1}=A, \quad$ (v) $\left\{\begin{array}{l}p=\omega_{1} p \\ q=\omega_{1} q \\ F_{-1,1} A F_{-1,1}=\omega_{1} A,\end{array} \quad\right.$ (vi) $\left\{\begin{array}{l}p=\omega_{1}^{2} p \\ q=\omega_{1}^{2} q \\ F_{-1,1} A F_{-1,1}=\omega_{1}^{2} A .\end{array}\right.$
and

$$
\text { (vii) } F_{e_{1}} A F_{e_{1}}^{-1}=A, \quad \text { (viii) }\left\{\begin{array} { l }
{ p = \omega _ { 1 } p } \\
{ q = \omega _ { 1 } q } \\
{ F _ { e _ { 1 } } A F _ { e _ { 1 } } ^ { - 1 } = \omega _ { 1 } A , }
\end{array} \quad \text { (ix) } \left\{\begin{array}{l}
p=\omega_{1}^{2} p \\
q=\omega_{1}^{2} q \\
F_{e_{1}} A F_{e_{1}}^{-1}=\omega_{1}^{2} A
\end{array}\right.\right.
$$

We can eliminate the case (ii), (iii), (v), (vi), (viii) or (ix) because $p \neq 0$ or $q \neq 0$. Thus we have $p, q \in U(1)$ and $A \in S\left(U(1)^{\times 6}\right)$. Since the mapping $U(1)^{\times 5} \rightarrow S\left(U(1)^{\times 6}\right)$,

$$
h\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \overline{a_{1} a_{2} a_{3} a_{4} a_{5}}\right)
$$

is an isomorphism, the group satisfying with the conditions of case (i), (iv) and (vii) is $\left(U(1)^{\times 7}\right) / \mathbf{Z}_{3}$. For the case of $\alpha=\varphi_{7}\left((p, q, A), \gamma_{1}\right)$, from $\varphi_{7}\left((p, q, A), \gamma_{1}\right)=\varphi_{7}((p, q, A)$, 1) $\gamma_{1}, \varphi_{7}\left(\left(1,1, F_{1,-1}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{7}\left(\left(1,1, F_{1,-1}\right), 1\right), \varphi_{7}\left(\left(1,1, F_{-1,1}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{7}((1$, $\left.\left.1, F_{-1,1}\right), 1\right)$, and $\varphi_{7}\left(\left(1,1, F_{e_{1}}\right), 1\right) \gamma_{1}=\gamma_{1} \varphi_{7}\left(\left(1,1, F_{e_{1}}\right), 1\right)$, this case is in the same situation as above. Thus we have $\left(E_{7}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}} \cong\left(\left(U(1)^{\times 7}\right) / \mathbf{Z}_{3}\right) \cdot \mathbf{Z}_{2}, \mathbf{Z}_{3}=\left\{(1)^{\times 7},\left(w_{1}\right)^{\times 7},\left(w_{1}^{2}\right)^{\times 7}\right\}$. The group $\left(U(1)^{\times 7}\right) / \mathbf{Z}_{3}$ is naturally isomorphic to the torus $U(1)^{\times 7}$, hence we obtain $\left(E_{7}\right)^{\gamma, \gamma^{\prime}, \sigma, \sigma^{\prime}, \iota} \cong\left(U(1)^{\times 7}\right) \cdot \mathbf{Z}_{2}$. Therefore we have the required isomorphism of the theorem.

References

[1] M. Berger, Les espaces symétriques non compacts, Ann. Sci. Ecole Norm. Sup. 74 (1957), 85-177.
[2] T. Miyashita, Fixed points subgroups $G^{\sigma, \gamma}$ by two involutive automorphisms σ, γ of compact exceptional Lie groups $G=F_{4}, E_{6}$ and E_{7}, Tsukuba J. Math. 27 (2003), 199-215.
[3] T. MiYashita and I. Yoкоta, 2-graded decompositions of exceptional Lie algebra \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, Part III, $G=E_{8}$, Japanese J. Math. 26 (2000), 31-51.
[4] T. Miyashita and I. Yокотa, Fixed points subgroups $G^{\sigma, \sigma^{\prime}}$ by two involutive automorphisms σ, σ^{\prime} of compact exceptional Lie groups $G=F_{4}, E_{6}$ and E_{7}, Math. J. Toyama Univ. 24 (2001), 135-149.
[5] T. MiYashita and I. Yokota, Fixed points subgroups $G^{\gamma, \gamma^{\prime}}$ by two involutive automorphisms γ, γ^{\prime} of compact exceptional Lie groups $G=G_{2}, F_{4}, E_{6}$ and E_{7}, Yokohama Math. J. 53 (2006), 9-38.
[6] T. MiYashita and I. Yoкоta, 3-graded decompositions of exceptional Lie algebra \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$, Part II, $G=E_{7}$, Part II, Case 1, J. Math. Kyoto Univ. 46-2 (2006), 383-413.
[7] T. MiYashita and I. Yoкоta, 3-graded decompositions of exceptional Lie algebra \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$, Part II, $G=E_{7}$, Part II, Case 2, 3 and 4, J. Math. Kyoto Univ. 46-4 (2006), 805-832.
[8] I. YoKOTA, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}, F_{4}$, and E_{6}, Tsukuba J. Math. 4 (1990), 185-223.
[9] I. Yокота, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G=E_{7}$, Tsukuba J. Math. 4 (1990), 378-404.
[10] I. Yокота, 2-graded decompositions of exceptional Lie algebra \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, Part I, $G=G_{2}, F_{4}, E_{6}$, Japanese J. Math. 24 (1998), 257-296.
[11] I. Yокота, 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, Part II, $G=E_{7}$, Japanese J. Math. 25 (1999), 155-179.
[12] I. YOKOTA, 3-graded decompositions of exceptional Lie algebra \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$, Part II, $G=G_{2}, F_{4}, E_{6}$, Part I, J. Math. Kyoto Univ. 41-3 (2001), 449-474.

Present Address:
Toshikazu Miyashita
Komoro high school, NAGANO, 384-0801 JAPAN.
e-mail: anarchybin@gmail.com

