On Blanchard Manifolds

Masahide KATO and Kazuya KOMADA

Sophia University

Introduction

A compact complex manifold M of dimension 3 is called a Blanchard manifold, if its universal covering is biholomorphic to the complement of a projective line ℓ in a three dimensional complex projective space \mathbf{P}^{3}. Let Ω denote the complement $\mathbf{P}^{3} \backslash \ell$. Then M is given as a quotient space Ω / Γ, where Γ is a group of holomorphic automorphisms of Ω. By [K, Theorem C], we know that

THEOREM A. (1) The group Γ is a subgroup of the projective general linear group $\operatorname{PGL}(4, \mathbf{C})$.
(2) Γ contains a free abelian subgroup Γ_{0} of finite index.
(3) By a suitable choice of homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ on \mathbf{P}^{3} with

$$
\ell=\left\{z_{2}=z_{3}=0\right\}
$$

Γ_{0} is contained in either

$$
\left\{\left(\begin{array}{cccc}
1 & a & b & c \tag{1}\\
0 & 1 & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

Type (A),
or

$$
\left\{\left(\begin{array}{llll}
1 & 0 & a & b \tag{2}\\
0 & 1 & c & d \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right\} \quad \text { Type (B) . }
$$

When we say that Γ_{0} is of type(A), $\operatorname{rank}(I-g)=3$ for some $g \in \Gamma_{0}$. Otherwise, we say that Γ_{0} is of type(B). It is known that, if Γ_{0} of type(B), $\operatorname{rank}(I-g)=2$ for any $g \in \Gamma_{0} \backslash\{I\}$ ($[\mathrm{K}$, Proposition 5.40]). In this short note we shall prove the following

[^0]THEOREM B. Γ_{0} is always of type (B).
The first author gave an "example" of type (A) in [K, page 387]. Unfortunately, the action of Γ given there was not properly discontinuous on Ω. In this note, we shall show

Proposition. The action of any Γ_{0} of type (A) is not properly discontinuous on Ω.
Theorem B follows from the proposition. Examples of type (B) are well-known.

1. Proof of the Proposition

Assuming that Γ_{0} is of type (A) and that its action on Ω is properly discontinuous, we shall derive a contradiction. To derive a contradiction, it is enough to construct a sequence of points $\left\{p_{n}\right\}$ in Ω and an infinite sequence of transformations $\left\{g_{n}\right\}$ in Γ_{0} such that both $\lim _{n \rightarrow \infty} p_{n}$ and $\lim _{n \rightarrow \infty} g_{n}\left(p_{n}\right)$ converge to points in Ω.

We put $M_{0}=\Omega / \Gamma_{0}$, which is an finite unramified covering of $M=\Omega / \Gamma$. On \mathbf{P}^{3}, we fix the system of homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ used in Theorem A. We write elements of Γ_{0} as if they are in $S L(4, \mathbf{C})$. Let I be the identity matrix of size 4 and put

$$
N=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We fix a set of generators

$$
G_{k}=I+a_{k} N+b_{k} N^{2}+c_{k} N^{3}, \quad k=1, \ldots, 4
$$

of Γ_{0}. Put

$$
S=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \Omega: z_{3}=0\right\}
$$

On $\Omega \backslash S \simeq \mathbf{C}^{3}$, we consider the following system of coordinates

$$
\begin{equation*}
\left(u_{1}, u_{2}, u_{3}\right)=\left(x_{1}-x_{2} x_{3}+x_{3}^{3} / 3, x_{2}-x_{3}^{2} / 2, x_{3}\right) \tag{3}
\end{equation*}
$$

where

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(z_{0} / z_{3}, z_{1} / z_{3}, z_{2} / z_{3}\right)
$$

Similarly, on $S \simeq \mathbf{C}^{2}$, we consider the following system of coordinates

$$
\begin{equation*}
\left(v_{1}, v_{2}\right)=\left(y_{1}-y_{2}^{2} / 2, y_{2}\right) \tag{4}
\end{equation*}
$$

where

$$
\left(y_{1}, y_{2}\right)=\left(z_{0} / z_{2}, z_{1} / z_{2}\right)
$$

Define four vectors $\tau_{k} \in \mathbf{C}^{2}$ by

$$
\begin{equation*}
\tau_{k}=\binom{e_{k}}{a_{k}}, \quad e_{k}=b_{k}-a_{k}^{2} / 2, \quad k=1, \ldots, 4 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}=c_{k}-a_{k} b_{k}+a_{k}^{3} / 3, \quad k=1, \ldots, 4 \tag{6}
\end{equation*}
$$

Let $\rho \in \mathbf{C}$ be a root of

$$
x^{2}+x+1 / 3=0
$$

For $n \in \mathbf{N}$, put
(7)

$$
\varepsilon_{n}=-(\rho+1 / 2) n^{2}
$$

LEMMA 1.1. The vectors $\tau_{k}, k=1, \ldots, 4$, are linearly independent over \mathbf{R}.
Proof. The group Γ_{0} acts on S and the quotient S / Γ_{0} is a closed non-singular surface in M_{0}, which is compact. Each G_{k} sends $\left(y_{1}, y_{2}\right)$ to $\left(y_{1}+a_{k} y_{2}+b_{k}, y_{2}+a_{k}\right)$. Hence it sends $\left(v_{1}, v_{2}\right)$ to $\left(v_{1}+b_{k}-a_{k}^{2} / 2, v_{2}+a_{k}\right)$. Thus Γ_{0} acts on $S \simeq \mathbf{C}^{2}$ as a translation group generated by G_{k}. Hence S / Γ_{0} is compact torus which is the quotient of \mathbf{C}^{2} by the lattice generated by $\tau_{k}, k=1, \ldots, 4$. Therefore τ_{k} 's are linearly independent over \mathbf{R}.

Consider the matrix

$$
A=\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \tag{8}\\
e_{1} & e_{2} & e_{3} & e_{4} \\
\overline{a_{1}} & \overline{a_{2}} & \overline{a_{3}} & \overline{a_{4}} \\
\overline{e_{1}} & \overline{e_{2}} & \overline{e_{3}} & \overline{e_{4}}
\end{array}\right)
$$

By Lemma 1.1, A is a non-singular matrix. Therefore, for each $n \in \mathbf{N}$, we have an unique solution $\left(r_{1}, r_{2}, r_{3}, r_{4}\right) \in \mathbf{R}^{4}$ such that

$$
\left(\begin{array}{c}
n \tag{9}\\
\varepsilon_{n} \\
n \\
\overline{\varepsilon_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
e_{1} & e_{2} & e_{3} & e_{4} \\
\overline{a_{1}} & \overline{a_{2}} & \overline{a_{3}} & \overline{a_{4}} \\
\overline{e_{1}} & \overline{e_{2}} & \overline{e_{3}} & \overline{e_{4}}
\end{array}\right)\left(\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right)
$$

For each $n \in \mathbf{N}$, we choose a set of integers $N_{n}=\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \in \mathbf{Z}^{4}$ so that

$$
\begin{equation*}
\left|n_{k}-r_{k}\right| \leq 1 / 2, \quad \text { for } \quad k=1, \ldots, 4 \tag{10}
\end{equation*}
$$

Thus we have defined a sequence $\left\{N_{n}\right\}_{n=1}^{\infty}$ in \mathbf{Z}^{4}. Define

$$
\begin{equation*}
a(n)=\sum_{k=1}^{4} n_{k} a_{k}, \quad e(n)=\sum_{k=1}^{4} n_{k} e_{k}, \quad f(n)=\sum_{k=1}^{4} n_{k} f_{k} . \tag{11}
\end{equation*}
$$

Let \mathcal{L} be the set of \mathbf{C}-valued functions $\delta(n)$ on \mathbf{N} satisfying

$$
|\delta(n)| \leq K n \quad \text { for any } n \in \mathbf{N}
$$

where $K>0$ is some constant independent of n. The norm $\|X\|$ of a matrix $X=\left(x_{i j}\right)$ is defined by $\|X\|=\max _{i, j}\left\{\left|x_{i j}\right|\right\}$.

Lemma 1.2. There is a constant K independent of n such that

$$
\begin{equation*}
|a(n)-n| \leq K \quad \text { for all } \quad n \in \mathbf{N} \tag{12}
\end{equation*}
$$

Proof. By (11), (9) and (10), we have

$$
|a(n)-n|=\left|\sum_{k=1}^{4} n_{k} a_{k}-\sum_{k=1}^{4} r_{k} a_{k}\right| \leq \sum_{k=1}^{4}\left|n_{k}-r_{k}\right|\left|a_{k}\right| \leq \sum_{k=1}^{4} \frac{\left|a_{k}\right|}{2} \leq 2\|A\|
$$

Lemma 1.3. There is a function $\delta_{1} \in \mathcal{L}$ such that

$$
\begin{equation*}
e(n)=-(\rho+1 / 2) a(n)^{2}+\delta_{1}(n) . \tag{13}
\end{equation*}
$$

Proof. By (11), (9), (10) and (7), we have

$$
\begin{aligned}
\mid e(n) & +\left(\rho+\frac{1}{2}\right) a(n)^{2}\left|=\left|\sum_{k=1}^{4} n_{k} e_{k}-\sum_{k=1}^{4} r_{k} e_{k}+\varepsilon_{n}+\left(\rho+\frac{1}{2}\right) a(n)^{2}\right|\right. \\
& \leq \sum_{k=1}^{4} \frac{\left|e_{k}\right|}{2}+\left|\varepsilon_{n}+\left(\rho+\frac{1}{2}\right) a(n)^{2}\right| \leq 2\|A\|+\left|\left(\rho+\frac{1}{2}\right)\left(a(n)^{2}-n^{2}\right)\right| \\
& \leq 2\|A\|+K_{1}\left|a(n)^{2}-n^{2}\right| \leq K n
\end{aligned}
$$

for some constants K_{1}, K independent of n. Here we have used Lemma 1.2 to derive the last inequality. Thus, we have the lemma.

Lemma 1.4. There is a function $\delta_{2} \in \mathcal{L}$ such that

$$
\begin{equation*}
f(n)=\delta_{2}(n) a(n) . \tag{14}
\end{equation*}
$$

Proof. By (11), there are constants $\lambda_{k} \in \mathbf{C}, k=1, \ldots, 4$, which are determined by the entries of A and $f_{k}, k=1, \ldots, 4$, such that

$$
f(n)=\lambda_{1} a(n)+\lambda_{2} e(n)+\lambda_{3} \overline{a(n)}+\lambda_{4} \overline{e(n)} .
$$

Hence, by Lemmas 1.2 and 1.3, we have the lemma easily.
Now we define a sequence of points $\left\{p_{n}\right\}_{n}$ in Ω by

$$
\begin{equation*}
p_{n}:\left[0:-(\rho+1) \delta_{1}(n)-\delta_{2}(n): \rho a(n): 1\right] \tag{15}
\end{equation*}
$$

and a sequence of transformations g_{n} of Γ_{0} by

$$
\begin{equation*}
g_{n}=G_{1}^{n_{1}} G_{2}^{n_{2}} G_{3}^{n_{3}} G_{4}^{n_{4}} \tag{16}
\end{equation*}
$$

Note that, in terms of coordinates (u_{1}, u_{2}, u_{3}) on $\Omega \backslash S, G_{k}$ acts as

$$
G_{k}:\left(u_{1}, u_{2}, u_{3}\right) \mapsto\left(u_{1}+f_{k}, u_{2}+e_{k}, u_{3}+a_{k}\right)
$$

Thus g_{n} acts as

$$
g_{n}:\left(u_{1}, u_{2}, u_{3}\right) \mapsto\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right)=\left(u_{1}+f(n), u_{2}+e(n), u_{3}+a(n)\right) .
$$

Put $q_{n}=g_{n}\left(p_{n}\right)$. In terms of coordinates $\left(u_{1}, u_{2}, u_{3}\right), p_{n}$ is given by

$$
\begin{align*}
& u_{1}=\rho^{3} a(n)^{3} / 3+\left((\rho+1) \delta_{1}(n)+\delta_{2}(n)\right) \rho a(n) \tag{17}\\
& u_{2}=-\rho^{2} a(n)^{2} / 2-(\rho+1) \delta_{1}(n)-\delta_{2}(n) \tag{18}\\
& u_{3}=\rho a(n) . \tag{19}
\end{align*}
$$

By simple calculations using (17), (18), (19), and Lemmas 1.3, 1.4, we can verify that $q_{n}=$ $\left(u_{1}+f(n), u_{2}+e(n), u_{3}+a(n)\right)$ is given in terms of coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ by

$$
\begin{aligned}
& x_{1}^{\prime}=\left(u_{1}+f(n)\right)+\left(u_{2}+e(n)\right)\left(u_{3}+a(n)\right)+\left(u_{3}+a(n)\right)^{3} / 6=0 \\
& x_{2}^{\prime}=\left(u_{2}+e(n)\right)+\left(u_{3}+a(n)\right)^{2} / 2=-\rho \delta_{1}(n)-\delta_{2}(n) \\
& x_{3}^{\prime}=u_{3}+a(n)=(\rho+1) a(n) .
\end{aligned}
$$

Thus in homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$, the sequence $\left\{q_{n}\right\}_{n} \subset \Omega$ is given by

$$
\begin{equation*}
q_{n}:\left[0:-\rho \delta_{1}(n)-\delta_{2}(n):(\rho+1) a(n): 1\right] . \tag{20}
\end{equation*}
$$

By Lemma 1.2, and since $\delta_{1}, \delta_{2} \in \mathcal{L}$, we can choose convergent subsequences of $\left\{p_{n}\right\}_{n}$ and $\left\{q_{n}\right\}_{n}$ to points in Ω,

$$
\lim _{n \rightarrow \infty} p_{n}=[0: *: \rho: 0], \quad \lim _{n \rightarrow \infty} q_{n}=[0: *: \rho+1: 0] .
$$

As a corollary, we have
THEOREM 1.1. The algebraic dimension of any Blanchard manifold is equal to one.
Proof. If Γ_{0} is of type (B), it is easy to see that Γ_{0}-invariant homogeneous polynomial is of the form $f\left(z_{2}, z_{3}\right)$. Thus the function field of M_{0} is $\mathbf{C}\left(z_{2} / z_{3}\right)$. Hence the theorem follows.

Acknowledgement. The authors are grateful to Professor Kunio Yoshino for his suggestion to simplify their original construction of the sequences.

References

[K] Kato, Ma., Factorization of compact complex 3-folds which admit certain projective structures, Tohoku Math.J. 41 (1989), 359-397.

Present Address:

Masahide Kato
Department of Mathematics,
Sophia University,
Kioicho, TOKyo, 102-8554 Japan.
e-mail: kato@mm.sophia.ac.jp
Kazuya Komada
Koto City Office
TOYO, KOTO-KU, TOKYo, 135-8383 Japan.
e-mail: rsa18698@nifty.com

[^0]: Received February 17, 2005; revised February 26, 2007
 Mathematics Subject Classification: 32H02, 32J17.
 Key words: Blanchard manifold, flat projective structure, non-Kähler manifold.

