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On Blanchard Manifolds
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Introduction

A compact complex manifold M of dimension 3 is called a Blanchard manifold, if its
universal covering is biholomorphic to the complement of a projective line � in a three dimen-

sional complex projective space P3. Let Ω denote the complement P3 \ �. Then M is given
as a quotient space Ω/Γ , where Γ is a group of holomorphic automorphisms of Ω . By [K,
Theorem C], we know that

THEOREM A. (1) The group Γ is a subgroup of the projective general linear group
PGL(4, C).

(2) Γ contains a free abelian subgroup Γ0 of finite index.

(3) By a suitable choice of homogeneous coordinates [z0 : z1 : z2 : z3] on P3 with

� = {z2 = z3 = 0} ,

Γ0 is contained in either





1 a b c

0 1 a b

0 0 1 a

0 0 0 1







Type (A) ,(1)

or 





1 0 a b

0 1 c d

0 0 1 0
0 0 0 1







Type (B) .(2)

When we say that Γ0 is of type(A), rank(I − g) = 3 for some g ∈ Γ0. Otherwise, we say that
Γ0 is of type(B). It is known that, if Γ0 of type(B), rank(I − g) = 2 for any g ∈ Γ0 \ {I } ([K,
Proposition 5.40]). In this short note we shall prove the following
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THEOREM B. Γ0 is always of type (B).

The first author gave an "example" of type (A) in [K, page 387]. Unfortunately, the
action of Γ given there was not properly discontinuous on Ω . In this note, we shall show

PROPOSITION. The action of any Γ0 of type (A) is not properly discontinuous on Ω .

Theorem B follows from the proposition. Examples of type (B) are well-known.

1. Proof of the Proposition

Assuming that Γ0 is of type (A) and that its action on Ω is properly discontinuous, we
shall derive a contradiction. To derive a contradiction, it is enough to construct a sequence
of points {pn} in Ω and an infinite sequence of transformations {gn} in Γ0 such that both
limn→∞ pn and limn→∞ gn(pn) converge to points in Ω .

We put M0 = Ω/Γ0, which is an finite unramified covering of M = Ω/Γ . On P3, we
fix the system of homogeneous coordinates [z0 : z1 : z2 : z3] used in Theorem A. We write
elements of Γ0 as if they are in SL(4, C). Let I be the identity matrix of size 4 and put

N =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

We fix a set of generators

Gk = I + akN + bkN
2 + ckN

3 , k = 1, . . . , 4

of Γ0. Put

S = {[z0 : z1 : z2 : z3] ∈ Ω : z3 = 0} .

On Ω \ S � C3, we consider the following system of coordinates

(u1, u2, u3) = (x1 − x2x3 + x3
3/3, x2 − x2

3/2, x3) ,(3)

where

(x1, x2, x3) = (z0/z3, z1/z3, z2/z3) .

Similarly, on S � C2, we consider the following system of coordinates

(v1, v2) = (y1 − y2
2/2, y2) ,(4)

where

(y1, y2) = (z0/z2 , z1/z2) .

Define four vectors τk ∈ C2 by

τk =
(

ek

ak

)
, ek = bk − a2

k/2 , k = 1, . . . , 4 ,(5)
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and

fk = ck − akbk + a3
k/3 , k = 1, . . . , 4 .(6)

Let ρ ∈ C be a root of

x2 + x + 1/3 = 0 .

For n ∈ N, put

εn = −(ρ + 1/2)n2 .(7)

LEMMA 1.1. The vectors τk , k = 1, . . . , 4, are linearly independent over R.

PROOF. The group Γ0 acts on S and the quotient S/Γ0 is a closed non-singular surface
in M0, which is compact. Each Gk sends (y1, y2) to (y1 +aky2 +bk, y2 +ak). Hence it sends

(v1, v2) to (v1 +bk −a2
k/2, v2 +ak). Thus Γ0 acts on S � C2 as a translation group generated

by Gk . Hence S/Γ0 is compact torus which is the quotient of C2 by the lattice generated by
τk , k = 1, . . . , 4. Therefore τk’s are linearly independent over R.

Consider the matrix

A =




a1 a2 a3 a4

e1 e2 e3 e4

a1 a2 a3 a4

e1 e2 e3 e4


 .(8)

By Lemma 1.1, A is a non-singular matrix. Therefore, for each n ∈ N, we have an unique
solution (r1, r2, r3, r4) ∈ R4 such that


n

εn

n

εn


 =




a1 a2 a3 a4

e1 e2 e3 e4

a1 a2 a3 a4

e1 e2 e3 e4







r1

r2

r3

r4


 .(9)

For each n ∈ N, we choose a set of integers Nn = (n1, n2, n3, n4) ∈ Z4 so that

|nk − rk | ≤ 1/2 , for k = 1, . . . , 4 .(10)

Thus we have defined a sequence {Nn}∞n=1 in Z4. Define

a(n) =
4∑

k=1

nkak , e(n) =
4∑

k=1

nkek , f (n) =
4∑

k=1

nkfk .(11)

Let L be the set of C-valued functions δ(n) on N satisfying

|δ(n)| ≤ Kn for any n ∈ N ,

where K > 0 is some constant independent of n. The norm ‖X‖ of a matrix X = (xij ) is
defined by ‖X‖ = maxi,j {|xij |}.
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LEMMA 1.2. There is a constant K independent of n such that

|a(n) − n| ≤ K for all n ∈ N .(12)

PROOF. By (11), (9) and (10), we have

|a(n) − n| =
∣∣∣∣

4∑
k=1

nkak −
4∑

k=1

rkak

∣∣∣∣ ≤
4∑

k=1

|nk − rk| |ak| ≤
4∑

k=1

|ak|
2

≤ 2‖A‖ .

LEMMA 1.3. There is a function δ1 ∈ L such that

e(n) = − (ρ + 1/2) a(n)2 + δ1(n) .(13)

PROOF. By (11), (9), (10) and (7), we have

∣∣∣∣ e(n) +
(

ρ + 1

2

)
a(n)2

∣∣∣∣ =
∣∣∣∣

4∑
k=1

nkek −
4∑

k=1

rkek + εn +
(

ρ + 1

2

)
a(n)2

∣∣∣∣

≤
4∑

k=1

|ek|
2

+
∣∣∣∣ εn +

(
ρ + 1

2

)
a(n)2

∣∣∣∣ ≤ 2‖A‖ +
∣∣∣∣
(

ρ + 1

2

)
(a(n)2 − n2)

∣∣∣∣
≤ 2‖A‖ + K1|a(n)2 − n2| ≤ Kn

for some constants K1,K independent of n. Here we have used Lemma 1.2 to derive the last
inequality. Thus, we have the lemma.

LEMMA 1.4. There is a function δ2 ∈ L such that

f (n) = δ2(n)a(n) .(14)

PROOF. By (11), there are constants λk ∈ C, k = 1, . . . , 4, which are determined by
the entries of A and fk , k = 1, . . . , 4, such that

f (n) = λ1a(n) + λ2e(n) + λ3a(n) + λ4e(n) .

Hence, by Lemmas 1.2 and 1.3, we have the lemma easily.
Now we define a sequence of points {pn}n in Ω by

pn : [0 : −(ρ + 1)δ1(n) − δ2(n) : ρa(n) : 1](15)

and a sequence of transformations gn of Γ0 by

gn = G
n1
1 G

n2
2 G

n3
3 G

n4
4 .(16)

Note that, in terms of coordinates (u1, u2, u3) on Ω \ S, Gk acts as

Gk : (u1, u2, u3) �→ (u1 + fk, u2 + ek, u3 + ak) .

Thus gn acts as

gn : (u1, u2, u3) �→ (u′
1, u

′
2, u

′
3) = (u1 + f (n), u2 + e(n), u3 + a(n)) .
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Put qn = gn(pn). In terms of coordinates (u1, u2, u3), pn is given by

u1 = ρ3a(n)3/3 + ((ρ + 1)δ1(n) + δ2(n)) ρa(n)(17)

u2 = −ρ2a(n)2/2 − (ρ + 1)δ1(n) − δ2(n)(18)

u3 = ρa(n) .(19)

By simple calculations using (17), (18), (19), and Lemmas 1.3, 1.4, we can verify that qn =
(u1 + f (n), u2 + e(n), u3 + a(n)) is given in terms of coordinates (x1, x2, x3) by

x ′
1 = (u1 + f (n)) + (u2 + e(n))(u3 + a(n)) + (u3 + a(n))3/6 = 0

x ′
2 = (u2 + e(n)) + (u3 + a(n))2/2 = −ρδ1(n) − δ2(n)

x ′
3 = u3 + a(n) = (ρ + 1)a(n) .

Thus in homogeneous coordinates [z0 : z1 : z2 : z3], the sequence {qn}n ⊂ Ω is given by

qn : [0 : −ρδ1(n) − δ2(n) : (ρ + 1)a(n) : 1] .(20)

By Lemma 1.2, and since δ1, δ2 ∈ L, we can choose convergent subsequences of {pn}n and
{qn}n to points in Ω ,

lim
n→∞ pn = [0 : ∗ : ρ : 0] , lim

n→∞ qn = [0 : ∗ : ρ + 1 : 0] .

As a corollary, we have

THEOREM 1.1. The algebraic dimension of any Blanchard manifold is equal to one.

PROOF. If Γ0 is of type (B), it is easy to see that Γ0-invariant homogeneous polynomial
is of the form f (z2, z3). Thus the function field of M0 is C(z2/z3). Hence the theorem
follows.
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