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Strongly n-trivial Links are Boundary Links
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Abstract. A link is said to be strongly n-trivial if there exists a diagram such that one can choose n+1 crossing
points with the property that changing crossings on any 0 < m ≤ n + 1 points of these n + 1 points yields a trivial
link. It is shown that for a positive integer n the components of a strongly n-trivial link admit mutually disjoint Seifert
surfaces.

1. Introduction

Let n be a non-negative integer. A knot (or link) L in S3 is said to be strongly n-trivial if
there exists a diagram of L such that one can choose n + 1 crossing points with the property
that changing crossings on any 0 < m ≤ n+1 points of these n+1 points yields a trivial knot
(or link). The collection of such crossing changes is called a strong n-trivializer for L. The
link illustrated in Figure 1 is a non-trivial strongly 1-trivial link, where the strong 1-trivializer
is indicated by dotted circles. H. Howards and J. Luecke [9] gave a construction of non-trivial
strongly n-trivial knots for any given positive integer n via “finger moves” [9, Section 6].
Strongly n-trivial links can be constructed as in Figure 2. Given a strongly n-trivial link, it is
not so easy to detect the triviality of the link. Conversely, N. Askitas and E. Kalfagianni [1]
showed that any strongly n-trivial knot is obtained from the unknot by “finger moves” on a
Brunnian Suzuki graph.

It is well-known that any Vassiliev invariant of order ≤ n vanishes for strongly n-trivial
knots. Further, Askitas and Kalfagianni [1] showed that if a knot K is strongly n-trivial
for n ≥ 2, then ∇K(z) = 1 [1, Theorem 1.2]. For a strongly 1-trivial knot K , it can be
seen that a2(K) = 0 or ±1, where a2(K) denotes the second coefficient of the Conway
polynomial ∇K(z), according to whether the trivializers are “unlinked” or “linked”. This has
been observed by T. Stanford (cf. [11]). Note that every strongly n-trivial knot has unknotting
number one. It is well-known that every Alexander-Conway polynomial of knots is realized
as that of unknotting number one knots (cf. [12], [13], [4], [19]).

Received January 30, 2006; revised May 25, 2006
Mathematics Subject Classification: 57M25.
Key words: strongly n-trivial link, boundary link.
Supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.



344 YUKIHIRO TSUTSUMI

FIGURE 1. A strongly 1-trivial link.

FIGURE 2

The strong n-triviality also gives some geometric restrictions. Several authors study min-
imal genus Seifert surfaces for strongly n-trivial knots by using techniques in 3-dimensional
topology. Howard and Luecke [9] showed that if K is a non-trivial strongly n-trivial knot,
then n is less than 6g(K) − 3, where g(K) denotes the genus of K . In particular, the trivial
knot is the only knot that is strongly n-trivial for all n ([9, Corollary 1.3]). In [17] and [18], I.
Torisu study strongly n-trivial 2-bridge knots and links.

THEOREM 1.1 ([17, Theorem 1.1]). A 2-bridge knot K is strongly n-trivial for n ≥ 1
if and only if K is the trivial knot or the trefoil knot or the figure-eight knot.

THEOREM 1.2 ([18]). There is no non-trivial strongly n-trivial 2-bridge link for n ≥
1.

In this note, we give some other geometric restriction to strongly n-trivial links. A link is
called a boundary link if the components bound mutually disjoint Seifert surfaces. Note that
a trivial link is a boundary link. It is well-known that if L is a boundary link, then ∆L(t) = 0.
We also remark that the exterior E(L) of a boundary link L contains a closed incompressible
surface which is not ∂-parallel (Proposition 4.3). Then, we show the following as a main
result of this note.

THEOREM 1.3. Every strongly n-trivial link is a boundary link for n ≥ 1.

As applications of Theorem 1.3 we have the following:
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COROLLARY 1.4. For a strongly n-trivial link L, ∆L(t) = 0 for n ≥ 1.

COROLLARY 1.5. The exterior of a non-splittable strongly n-trivial link contains a
closed essential surface of positive genus for n ≥ 1.

COROLLARY 1.6. For a non-trivial strongly n-trivial link L with µ components, the

rank of π1(S
3 − L) is greater than or equal to µ + 1 for n ≥ 1.

Recall that for a 2-bridge knot/link L = S(a, b) in the Schubert form, ∆L(−1) = a

since the double branched covering space is the Lens space of type (a, b). Recall also that the
exterior of a 2-bridge link does not contain closed essential surfaces (cf. [7], [3]) and the rank
of the fundamental group is two. Now we can reprove Theorem 1.2 by using any one of these
facts together with Theorem 1.3.

2. On Dehn surgery creating reducible 3-manifolds

See [8] and [10] for basic terminology in 3-dimensional topology, and [14] for surgery,
Seifert surfaces, boundary links. Throughout this paper, N(·) denotes the regular neighbor-
hood and E(·) denotes the exterior, namely the complement of the interior of N(·). Unless
stated otherwise, a link has at least two components. We consider Seifert surfaces for links L

as properly embedded surfaces S in the link exteriors E(L) such that for each component T

of ∂E(L), T ∩ S is a single circle intersecting a meridian exactly in one point.
We use the following results on non-trivial surgeries along a knot in reducible or ∂-

reducible 3-manifolds that yield reducible or ∂-reducible 3-manifolds. In [16], M. Scharle-
mann studied surgeries producing reducible 3-manifolds. The following is a special case of
his result.

THEOREM 2.1 (cf. [16, Theorem 6.1]). Let M be a ∂-reducible 3-manifold. Let K be
a knot in M such that the exterior E(K) is irreducible and ∂-irreducible. If a non-trivial
surgery along K yields a reducible 3-manifold, then K is a cable knot, and the surgery slope
is that of the cabling annulus.

In particular, on Theorem 2.1 if a non-trivial surgery along K yields a reducible 3-
manifold M ′, then M ′ is a Lens space summand. In [5], D. Gabai showed that if a non-trivial
surgery along a knot K in a solid torus yields a solid torus, then K is 0- or 1-bridge braid [5,
Theorem 1.1 (1)]. The set of 1-bridge braids was classified in [6, Section 2]. In [2], J. Berge
classified such knots and such non-trivial surgeries. See also [6, Section 3]. Then, we deduce
the following lemma from [5, Theorem 1.1 (1)].

LEMMA 2.2. Let K be a null-homologous knot in a solid torus V . If a non-trivial
surgery along K yields a solid torus, then K bounds a disk in V .

We have the following lemma by using these results.
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LEMMA 2.3. Let L0 be a trivial link in S3. Let � be a trivial knot in S3 which is
disjoint from L0. Suppose that � is null-homologous in E(L0). If the result of twisting L0

along � is a trivial link, then � bounds a disk in E(L0).

PROOF. Note that the exterior of a trivial link is reducible and ∂-reducible. Suppose
that E(L0 ∪ �) is irreducible and ∂-irreducible. Then, by Theorem 2.1, � is a non-trivial cable
about some knot in E(L0) and the surgery slope is given by the cabling annulus. This implies
that the result of the surgery on � is a Lens space summand, a contradiction since H1(E(L)) is
torsion free. Suppose that E(L0 ∪�) is ∂-reducible. Then some component of L0 ∪� bounds a
disk whose interior is disjoint from L0 ∪ �. If � bounds a disk, we are done. Otherwise, some
component of L0 bounds a disk D, and E(L0 ∪ �) is reducible since ∂N(D) is a separating
sphere in E(L0) not bounding 3-balls. Now we may assume that E(L0 ∪ �) is reducible.

Then there is a sphere S in E(L0 ∪ �) which separates S3 into two 3-balls B1, B2 such that
Bi ∩ (L0 ∪ �) is non-empty for i = 1, 2, � ⊂ B1, and E(B1 ∩ (� ∪ L0)) is irreducible (cf. [8],
[10]). The following lemma is easy to see.

LEMMA 2.4. If a link in a 3-ball is trivial in S3, then the components of the link bound
mutually disjoint disks in the 3-ball.

Thus, if B1 ∩ (L0 ∪ �) = �, then � bounds a disk in B1 by Lemma 2.4 since � is a trivial

knot in S3. Suppose that B1 contains exactly one component k1 of L0. Then each of k1 and
the result of twisting k1 along � is a trivial knot. Hence, by Lemma 2.2, � bounds a disk in
E(k1), and in B1 − k1 by Lemma 2.4 and the conclusion follows. Suppose that B1 contains
more than one components of L0. Then the conclusion follows by Theorem 2.1 for the link

L′
0 = B1 ∩L0 in S3 and �′ = B1 ∩ �, since each of L′

0 and the result of twisting L′
0 along �′ is

trivial by Lemma 2.4. That is, �′ bounds a disk in B1, a conclusion for L0 and � as required.
This completes the proof of Lemma 2.3. �

3. Proof of Theorem 1.3

For convenience, we introduce (n,m)-triviality for links and prove the following:

THEOREM 3.1. For any positive integer n, each (n + 1, n)-trivial link is a boundary
link.

For positive integers n and m such that n ≥ m, we say that a link L is (n,m)-trivial if
there is a diagram of L such that one can choose n crossing points with the property that for
any integer n′ with n ≥ n′ ≥ m, changing crossings of any n′ points of the n points yields
a trivial link. Equivalently, for an (n,m)-trivial link L, there is a diagram of a trivial link L0

which includes n crossing points with the property that changing crossings on the n points
yields L and for any integer m′ with n − m ≥ m′ ≥ 0, chaining crossings on any m′ points of
the n points yields a trivial link. Observe the following by definition:

PROPOSITION 3.2. (a) A link is strongly n-trivial if and only if it is (n+1, 1)-trivial.
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FIGURE 3. The −1-surgery along �i changes L0 into L.

(b) An (n,m)-trivial link is (n,m + 1)-trivial for n > m.

Then we show that (n + 1, n)-trivial links admit surgery descriptions as follows:

LEMMA 3.3. For an (n + 1, n)-trivial µ-component link L = K1 ∪ · · · ∪ Kµ, there is
an (n+µ+1)-component link k1 ∪· · ·∪kµ ∪�µ+1 ∪· · ·∪�n+µ+1 such that L0 = k1 ∪· · ·∪kµ

is a trivial link, L is obtained from L0 by suitable ±1-surgeries along �i’s, and each �i bounds
a disk in E(L0).

PROOF. Let L0 denote the trivial link obtained from L by the crossing changes on the
n + 1 crossing points. We put a circle �i near each of the n + 1 crossing points as in Figure 3
so that lk(�i, L0) = 0. Then, we can recover L from L0 by the corresponding ±1-surgeries

along all �i . Note that the link Li
0 obtained from L0 by performing a suitable ±1-surgery

along a component �i is a trivial link for i = µ+1, . . . , n+µ+1 since L is (n+1, n)-trivial.
By the (n + 1, n)-triviality of L and counting the linking numbers, we see that each of the
n + 1 crossings is made by the same component of L0, a “self-crossing”. Thus, each �i is
null-homologous in E(L0) since lk(�i , L0) = 0. Now by Lemma 2.3, we see that each �i

bounds a disk in E(L0). This completes the proof. �

LEMMA 3.4. Let L0 = k1 ∪ · · · ∪ kµ be a boundary link. Let �µ+1 ∪ · · · ∪ �n+µ+1

be a link in E(L0). Suppose that each �i bounds a disk in E(L0). Then k1, k2, . . . , kµ bound
mutually disjoint Seifert surfaces disjoint from the �i’s.

PROOF. Let S1, S2, . . . , Sµ be mutually disjoint Seifert surfaces for ki’s, and Dj the
disk bounded by �j . We may assume that Si and Dj are in general position. Then, (S1 ∪ · · · ∪
Sµ) ∩ Dj consists of circles and proper arcs. If (S1 ∪ · · · ∪ Sµ) ∩ Dj is empty or consists
of circles for each j , we are done. Suppose (S1 ∪ · · · ∪ Sµ) ∩ Dj has an arc component for
some j , and let α be an outermost arc of Dj with respect to the arc components. Let β be the
segment of �j corresponding to the outermost disk. Then, α is contained in some Si and β is
an arc such that the interior is disjoint from S1 ∪· · · ∪Sµ and, since α is bi-collared in Dj , the
ends of β are on the same side of Si . Attaching a tube to Si along β, we obtain a new system
of disjoint Seifert surfaces S′

i for the components of L0. This procedure reduces the number
of arc components of (S1 ∪ · · · ∪ Sµ) ∩ Dj (and may produce circle components). Repeating
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FIGURE 4. This link is not strongly n-trivial but (n, n)-trivial.

this procedure for j = µ+1, µ+2, . . . , n+µ+1, we get a desired system of disjoint Seifert
surfaces. This completes the proof. �

Now we are ready to prove Theorem 3.1.

PROOF OF THEOREM 3.1. Let L0, �i , kj be as in Lemma 3.3. Then L0 is a bound-
ary link since it is a trivial link. By Lemma 3.4, there are mutually disjoint Seifert surfaces
S1, . . . , Sµ for ki’s disjoint from any of �i . Now Sj ’s become mutually disjoint Seifert sur-
faces S∗

i ’s for Ki’s after corresponding ±1-surgeries along �i . This completes the proof of
Theorem 3.1. �

PROOF OF THEOREM 1.3. This follows from Proposition 3.2 and Theorem 3.1. �

We remark that Theorem 3.1 (and the corollaries corresponding to Corollaries 1.4, 1.5,
1.6) are sharp in the sense that the link illustrated in Figure 4 is a 2-bridge (n, n)-trivial link
but is not a boundary link.

The (n,m)-triviality gives a wider class than strongly n-trivial knots and links. Given
a positive integer n ≥ 3, let n1, n2 be positive integers such that n − 1 = n1 + n2. Then
for a strongly n1-trivial knot K1 and a strongly n2-trivial knot K2, it is easy to see that the
composition K = K1#K2, which is not an unknotting number one knot by Scharlemann [15],
is an (n + 1, n)-trivial knot but is not strongly n-trivial. Notice that if L is unknotting number
n, then L is (n, n)-trivial. There are a plenty of links that are boundary links but not strongly
n-trivial for any n ≥ 1, that is, the opposite direction of Theorem 1.3 is not true. However, it
appears unknown whether any boundary link is (n, n − 1)-trivial for some n.

4. Proofs of Corollaries

It is well-known that ∆L(t) = 0 for any boundary link L and hence Corollary 1.4 fol-
lows. Corollary 1.5 follows from Theorem 1.3 and Lemma 4.3. Corollary 1.6 follows from
Theorem 1.3 and Lemma 4.4.

LEMMA 4.1. The components of a µ-component boundary link L admit mutually dis-
joint Seifert surfaces S1, . . . , Sµ such that each Si is incompressible in E(L).
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PROOF. We refer to
∑

g(Si ) as a complexity for the system S1, . . . , Sµ of mutually
disjoint Seifert surfaces for the components of L. Let Si give the minimal complexity among
disjoint Seifert surfaces. Then, we shall prove that, replacing Si ’s if necessary by Seifert
surfaces of the same complexity, each Si is incompressible in E(L). If not, there is an em-
bedded disk D in E(L) such that D ∩ Si = ∂D and ∂D does not bound a disk in Si . We
may assume that D and the other Sj ’s are in general position and D ∩ (S1 ∪ · · · ∪ Sµ) is
non-empty and consists of circles including ∂D. Let D′ be an innermost disk of D with re-
spect to D ∩ (S1 ∪ · · · ∪ Sµ), and Sk the component containing ∂D′. If ∂D′ does not bound
a disk in Sk , then the compression of Sk along D′ yields the ones with smaller complexity, a
contradiction. If ∂D′ bounds a disk D′′ in Sj , then replace Sj with S′

j = (Sj − D′′) ∪ D′ to

obtain a new system with the same complexity. Repeating this process finitely many times,
we reach a contradiction to the minimality of the complexity. This completes the proof. �

LEMMA 4.2. Let M be a compact, orientable, irreducible 3-manifold with non-empty
boundary ∂M . If ∂M is disconnected, then M contains a closed incompressible surface of
positive genus.

PROOF. We construct disjoint surfaces Fi in M successively as follows: Start with a
component F0 of ∂M and put F1 = ∂N(F0,M)−F0. Put W1 = N(F0,M). If Fi has a sphere
component P , then by the irreducibility P bounds a 3-ball C on the side not containing Wi

and regard Fi −P as Fi and Wi ∪C as Wi . At this stage Fi is not empty because Fi separates
F0 from ∂M − F0. Then, each component of Fi has positive genus and W ′

i = W1 ∪ · · · ∪ Wi

is a compression body in which Fi is incompressible. If Fi is incompressible in M , we stop.
If Fi is compressible in M , then it is compressible in cl(M − W ′

i ) and we compress Fi to
obtain a new surface Fi+1 and write Wi+1 the compression body between Fi and Fi+1. Since
the complexity of Fi+1 is fewer than that of Fi , Fn is incompressible for some n. Now it is
elementary to show that each component of Fn is incompressible in M . �

LEMMA 4.3. The exterior of a non-splittable boundary link contains a closed essential
surface of positive genus.

PROOF. A non-splittable boundary link L with µ-component (µ ≥ 2) admits mutually
disjoint incompressible Seifert surfaces S1, S2, . . . , Sµ by Lemma 4.1. If E(S1∪S2 ∪· · ·∪Sµ)

has a reducing sphere R, then R becomes a splitting sphere of L. Hence E(S1∪S2∪· · ·∪Sµ) is
irreducible. By Lemma 4.2, E(S1 ∪S2 ∪· · ·∪Sµ) contains a closed incompressible surface F

of positive genus. By the incompressibility of Si and the irreducibility of E(S1 ∪S2 ∪· · ·∪Sµ)

we see that F is incompressible in E(L) by the standard innermost disk argument. If F is

parallel to a component of ∂E(L), then F bounds a solid torus V in S3 whose core is a
component ki of L. However ki bounds the Seifert surface Si in V . This implies that ki is
null-homologous in V and cannot be a core, a contradiction. Hence F is a desired one. This
completes the proof. �
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LEMMA 4.4. Let L be a non-trivial µ-component boundary link for µ > 1. Then the

rank of π1(S
3 − L) is greater than or equal to µ + 1.

PROOF. Let S1, . . . , Sµ be disjoint Seifert surfaces for the components of L. Let Bµ

be the bouquet of µ loops. Then there is a continuous map f : E(L) → Bµ such that
f (E(S1 ∪ · · · ∪ Sµ)) is the vertex of Bµ and f (N(Si)) is the ith loop of Bµ. Notice that f

is a surjection which induces an epimorphism f∗ : π1(S
3 − L) → Fµ, where Fµ is the free

group of rank µ. Therefore the rank of π1(S
3 −L) is greater than or equal to µ. If π1(S

3 −L)

is generated by exactly µ elements, then it can be shown that f∗ is injective since Fµ is the

free group of rank µ and hence π1(S
3 − L) is a free group. This implies that L is trivial, a

contradiction. �
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