A Note on Finite Simple Groups with Abelian Sylow p-subgroups

Masato SAWABE
Chiba University
(Communicated by K. Shinoda)

Abstract

In this note, we will make a remark on finite simple groups with abelian Sylow p-subgroups using the Classification Theorem of the Finite Simple Groups.

1. Introduction

In our paper Sawabe-Watanabe [6], we verified the Alperin's weight conjecture [1] for the principal block of a finite group X with an abelian Sylow p-subgroup P under the hypothesis $\left(H_{1}\right)$ that $\left|N_{X}(P) / C_{X}(P)\right|=r$ for a prime r. Our method in [6] is as follows. We first reduce the conjecture under $\left(H_{1}\right)$ to that of finite simple groups, and next try to obtain the result [6, Proposition 6.4]; which is saying that, under $\left(H_{1}\right)$ and X is simple, P must be cyclic, $P \cong C_{2} \times C_{2}$, or $X \cong \operatorname{PSL}\left(2, p^{e}\right)$ for $p=2,3$. As the conjecture is known to be true in those three cases, we could conclude that the conjecture under $\left(H_{1}\right)$ is verified. Note that to prove [6, Proposition 6.4], we used the Classification Theorem of the finite simple groups. On the other hand, in August 2002, the author was informed by Watanabe[8] that the conjecture for the principal block of a finite group X with an abelian Sylow p-subgroup P, under the another hypothesis $\left(H_{2}\right)$ that $\left|N_{X}(P) / C_{X}(P)\right|=r^{2}$ for a prime r, can be also reduced to that of finite simple groups. So it is a frequent occurrence in modular representation theory that a problem on finite groups having abelian Sylow p-subgroups is reduced to that of finite simple groups. So it is quite valuable to investigate, in general, finite simple groups with abelian Sylow p-subgroups. From this reason, the purpose of this note is to prove the following:

ThEOREM 1. Let X be a finite simple group with an abelian Sylow p-subgroup P. Then one of the following holds.

1. $N_{X}(P) / C_{X}(P)$ contains an involution.
2. P is cyclic.
3. $P \cong C_{2} \times C_{2}$.
4. $X \cong P S L\left(2, p^{e}\right)$.
5. $X \cong J_{1}$ or ${ }^{2} G_{2}\left(3^{2 m+1}\right)$ with $p=2$, and $N_{X}(P) / C_{X}(P) \cong(7: 3)$.

The following are immediate consequences of Theorem 1.
Corollary 1. Let X be a finite simple group with an abelian Sylow p-subgroup P. Suppose that $\left|N_{X}(P) / C_{X}(P)\right|$ is a prime. Then one of the following holds.

1. P is cyclic.
2. $\quad P \cong C_{2} \times C_{2}$.
3. $X \cong P S L\left(2, p^{e}\right)$ for $p=2$ or 3 .

Proof. Set $\mathcal{E}_{X}(P):=N_{X}(P) / C_{X}(P)$. Suppose that $\mathcal{E}_{X}(P)$ contains an involution, then $\mathcal{E}_{X}(P) \cong C_{2}$. It follows that P is cyclic by Smith-Tyrer[7]. Suppose next that $X \cong$ $\operatorname{PSL}\left(2, p^{e}\right)$ with p odd, then $\left|\mathcal{E}_{X}(P)\right|=\frac{1}{2}\left(p^{e}-1\right)$. If $p \geq 5$ then $\frac{1}{2}(p-1) \neq 1$ and $p^{e-1}+\cdots+p+1=1$. This implies that $e=1$, and thus P is cyclic.

Corollary 2. Let X be a finite simple group with an abelian Sylow p-subgroup P. Suppose that $\left|N_{X}(P) / C_{X}(P)\right|=r^{2}$ for a prime r. Then one of the following holds.

1. $N_{X}(P) / C_{X}(P) \cong C_{4}$ or $C_{2} \times C_{2}$.
2. P is cyclic.
3. $X \cong \operatorname{PSL}\left(2,3^{e}\right)$.

Proof. Set $\mathcal{E}_{X}(P):=N_{X}(P) / C_{X}(P)$. Suppose that $P \cong C_{2} \times C_{2}$, then $\mathcal{E}_{X}(P)$ is a subgroup of S_{3}; but this is impossible. Suppose next that $X \cong P \operatorname{SL}\left(2,2^{e}\right)$, then $r^{2}=$ $\left|\mathcal{E}_{X}(P)\right|=2^{e}-1$. Note that $e \geq 2$ as $r \neq 1$. Now let $r=2 k+1$ then we have that $2^{e}=4 k^{2}+4 k+2$, a contradiction. Finally suppose that $X \cong P S L\left(2, p^{e}\right)$ with p odd, then $r^{2}=\left|\mathcal{E}_{X}(P)\right|=\frac{1}{2}\left(p^{e}-1\right)$. If $p \geq 5$ then $p-1=2 n$ for $n \geq 2$, and $p^{e}-1=2 n m$ where $m:=p^{e-1}+\cdots+p+1$. Suppose further that $e \neq 1$. Then $m \neq 1$ and $2 r^{2}=p^{e}-1=2 n m$. Thus $m=n=r$. But it follows that $p-1=2 n=2 m \geq 2(p+1)$, a contradiction. Therefore we have that if $p \geq 5$ then $e=1$; namely P is cyclic.

Note that the result [6, Proposition 6.4] mentioned above is exactly Corollary 1, so our result Theorem 1 contains one of the main parts of [6]. Furthermore as indicated earlier, the Alperin's weight conjecture for the principal block of a finite group X with an abelian Sylow p-subgroup P under the hypothesis $\left(H_{2}\right)$ is reduced to that of finite simple groups. So Corollary 2 tells us that, to verify the conjecture under $\left(H_{2}\right)$, it is enough to consider the only three cases described in it.

2. Preliminaries

Throughout this note, denote by $\pi(G)$ the set of primes dividing the order $|G|$ of a finite group G, and by C_{n} the cyclic group of order n. Furthermore, for a subgroup H of G, we set the factor group $\mathcal{E}_{G}(H):=N_{G}(H) / C_{G}(H)$ called the automizer of H in G. First we prepare the following proposition; which will be used later repeatedly. Although this is shown in [6], we will give a sketch of the proof.

Proposition 1. Let G be a finite group with an abelian Sylow p-subgroup P.

1. If Q is a subgroup of P, then $\mathcal{E}_{G}(Q)$ is involved in $\mathcal{E}_{G}(P)$; that is, there exist a subgroup M of $\mathcal{E}_{G}(P)$ and a normal subgroup N of M such that $\mathcal{E}_{G}(Q) \cong M / N$. In particular $\left|\mathcal{E}_{G}(Q)\right|$ divides $\left|\mathcal{E}_{G}(P)\right|$.
2. If H is an involved group in G with $p \in \pi(H)$, and R is a Sylow p-subgroup of H, then $\mathcal{E}_{H}(R)$ is involved in $\mathcal{E}_{G}(P)$. In particular $\left|\mathcal{E}_{H}(R)\right|$ divides $\left|\mathcal{E}_{G}(P)\right|$.

Proof. (1) As P is abelian, $P \leq C_{G}(Q)$. For any $n \in N_{G}(Q)$, we have that $P^{n} \leq$ $C_{G}(Q)^{n}=C_{G}(Q) \geq P$, and that there exists $c \in C_{G}(Q)$ such that $P^{n c^{-1}}=P$. It follows that $N_{G}(Q) \leq N_{G}(P) C_{G}(Q)$, and $N_{G}(Q)=\left(N_{G}(Q) \cap N_{G}(P)\right) C_{G}(Q)$ by Modular law. Thus

$$
\mathcal{E}_{G}(Q) \cong N_{G}(Q) \cap N_{G}(P) / C_{G}(Q) \cap N_{G}(P),
$$

and which shows that $\mathcal{E}_{G}(Q)$ is a homomorphic image of a subgroup $N_{G}(Q) \cap N_{G}(P) / C_{G}(P)$ of $\mathcal{E}_{G}(P)$. Therefore $\mathcal{E}_{G}(Q)$ is involved in $\mathcal{E}_{G}(P)$.
(2) Let $N \unlhd H_{1}$ be subgroups of G such that $H=H_{1} / N=\overline{H_{1}}$, and let $Q \in \operatorname{Syl}_{p}\left(H_{1}\right)$ such that $R=Q N / N=\bar{Q}$. Then there are natural surjective homomorphisms from $\mathcal{E}_{H_{1}}(Q)$ to $\overline{N_{H_{1}}(Q)} / \overline{C_{H_{1}}(Q)}$, and from $\overline{N_{H_{1}}(Q)} / \overline{C_{H_{1}}(Q)}$ to $\mathcal{E}_{\overline{H_{1}}}(\bar{Q})=\mathcal{E}_{H}(R)$. On the other hand, since $\mathcal{E}_{G}(Q)$ is involved in $\mathcal{E}_{G}(P)$ by (1), and since $\mathcal{E}_{G}(Q)$ possesses a subgroup $N_{H_{1}}(Q) C_{G}(Q) / C_{G}(Q) \cong \mathcal{E}_{H_{1}}(Q)$, we have that $\mathcal{E}_{H_{1}}(Q) \cong L / K$ for some $K \unlhd L \leq$ $\mathcal{E}_{G}(P)$. This implies that there exist surjective homomorphisms $L \rightarrow \mathcal{E}_{H_{1}}(Q) \rightarrow \mathcal{E}_{H}(R)$. Therefore $\mathcal{E}_{H}(R)$ is involved in $\mathcal{E}_{G}(P)$.

Lemma 1. Let G be a finite group, and P a p-subgroup of G with $p \notin \pi(Z(G))$. Then $\mathcal{E}_{G}(P) \cong \mathcal{E}_{\bar{G}}(\bar{P})$ where $\bar{G}=G / Z(G)$.

Proof. Straightforward.

3. Alternating groups and sporadic groups

Proposition 2. Let X be the alternating group $A_{n}(n \geq 5)$ with an abelian Sylow p-subgroup P. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic; except for $X=$ $A_{5} \cong P S L(2,4)$ and $p=2$, and in which case $\mathcal{E}_{A_{5}}(P) \cong C_{3}$ and $P \cong C_{2} \times C_{2}$.

Proof. If $p=2$ then, since P is abelian, we have that $X=A_{5}$ and $\mathcal{E}_{A_{5}}(P) \cong C_{3}$. Now we may assume that $p \geq 3$, and express n as $p k+h(k \in \mathbb{N}, 0 \leq h \leq p-1)$. If $k=1$ then P is cyclic. Thus we may also assume that $k \geq 2$. Now we can use at least $2 p$ letters $i_{1}^{(1)}, \ldots, i_{p}^{(1)}, i_{1}^{(2)}, \ldots, i_{p}^{(2)}$. For $d=1,2$, let $Q_{d}:=\left\langle\left(i_{1}^{(d)}, \ldots, i_{p}^{(d)}\right)\right\rangle \leq X$ and $Q:=Q_{1} \times Q_{2}$. Up to conjugacy, we may assume that $Q \leq P$. Furthermore let

$$
\alpha_{d}:=\left(i_{1}^{(d)}, i_{p}^{(d)}\right)\left(i_{2}^{(d)}, i_{p-1}^{(d)}\right)\left(i_{3}^{(d)}, i_{p-2}^{(d)}\right) \cdots\left(i_{r}^{(d)}, i_{r+2}^{(d)}\right) \quad(d=1,2),
$$

a permutation on $\left\{i_{1}^{(d)}, \ldots, i_{p}^{(d)}\right\}$ where $r:=\frac{1}{2}(p-1) \geq 1$ as $p \geq 3$. Notice that α_{d} normalizes Q_{d} but not centralize Q_{d}. Then an even permutation $\alpha_{1} \alpha_{2}$ is an involution lying in $\mathcal{E}_{X}(Q)$.

But since $\left|\mathcal{E}_{X}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition $1(1)$, we have that $\left|\mathcal{E}_{X}(P)\right|$ is even. The proof is complete.

REMARK. Even if P is cyclic, $\mathcal{E}_{X}(P)$ does not necessarily contain an involution. Indeed, if $p=2 r+1$ is an odd prime then for $C_{p} \cong P \in \operatorname{Syl}_{p}\left(A_{p}\right), \mathcal{E}_{A_{p}}(P)$ is of order r. Thus if r is odd then so is $\left|\mathcal{E}_{A_{p}}(P)\right|$.

Proposition 3. Let X be a sporadic simple group with an abelian Sylow p-subgroup P. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic; except for the first Janko group $X=J_{1}$ and $p=2$, and in which case $\mathcal{E}_{J_{1}}(P) \cong(7: 3)$.

Proof. See for example [3] or [5, Section 5].
For later use, we prepare the following on the symmetric groups.
Proposition 4. Let X be the symmetric group $S_{n}(n \geq 3)$ with an abelian Sylow p-subgroup P with an odd prime p. Then $\mathcal{E}_{X}(P)$ contains an involution.

PROOF. As p is odd, we can write p as $2 r+1$ for $r \geq 1$. Let $x=\left(i_{1}, i_{2}, \ldots, i_{p}\right)$ in P of order p, and let $Q:=\langle x\rangle \cong C_{p}$ be a subgroup of P. Then for an involution

$$
\alpha:=\left(i_{1}, i_{p}\right)\left(i_{2}, i_{p-1}\right)\left(i_{3}, i_{p-2}\right) \cdots\left(i_{r}, i_{r+2}\right)
$$

in X, we have that $x^{\alpha}=x^{-1} \neq x$ as $p \neq 2$. Thus α lies in $\mathcal{E}_{X}(Q)$. But since $\left|\mathcal{E}_{X}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition $1(1)$, we have that $\left|\mathcal{E}_{X}(P)\right|$ is even.

4. Some cases of Lie type groups

In this section, we will consider some special cases of Lie type groups. We refer to [2] for their standard property.

Proposition 5 (Defining characteristic). Let X be a simple group of Lie type over $G F(q)$ where $q=p^{e}$ for some prime p. Suppose that X possesses an abelian Sylow psubgroup P. Then $X \cong P S L(2, q)$.

Proof. This follows from the Chevalley's commutator formula (see also [6, Proposition 5.1]).

Proposition 6. Let X be a simple group of Lie type, X^{u} a universal version of X, and P an abelian Sylow p-subgroup of X with $p \in \pi\left(Z\left(X^{u}\right)\right)$ and $p \neq 2$. Then $\mathcal{E}_{X}(P)$ contains an involution.

Proof. As $p \in \pi\left(Z\left(X^{u}\right)\right)$, it is enough to consider the following (see also in the proof of [6, Proposition 5.2]):

$$
\begin{aligned}
& A_{l}(q)(l \geq 1), \quad p \mid(l+1, q-1) ; \quad E_{6}(q), \quad p=3 \\
& { }^{2} A_{l}\left(q^{2}\right)(l \geq 2), \quad p \mid(l+1, q+1) ; \quad{ }^{2} E_{6}\left(q^{2}\right), \quad q+1 \equiv 0(3), \quad p=3
\end{aligned}
$$

CASE. $\quad E_{6}(q), p=3$: A Sylow 3-subgroup of $E_{6}(q)$ is not abelian, since the Weyl group $O^{-}(6,2)$ of type E_{6} possesses a non-abelian Sylow 3-subgroup.

CASE. $\quad A_{l}(q)=\operatorname{PSL}(l+1, q), p \mid(l+1, q-1)$: Let $X=P S L(l+1, q)$. Since $p \mid(l+1, q-1)$, we have that $l+1 \geq p \geq 3$, and that there exists $t \in G F(q)^{\times} \cong C_{q-1}$ such that $t^{p}=1$ and $t \neq 1$. Let $D:=\left\{\bar{M}=\overline{\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)} \in X \mid(\bar{M})^{p}=1\right\}$, modulo $Z\left(X^{u}\right)$, be a p-subgroup of X where $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)$ is a diagonal matrix in $\operatorname{SL}(l+1, q)$. Let $w:=\overline{A \oplus B}$ be an involution of X where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and $B=\operatorname{diag}(1, \ldots, 1,-1) \in G L(l-1, q)$. Evidently w normalizes D but does not centralize an element $z=\overline{\operatorname{diag}\left(t, t^{-1}, 1, \ldots, 1\right)}$ in D. Note that $t \neq t^{-1}$ as $p \neq 2$. This implies that an involution w is contained in $\mathcal{E}_{X}(D)$. But since $\left|\mathcal{E}_{X}(D)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition $1(1),\left|\mathcal{E}_{X}(P)\right|$ is even.

CASE. ${ }^{2} A_{l}\left(q^{2}\right)=P S U\left(l+1, q^{2}\right), p \mid(l+1, q+1): \quad$ Let $X=P S U\left(l+1, q^{2}\right)$. Recall that $S U\left(l+1, q^{2}\right)=\left\{M \in S L\left(l+1, q^{2}\right) \mid\left({ }^{t} M\right) \theta(M)=I\right\}$ where θ is an associated field automorphism; which is defined by $\theta(\alpha)=\alpha^{q}$ for $\alpha \in G F\left(q^{2}\right)^{\times} . \theta$ is of order 2. Now since $p \mid q+1$, there exists $t \in\left\{\alpha \in G F\left(q^{2}\right)^{\times} \mid 1=\alpha \theta(\alpha)=\alpha^{q+1}\right\} \cong C_{q+1}$ such that $t^{p}=1$ and $t \neq 1$. Then the same argument as above can be applied. Indeed, define D, w, z as in the case of $A_{l}(q)$. Then D is a p-subgroup of $X=P S U\left(l+1, q^{2}\right)$ with $z \in D$. Furthermore an involution $w \in X$ lies in $\mathcal{E}_{X}(D)$. But since $\left|\mathcal{E}_{X}(D)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition 1(1), $\left|\mathcal{E}_{X}(P)\right|$ is even.

CASE. ${ }^{2} E_{6}\left(q^{2}\right), q+1 \equiv 0(3), p=3$: Let $X={ }^{2} E_{6}\left(q^{2}\right)$, and then $H=P S U\left(6, q^{2}\right)$ is involved in X. Since $p=3 \mid(6, q+1)$, we have that p divides $\left|Z\left(S U\left(6, q^{2}\right)\right)\right|$. Then applying the unitary case above, we have that $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$, and thus so is $\left|\mathcal{E}_{X}(P)\right|$. The proof is complete.

Proposition 7 (Weyl groups). Let $X={ }^{d} X_{l}\left(q^{d}\right)$ be a universal group of Lie type, and P a Sylow p-subgroup of X with $p \neq 2, p \nmid q$ and $p \notin \pi\left(W\left(X_{l}\right)\right)$ where $W\left(X_{l}\right)$ is the Weyl group of type X_{l}. Then $\mathcal{E}_{X}(P)$ contains an involution.

REMARK. For formality of notation, ${ }^{1} X_{l}\left(q^{1}\right)$ implies the untwisted group $X_{l}(q)$. In the case of Suzuki and Ree groups, namely ${ }^{d} X_{l}={ }^{2} B_{2},{ }^{2} F_{4},{ }^{2} G_{2}$, we set ${ }^{d} X_{l}\left(q^{d}\right)={ }^{2} B_{2}(q)(q=$ $\left.2^{2 m+1}\right),{ }^{2} F_{4}(q)\left(q=2^{2 m+1}\right),{ }^{2} G_{2}(q)\left(q=3^{2 m+1}\right)$. The twisted group ${ }^{d} X_{l}\left(q^{d}\right)(d \geq 2)$ is a set of elements of $X_{l}\left(q^{d}\right)$; which is fixed by a graph-field automorphism of order d in $\operatorname{Aut}\left(X_{l}\left(q^{d}\right)\right)$. (In the Atlas [3], ${ }^{d} X_{l}\left(q^{d}\right)$ is denoted by ${ }^{d} X_{l}\left(q, q^{d}\right)$, and a abbreviated notation ${ }^{d} X_{l}(q):={ }^{d} X_{l}\left(q^{d}\right)$ is also used there.)

Proof. Concerning the Sylow structure of P, we follow the argument in the proof of [5, (10-1)]. See [5] for the details. Let m be the multiplicative order of q modulo p, and set
$Y:=X_{l}\left(q^{d m}\right)$ a universal group. Then there exists a group $F=\langle\rho, \beta\rangle \leq \operatorname{Aut}(Y)$ generated by a graph-field automorphism $\rho=\sigma \theta$ of order d and a field automorphism β of order m such that $X \cong C_{Y}(F)$. (As mentioned above, in the case of Suzuki and Ree groups, we have that $Y=B_{2}\left(q^{2 m}\right), F_{4}\left(q^{2 m}\right), G_{2}\left(q^{2 m}\right)$, and thus β is of order $2 m$ in these cases.) We identify X with $C_{Y}(F)$. Furthermore we may assume that up to conjugacy, P is contained in a Sylow p-subgroup R of a Cartan subgroup H of Y; in particular P is abelian. Then we have that $P=C_{R}(F)$ as $P=C_{P}(F) \leq C_{R}(F) \leq X$ and $P \in \operatorname{Syl}_{p}(X)$. Recall that up to conjugacy, $H=\left\langle h_{r}(t) \mid r \in \Pi, t \in G F\left(q^{m d}\right)^{\times}\right\rangle$where Π is a set of fundamental roots of Y and $h_{r}(t)$ is a standard generator of H. Thus letting E the unique Sylow p-subgroup of the multiplicative group $G F\left(q^{m d}\right)^{\times}$, we have that

$$
R=\left\langle h_{r}(t) \mid r \in \Pi, t \in E\right\rangle
$$

Now let $\left\{\omega_{r} \mid r \in \Pi\right\}$ be a set of standard generators of the Weyl group of Y. Then setting $N=\left\langle\omega_{r}, H \mid r \in \Pi\right\rangle \leq Y$, we have that $N / H \cong W\left(X_{l}\right)$.

CASE. $\quad X$ is untwisted: Since $F=\langle\beta\rangle$ in this case, $P=C_{R}(\beta)=\left\langle h_{r}(t)\right| r \in$ $\left.\Pi, t \in E, t^{\beta}=t\right\rangle$. Take any $r \in \Pi$. Since $\left[\omega_{r}, \beta\right]=1$ and $h_{s}(t)^{\omega_{r}}=h_{\omega_{r}(s)}(t)$ for any root s, we have that ω_{r} is in X and also normalizes $C_{R}(\beta)=P$; namely $\omega_{r} \in N_{X}(P)$. On the other hand, for $t \in E$ with $t \neq 1$ and $t^{\beta}=t$, an element $h_{r}(t)$ lies in $P \backslash\{1\}$, and we have that $h_{r}(t)^{\omega_{r}}=h_{-r}(t)=h_{r}(t)^{-1} \neq h_{r}(t)$ as $p \neq 2$. This implies that $\omega_{r} \notin C_{X}(P)$. Furthermore since $\omega_{r}^{2} \in X \cap H \leq X \cap C_{Y}(P)=C_{X}(P), \mathcal{E}_{X}(P)$ contains an involution $\omega_{r} C_{X}(P)$.

CASE. X is twisted: First we recall some ρ-invariant subgroups of $C_{Y}(\rho) \cong$ ${ }^{d} X_{l}\left(\left(q^{m}\right)^{d}\right)$. For a σ-orbit J on Π, set $W(J)=\left\langle\overline{\omega_{r}}=\omega_{r} H \mid r \in J\right\rangle \leq N / H$. Then there exists a unique element $\overline{w_{0}(J)}$ of order 2 in $W(J)$ such that ${\overline{w_{0}(J)}}^{\rho}={\overline{w_{0}(J)}}^{\text {. }}$ Then $\left\langle\overline{w_{0}(J)}\right| J=\sigma$-orbit on $\left.\Pi\right\rangle$ is the Weyl group of $C_{Y}(\rho)$; which is isomorphic to $N^{1} / H^{1} \cong N^{1} H / H$ where $N^{1}=C_{Y}(\rho) \cap N$ and $H^{1}=C_{Y}(\rho) \cap H$. We may assume that $w_{0}(J) \in N^{1}$. Recall that $\overline{w_{0}(J)}$ is a reflection along the vector $a(r)$ where $r \in J$ and $a(r)$ is the average of the vectors in the σ-orbit J. Next define an element of H^{1} as follows:

$$
\begin{array}{lll}
h_{J}(t):=h_{r}(t) & \text { for } t \in G F\left(q^{d m}\right)^{\times} \text {with } \bar{t}=t, & \text { if } J=\{r\}, \\
h_{J}(t):=h_{r}(t) h_{\bar{r}}(\bar{t}) & \text { for } r \in J \text { and } t \in G F\left(q^{d m}\right)^{\times}, & \text {if }|J|=2, \\
h_{J}(t):=h_{r}(t) h_{\bar{r}}(\bar{t}) h_{\bar{r}}(\overline{\bar{t}}) & \text { for } r \in J \text { and } t \in G F\left(q^{d m}\right)^{\times}, & \text {if }|J|=3,
\end{array}
$$

where $\bar{r}=r^{\sigma}$ for a root r, and $\bar{t}=t^{\theta}$ for $t \in G F\left(q^{d m}\right)$. (Note that if the characteristic of Suzuki-Ree groups $C_{Y}(\rho)$ is 2 or 3 , then $h_{J}(t)$ is defined respectively as $h_{r}(t) h_{\bar{r}}\left(\overline{t^{2}}\right)$ or $h_{r}(t) h_{\bar{r}}\left(t^{3}\right)$ for a short root r in J.) Any element of H^{1} can be uniquely expressed as a product $\Pi h_{J}(t)$ where J runs through all σ-orbits on Π. Thus a Sylow p-subgroup R^{1} of H^{1} is as follows:

$$
R^{1}=\left\langle h_{J}(t) \left\lvert\, \begin{array}{l}
J=\sigma \text {-orbit on } \Pi, t \in E \text { such that } \bar{t}=t \\
\text { if } t \text { is a coefficient of } h_{J}(t) \text { with }|J|=1
\end{array}\right.\right\rangle
$$

where $E \in S y l_{p}\left(G F\left(q^{d m}\right)^{\times}\right)$. Then $P=C_{R}(F)=C_{R^{1}}(\beta)$.
Return back to the proof of Proposition 7. Take a σ-orbit J on Π. Then we may assume that $\left[w_{0}(J), \rho\right]=\left[w_{0}(J), \beta\right]=1$, and thus $w_{0}(J) \in X$. Furthermore since $w_{0}(J)$ normalizes R^{1}, a unique Sylow p-subgroup of H^{1}, we can see that $w_{0}(J)$ acts on $C_{R^{1}}(\beta)=P$; namely $w_{0}(J) \in N_{X}(P)$. Now we may assume that $|J| \geq 2$. Then, for $t \in E$ with $t \neq 1$ and $t^{\beta}=t$, an element $h_{J}(t)$ lies in $P \backslash\{1\}$. But $h_{J}(t)^{w_{0}(J)}=h_{-J}(t) \neq h_{J}(t)$ as $p \neq 2$; which implies that $w_{0}(J) \notin C_{X}(P)$. Furthermore since $w_{0}(J)^{2} \in X \cap H \leq X \cap C_{Y}(P)=C_{X}(P), \mathcal{E}_{X}(P)$ contains an involution $w_{0}(J) C_{X}(P)$. The proof is complete.

Proposition 8 (Primes p with $p \mid q-1$). Let $X={ }^{d} X_{l}\left(q^{d}\right)$ be a universal group of Lie type, and P an abelian Sylow p-subgroup of X with $p \neq 2$ and $p \mid q-1$. Then $\mathcal{E}_{X}(P)$ contains an involution.

Proof. As $p \mid q-1, p$ divides the order of a Cartan subgroup H of X. But we have shown in Proposition 7 implicitly that $\left|\mathcal{E}_{X}(Q)\right|$ is even for $Q \in S y l_{p}(H)$, and so is $\left|\mathcal{E}_{X}(P)\right|$. (see also [6, Propositions 5.3, 5.4]).

Finally, we mention simple groups with abelian Sylow 2-subgroups (See [4, Chapter 16.6]):

Proposition 9 (Abelian Sylow 2-subgroups). Let X be a nonabelian simple group with an abelian Sylow 2-subgroup P. Then one of the followings holds.

1. $X \cong \operatorname{PSL}(2, q)$ with $q>3$ and $q \equiv 3,5(\bmod 8)$, or $q=2^{e}$.
2. $X \cong J_{1}$; the first Janko group.
3. $X \cong{ }^{2} G_{2}\left(3^{2 m+1}\right)$; the Ree group.

Note that if $X \cong P S L(2, q)$ with $q>3$ and $q \equiv 3,5(\bmod 8)$ then $P \cong C_{2} \times C_{2}$, and that if $X \cong J_{1}$ or ${ }^{2} G_{2}\left(3^{2 m+1}\right)$ then $\mathcal{E}_{X}(P) \cong(7: 3)$.

5. Classical groups

The aim of this section is to show the following:
Proposition 10. Let X be a classical simple group, and P an abelian Sylow psubgroup of X with $p \neq 2$ and $p \nmid q$. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic.

Proposition 11 (Untwisted classical). Let $X=X_{l}(q)$ be one of universal groups $A_{l}(q)(l \geq 1), B_{l}(q)(l \geq 2, q \equiv 1(2)), C_{l}(q)(l \geq 2), D_{l}(q)(l \geq 4)$, and P an abelian Sylow p-subgroup of X with $p \neq 2$ and $p \nmid q$. Then $\mathcal{E}_{X}(P)$ contains an involution.

Proof. Let $W\left(X_{l}\right)$ be the Weyl group of type X_{l}. By Proposition 7, we may assume that $p \in \pi\left(W\left(X_{l}\right)\right)$. Recall $W\left(A_{l}\right) \cong S_{l+1}, W\left(B_{l}\right) \cong W\left(C_{l}\right) \cong 2^{l} S_{l}$, and $W\left(D_{l}\right) \cong 2^{l-1} S_{l}$. As $p \neq 2, p$ divides the order of the symmetric group $S_{n}(n=l$ or $l+1)$. Then $\left|\mathcal{E}_{S_{n}}(Q)\right|$ is
even for $Q \in \operatorname{Syl}_{p}\left(S_{n}\right)$ by Proposition 4. But since $\left|\mathcal{E}_{S_{n}}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition $1(2)$, we have that $\left|\mathcal{E}_{X}(P)\right|$ is even. The proof is complete.

Let $X={ }^{2} X_{l}\left(q^{2}\right)$ be a universal version of a classical group. Then the order of X is expressed as

$$
|X|=q^{N} \Pi_{m \in \mathcal{O}\left({ }^{2} X_{l}\right)} \Phi_{m}(q)^{r_{m}}
$$

where $\Phi_{m}(q)$ the cyclotomic polynomial for the m th roots of unity, $\mathcal{O}\left({ }^{2} X_{l}\right)$ a set of positive integers depending on ${ }^{2} X_{l}, N$ the number of positive roots in the root system corresponding to X, and r_{m} a positive integer (see [5, Section 10] for the details). Note that r_{m} is known as in Table 1:

> Table 1. $\quad r_{m}$ ([5, Table 10:1])
> ${ }^{2} A_{l} \quad r_{m}=\left[\frac{l+1}{l \operatorname{lcm}(2, m)}\right] \quad$ if $m \not \equiv 2(4)$
> $r_{m}=\left[\frac{2(l+1)}{m}\right] \quad$ if $m \equiv 2(4), m>2$
> $r_{2}=l$
> ${ }^{2} D_{l} \quad r_{m}=\left[\frac{2 l}{l c m(2, m)}\right] \quad$ if $m \nmid l$
> $r_{m}=\left[\frac{2 l}{\operatorname{lcm}(2, m)}\right]-1 \quad$ if $m \mid l$

Let e be the smallest positive integer such that $p \mid \Phi_{e}(q)$, and $m_{p}(X)$ the maximal p-rank of a Sylow p-subgroup of X. Set

$$
\pi:=\{p \in \pi(X) \mid p \neq 2, p \nmid q, p \notin \pi(Z(X))\} .
$$

Lemma 2 ((10-2) in [5]). For $p \in \pi$, we have that $m_{p}(X)=m_{p}(X / Z(X))=r_{e}$.
We will keep the above notation throughout this section.
PROPOSITION 12 (Unitary groups). Let $X={ }^{2} A_{l}\left(q^{2}\right) \cong S U\left(l+1, q^{2}\right)(l \geq 2) a$ universal group with an abelian Sylow p-subgroup P for $p \in \pi$. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic.

Proof. Set $l=2 k$ or $2 k-1$ for $k \geq 1$.
Step 1. We may assume that $p \notin \pi\left(S_{k}\right)$:
Suppose that $p \in \pi\left(S_{k}\right)$, and let $Q \in \operatorname{Syl} l_{p}\left(S_{k}\right)$. Then $\mathcal{E}_{S_{k}}(Q)$ contains an involution by Proposition 4. But since S_{k} is involved in X as the (twisted) Weyl group, we have that $\left|\mathcal{E}_{X}(P)\right|$ is even by Proposition 1(2). Thus we may assume that $p \notin \pi\left(S_{k}\right)$.

STEP 2. We may assume that $e>1$ and $r_{e}>1$:
If $e=1$ then $p \mid \Phi_{1}(q)=q-1$ and thus $\left|\mathcal{E}_{X}(P)\right|$ is even by Proposition 8. On the other hand if $r_{e}=1$ then $m_{p}(X)=r_{e}=1$ by Lemma 2 and thus an abelian Sylow p-subgroup P is cyclic.

STEP 3. If $e=2 i$ and $i \geq 2$ is even then $\mathcal{E}_{X}(P)$ contains an involution:
Since $e \not \equiv 2(4)$ and $2 \leq r_{e}=\left[\frac{l+1}{e}\right]$, we have that $2 e \leq l+1$ and $e \leq \frac{l+1}{2}=k$ or $k+\frac{1}{2}$; which follows that $e \leq k$ and $\pi\left(S_{e}\right) \subseteq \pi\left(S_{k}\right)$. Let $H={ }^{2} A_{e-1}\left(q^{2}\right) \cong S U\left(e, q^{2}\right)(e \geq 4)$ be a subgroup of X. As $r_{e}=\left[\frac{e}{e}\right]=1$ for $H, p \in \pi(H)$. But since $\pi\left(W\left(A_{e-1}\right)\right)=\pi\left(S_{e}\right) \subseteq \pi\left(S_{k}\right)$, $p \notin \pi\left(W\left(A_{e-1}\right)\right)$ by Step 1. Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 7. Now $\left|\mathcal{E}_{H}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition $1(2)$, and hence $\left|\mathcal{E}_{X}(P)\right|$ is even.

STEP 4. If $e=2 i$ and $i \geq 1$ is odd then $\mathcal{E}_{X}(P)$ contains an involution:
Suppose $e=2$; that is, $p \mid \Phi_{2}(q)=q+1$. Let $H={ }^{2} A_{1}\left(q^{2}\right) \cong S U\left(2, q^{2}\right) \cong S L(2, q)$ be a subgroup of X. As $|H|=q(q-1)(q+1), p \in \pi(H)$. Then $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 11. Thus we may assume that $i \geq 3$.

Since $e \equiv 2(4)$ and $e>2$, we have that $2 \leq r_{e}=\left[\frac{2(l+1)}{e}\right]$ and $i=\frac{e}{2} \leq \frac{l+1}{2}=k$ or $k+\frac{1}{2}$; which follows that $i \leq k$ and $\pi\left(S_{i}\right) \subseteq \pi\left(S_{k}\right)$. Let $H={ }^{2} A_{i-1}\left(q^{2}\right) \cong S U\left(i, q^{2}\right)(i \geq 3)$ be a subgroup of X. As $r_{e}=\left[\frac{2 i}{e}\right]=1$ for $H, p \in \pi(H)$. But since $\pi\left(W\left(A_{i-1}\right)\right)=\pi\left(S_{i}\right) \subseteq$ $\pi\left(S_{k}\right), p \notin \pi\left(W\left(A_{i-1}\right)\right)$ by Step 1. Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 7.

STEP 5. If $e \geq 3$ is odd then $\mathcal{E}_{X}(P)$ contains an involution:
Since $e \not \equiv 2(4)$, we have that $2 \leq r_{e}=\left[\frac{l+1}{2 e}\right]$ and $2 e \leq \frac{l+1}{2}=k$ or $k+\frac{1}{2}$; which follows that $2 e \leq k$ and $\pi\left(S_{2 e}\right) \subseteq \pi\left(S_{k}\right)$. Let $H={ }^{2} A_{2 e-1}\left(q^{2}\right) \cong S U\left(2 e, q^{2}\right)(2 e \geq 6)$ be a subgroup of X. As $r_{e}=\left[\frac{2 e}{2 e}\right]=1$ for $H, p \in \pi(H)$. But since $\pi\left(W\left(A_{2 e-1}\right)\right)=\pi\left(S_{2 e}\right) \subseteq \pi\left(S_{k}\right)$, $p \notin \pi\left(W\left(A_{2 e-1}\right)\right)$ by Step 1. Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 7. The proof is complete.

PROPOSITION 13 (Orthogonal groups of type -). Let $X={ }^{2} D_{l}\left(q^{2}\right) \cong \Omega^{-}(2 l, q)$ $(l \geq 4)$ a universal group with an abelian Sylow p-subgroup P for $p \in \pi$. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic.

Proof. Step 1. We may assume that $p \notin \pi\left(S_{l-1}\right)$:
Suppose that $p \in \pi\left(S_{l-1}\right)$, and let $Q \in S y l_{p}\left(S_{l-1}\right)$. Then $\mathcal{E}_{S_{l-1}}(Q)$ contains an involution by Proposition 4. But since $2^{l-1} S_{l-1}$ is involved in X as the (twisted) Weyl group, we have that $\left|\mathcal{E}_{X}(P)\right|$ is even by Proposition $1(2)$. Thus we may assume that $p \notin \pi\left(S_{l-1}\right)$.

STEP 2. We may assume that $e>1$ and $r_{e}>1$:
By the same reason as in the proof of Step 2 in Proposition 12.
STEP 3. If $e=2 i$ is even then $\mathcal{E}_{X}(P)$ contains an involution:
Suppose $e=2$ or 4 ; that is $p \mid \Phi_{2}(q)=q+1$ or $p \mid \Phi_{4}(q)=q^{2}+1$. Let $H={ }^{2} D_{2}\left(q^{2}\right) \cong$ $A_{1}\left(q^{2}\right)$ be a subgroup of X. As $|H|=q^{2}\left(q^{2}-1\right)\left(q^{2}+1\right), p \in \pi(H)$. Then $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 11. But since $\left|\mathcal{E}_{H}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition 1(2), we have that $\left|\mathcal{E}_{X}(P)\right|$ is even. Thus we may assume that $i \geq 3$.

Since $1<r_{e} \leq\left[\frac{2 l}{e}\right]$, we have that $e<2 l$ and $i=\frac{e}{2}<l$; which follows that $i \leq l-1$ and $\pi\left(S_{i}\right) \subseteq \pi\left(S_{l-1}\right)$. Let $H={ }^{2} D_{i}\left(q^{2}\right) \cong \Omega^{-}(2 i, q)(i \geq 3)$ be a subgroup of X. (Note that ${ }^{2} D_{3}\left(q^{2}\right) \cong{ }^{2} A_{3}\left(q^{2}\right)$. As, for $H, r_{e}=\left[\frac{2 i}{e}\right]=1$ if $i \geq 4$ and $r_{e}=\left[\frac{2(3+1)}{e}\right]=1$ if $i=3$,
we have that $p \in \pi(H)$. Furthermore if $i \geq 4$ then since $\pi\left(W\left(D_{i}\right)\right)=\pi\left(2^{i-1} S_{i}\right) \subseteq \pi\left(S_{l-1}\right)$ we have that $p \notin \pi\left(W\left(D_{i}\right)\right)$ by Step 1 , and if $i=3$ then since $\pi\left(W\left(A_{3}\right)\right)=\pi\left(S_{4}\right)$ and $p>l-1 \geq i=3$ we have that $p \notin \pi\left(W\left(A_{3}\right)\right)$. In either case, p does not divide the order of the Weyl group $W\left(D_{i}\right)$ or $W\left(A_{3}\right)$ of H. Thus $\mathcal{E}_{H}(Q)$ is even for $Q \in S y l_{p}(H)$ by Proposition 7.

STEP 4. If e is odd then $\mathcal{E}_{X}(P)$ contains an involution:
Since $2 \leq r_{e} \leq\left[\frac{2 l}{2 e}\right]$, we have that $e \leq \frac{l}{2}<l-1$ and $e+1 \leq l-1$; which follows that $\pi\left(S_{e+1}\right) \subseteq \pi\left(S_{l-1}\right)$. Let $H={ }^{2} D_{e+1}\left(q^{2}\right)(e+1 \geq 4)$ be a subgroup of X. As $r_{e}=\left[\frac{2(e+1)}{2 e}\right]=$ 1 for $H, p \in \pi(H)$. But since $\pi\left(W\left(D_{e+1}\right)\right)=\pi\left(2^{e} S_{e+1}\right) \subseteq \pi\left(S_{l-1}\right), p \notin \pi\left(W\left(D_{e+1}\right)\right)$ by Step 1. Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 7. The proof is complete.

Proof of Proposition 10. Let X^{u} be a universal version of X. By Proposition 6, we may assume that $p \notin \pi\left(Z\left(X^{u}\right)\right)$. Then we have, by Propositions $11,12,13$, that either $\left|\mathcal{E}_{X^{u}}(R)\right|$ is even or R is cyclic for $R \in S y l_{p}\left(X^{u}\right)$. But this implies that, for $P:=\bar{R} \in$ $\operatorname{Syl}_{p}(X)$ modulo $Z\left(X^{u}\right)$, either $\left|\mathcal{E}_{X}(P)\right|=\left|\mathcal{E}_{X^{u}}(R)\right|$ is even by Lemma 1 , or $P \cong R$ is cyclic, as desired.

6. Exceptional groups

The aim of this section is to show the following:
Proposition 14. Let X be an exceptional simple group, and P an abelian Sylow p-subgroup of X with $p \neq 2$ and $p \nmid q$. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic.

Proposition 15 (Untwisted exceptional). Let $X=X_{l}(q)$ be one of universal groups $E_{6}(q), E_{7}(q), E_{8}(q), F_{4}(q), G_{2}(q)$, and P an abelian Sylow p-subgroup of X with $p \neq 2$ and $p \nmid q$. Then $\mathcal{E}_{X}(P)$ contains an involution.

Proof. Let $W\left(X_{l}\right)$ be the Weyl group of type X_{l}. By Proposition 7, we may assume that $p \in \pi\left(W\left(X_{l}\right)\right)$. Recall $W\left(E_{6}\right) \cong P S p(4,3) 2, W\left(E_{7}\right) \cong 2 \times \operatorname{Sp}(6,2), W\left(E_{8}\right) \cong$ $2 \Omega^{+}(8,2) 2, W\left(F_{4}\right) \cong\left(2^{3} S_{4}\right) S_{3}$, and $W\left(G_{2}\right) \cong D_{12}$. As $p \neq 2, p$ divides the order of a group H; which is a classical group, the symmetric group, or the dihedral group D_{12}. Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in \operatorname{Sy}_{p}(H)$ by Propositions 4 or 11 . But since $\left|\mathcal{E}_{H}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition 1(2), we have that $\left|\mathcal{E}_{X}(P)\right|$ is even. The proof is complete.

Proposition 16 (Twisted exceptional). Let $X={ }^{d} X_{l}\left(q^{d}\right)$ be one of universal groups ${ }^{3} D_{4}\left(q^{3}\right),{ }^{2} E_{6}\left(q^{2}\right),{ }^{2} F_{4}\left(2^{2 m+1}\right),{ }^{2} G_{2}\left(3^{2 m+1}\right),{ }^{2} B_{2}\left(2^{2 m+1}\right)$, and P an abelian Sylow p-subgroup of X with $p \neq 2, p \nmid q, p \notin \pi(Z(X))$. Then either $\mathcal{E}_{X}(P)$ contains an involution or P is cyclic.

Proof. If $X={ }^{2} G_{2}\left(3^{2 m+1}\right)$ or ${ }^{2} B_{2}\left(2^{2 m+1}\right)$ then an abelian Sylow p-subgroup P of X is always cyclic (see [5, (10-2)] or Lemma 2). Thus we may assume that X is otherwise.

Now let $W\left(X_{l}\right)$ be the Weyl group of type X_{l}. By Proposition 7, we may assume that $p \in$ $\pi\left(W\left(X_{l}\right)\right)$.

CASE. $\quad X={ }^{3} D_{4}\left(q^{3}\right)$: Since $p \in \pi\left(W\left(D_{4}\right)\right)=\pi\left(2^{3} S_{4}\right)=\{2,3\}$, we have that $p=3$. Note that X possesses $W\left(G_{2}\right) \cong D_{12}$ as the (twisted) Weyl group, and $\left|\mathcal{E}_{D_{12}}(Q)\right|$ is even for $Q \in \operatorname{Syl}_{3}\left(D_{12}\right)$. But since $\left|\mathcal{E}_{D_{12}}(Q)\right|$ divides $\left|\mathcal{E}_{X}(P)\right|$ by Proposition $1(2)$, we have that $\left|\mathcal{E}_{X}(P)\right|$ is even.

CASE. $\quad X={ }^{2} F_{4}(q)\left(q=2^{2 m+1}, m \geq 1\right)$: \quad Since $p \in \pi\left(W\left(F_{4}\right)\right)=\pi\left(W\left(D_{4}\right) S_{3}\right)=$ $\{2,3\}$, we have that $p=3$. Let $H=S L(2, q)$ be a subgroup of X. As $|H|=q(q-1)(q+1)$, $p \in \pi(H)$. (Note that if $p=3$ does not divide $q-1$ then $q+1$ is divisible by p.) Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 11.

CASE. $\quad X={ }^{2} E_{6}\left(q^{2}\right)$: Since $p \in \pi\left(W\left(E_{6}\right)\right)=\pi(P S p(4,3) 2)=\{2,3,5\}$, we have that $p=3$ or 5 . Note that X possesses $W\left(F_{4}\right) \cong\left(2^{3} S_{4}\right) S_{3}$ as the (twisted) Weyl group. So if $p=3$ then, for an involved group S_{3}, we have that $\mathcal{E}_{S_{3}}(R) \cong C_{2}$ for $R \in S y l_{3}\left(S_{3}\right)$. Thus $\left|\mathcal{E}_{X}(P)\right|$ is even, and we may assume that $p=5$.

Let $H=F_{4}(q)$ be a subgroup of X of order

$$
|H|=q^{24} \Phi_{1}(q)^{4} \Phi_{2}(q)^{4} \Phi_{3}(q)^{2} \Phi_{4}(q)^{2} \Phi_{6}(q)^{2} \Phi_{8}(q) \Phi_{12}(q),
$$

where $\Phi_{m}(q)$ is the cyclotomic polynomial for the m th roots of unity (see [5, Table 4-1] for the existence of $F_{4}(q)$ in X). Now it is easy to see that if $p=5$ does not divide both $\Phi_{1}(q)=q-1$ and $\Phi_{2}(q)=q+1$ then $\Phi_{4}(q)=q^{2}+1$ is divisible by p. Thus p always divides $|H|$. But since $\pi\left(W\left(F_{4}\right)\right)=\pi\left(\left(2^{3} S_{4}\right) S_{3}\right), p=5 \notin \pi\left(W\left(F_{4}\right)\right)$. Thus $\left|\mathcal{E}_{H}(Q)\right|$ is even for $Q \in S y l_{p}(H)$ by Proposition 7. The proof is complete.

Proof of Proposition 14. The same as in that of Proposition 10.

7. Proof of Theorem 1

Suppose that X is the alternating group or a sporadic group. Then by Propositions 2 and $3,\left|\mathcal{E}_{X}(P)\right|$ is even; (1), P is cyclic; (2), $P \cong C_{2} \times C_{2}$; (3), or $X=J_{1}$; (5).

Suppose next that X is a Lie type group ${ }^{d} X_{l}\left(q^{d}\right)$. If $p=2$ then by Proposition 9 , $P \cong C_{2} \times C_{2}$; (3), $X \cong P S L\left(2, p^{e}\right)$; (4), or $X \cong{ }^{2} G_{2}\left(3^{2 m+1}\right)$; (5). If $p \mid q$ then by Proposition 5, $X \cong P S L\left(2, p^{e}\right)$; (4). Thus we may assume that $p \neq 2$ and $p \nmid q$. Then by Propositions 10 and $14,\left|\mathcal{E}_{X}(P)\right|$ is even; (1), or P is cyclic; (2).

Finally we consider the Tits simple group $X={ }^{2} F_{4}(2)^{\prime}$ of order $2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$. Then it easy to see that $\left|\mathcal{E}_{G}(P)\right|$ is even; (1), or P is cyclic; (2), (see [3]). The proof is complete.

References

[1] J. Alperin, Weights for finite groups, Proc. Symposia in Pure Math. 47 (1987), 369-379.
[2] R. Carter, Simple Groups of Lie Type, Wiley-Interscience, New York, 1972.
[3] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[5] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Memoirs of Amer. Math. Soc. 276 (1983).
[6] M. Sawabe and A. Watanabe, On the principal blocks of finite groups with abelian Sylow p-subgroups, J. Algebra 237 (2001), 719-734.
[7] S. Smith and A. Tyrer, On finite groups with a certain Sylow normalizer II, J. Algebra 26 (1973), 366-367.
[8] A. Watanabe, private communication in August 2002.

Present Address:

Department of Mathematics, Faculty of Education,
Chiba University,
Chiba, 263-8522 Japan.
e-mail: sawabe@faculty.chiba-u.jp

