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A Note on Finite Simple Groups with Abelian Sylow p-subgroups
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Abstract. In this note, we will make a remark on finite simple groups with abelian Sylow p-subgroups using
the Classification Theorem of the Finite Simple Groups.

1. Introduction

In our paper Sawabe-Watanabe [6], we verified the Alperin’s weight conjecture [1] for
the principal block of a finite group X with an abelian Sylow p-subgroup P under the hy-
pothesis (H1) that |NX(P)/CX(P )| = r for a prime r . Our method in [6] is as follows. We
first reduce the conjecture under (H1) to that of finite simple groups, and next try to obtain
the result [6, Proposition 6.4]; which is saying that, under (H1) and X is simple, P must be
cyclic, P ∼= C2 ×C2, or X ∼= PSL(2, pe) for p = 2, 3. As the conjecture is known to be true
in those three cases, we could conclude that the conjecture under (H1) is verified. Note that to
prove [6, Proposition 6.4], we used the Classification Theorem of the finite simple groups. On
the other hand, in August 2002, the author was informed by Watanabe[8] that the conjecture
for the principal block of a finite group X with an abelian Sylow p-subgroup P , under the
another hypothesis (H2) that |NX(P)/CX(P )| = r2 for a prime r , can be also reduced to that
of finite simple groups. So it is a frequent occurrence in modular representation theory that a
problem on finite groups having abelian Sylow p-subgroups is reduced to that of finite simple
groups. So it is quite valuable to investigate, in general, finite simple groups with abelian
Sylow p-subgroups. From this reason, the purpose of this note is to prove the following:

THEOREM 1. Let X be a finite simple group with an abelian Sylow p-subgroup P .
Then one of the following holds.

1. NX(P)/CX(P ) contains an involution.
2. P is cyclic.
3. P ∼= C2 × C2.
4. X ∼= PSL(2, pe).
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5. X ∼= J1 or 2G2(32m+1) with p = 2, and NX(P)/CX(P ) ∼= (7 : 3).

The following are immediate consequences of Theorem 1.

COROLLARY 1. Let X be a finite simple group with an abelian Sylow p-subgroup P .
Suppose that |NX(P)/CX(P )| is a prime. Then one of the following holds.

1. P is cyclic.
2. P ∼= C2 × C2.
3. X ∼= PSL(2, pe) for p = 2 or 3.

PROOF. Set EX(P ) := NX(P)/CX(P ). Suppose that EX(P ) contains an involution,
then EX(P ) ∼= C2. It follows that P is cyclic by Smith-Tyrer[7]. Suppose next that X ∼=
PSL(2, pe) with p odd, then |EX(P )| = 1

2 (pe − 1). If p ≥ 5 then 1
2 (p − 1) �= 1 and

pe−1 + · · · + p + 1 = 1. This implies that e = 1, and thus P is cyclic. �

COROLLARY 2. Let X be a finite simple group with an abelian Sylow p-subgroup P .

Suppose that |NX(P)/CX(P )| = r2 for a prime r . Then one of the following holds.
1. NX(P)/CX(P ) ∼= C4 or C2 × C2.
2. P is cyclic.
3. X ∼= PSL(2, 3e).

PROOF. Set EX(P ) := NX(P)/CX(P ). Suppose that P ∼= C2 × C2, then EX(P ) is

a subgroup of S3; but this is impossible. Suppose next that X ∼= PSL(2, 2e), then r2 =
|EX(P )| = 2e − 1. Note that e ≥ 2 as r �= 1. Now let r = 2k + 1 then we have that
2e = 4k2 + 4k + 2, a contradiction. Finally suppose that X ∼= PSL(2, pe) with p odd, then

r2 = |EX(P )| = 1
2 (pe − 1). If p ≥ 5 then p − 1 = 2n for n ≥ 2, and pe − 1 = 2nm where

m := pe−1 +· · ·+p +1. Suppose further that e �= 1. Then m �= 1 and 2r2 = pe −1 = 2nm.
Thus m = n = r . But it follows that p−1 = 2n = 2m ≥ 2(p+1), a contradiction. Therefore
we have that if p ≥ 5 then e = 1; namely P is cyclic. �

Note that the result [6, Proposition 6.4] mentioned above is exactly Corollary 1, so our
result Theorem 1 contains one of the main parts of [6]. Furthermore as indicated earlier,
the Alperin’s weight conjecture for the principal block of a finite group X with an abelian
Sylow p-subgroup P under the hypothesis (H2) is reduced to that of finite simple groups. So
Corollary 2 tells us that, to verify the conjecture under (H2), it is enough to consider the only
three cases described in it.

2. Preliminaries

Throughout this note, denote by π(G) the set of primes dividing the order |G| of a finite
group G, and by Cn the cyclic group of order n. Furthermore, for a subgroup H of G, we set
the factor group EG(H) := NG(H)/CG(H) called the automizer of H in G. First we prepare
the following proposition; which will be used later repeatedly. Although this is shown in [6],
we will give a sketch of the proof.
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PROPOSITION 1. Let G be a finite group with an abelian Sylow p-subgroup P .
1. If Q is a subgroup of P , then EG(Q) is involved in EG(P); that is, there exist a

subgroup M of EG(P) and a normal subgroup N of M such that EG(Q) ∼= M/N .
In particular |EG(Q)| divides |EG(P)|.

2. If H is an involved group in G with p ∈ π(H), and R is a Sylow p-subgroup of H ,
then EH(R) is involved in EG(P). In particular |EH(R)| divides |EG(P)|.

PROOF. (1) As P is abelian, P ≤ CG(Q). For any n ∈ NG(Q), we have that Pn ≤
CG(Q)n = CG(Q) ≥ P , and that there exists c ∈ CG(Q) such that Pnc−1 = P . It follows
that NG(Q) ≤ NG(P)CG(Q), and NG(Q) = (NG(Q) ∩ NG(P))CG(Q) by Modular law.
Thus

EG(Q) ∼= NG(Q) ∩ NG(P)/CG(Q) ∩ NG(P) ,

and which shows that EG(Q) is a homomorphic image of a subgroup NG(Q)∩NG(P)/CG(P )

of EG(P). Therefore EG(Q) is involved in EG(P).
(2) Let N � H1 be subgroups of G such that H = H1/N = H1, and let Q ∈ Sylp(H1)

such that R = QN/N = Q̄. Then there are natural surjective homomorphisms from

EH1(Q) to NH1(Q)/CH1(Q), and from NH1(Q)/CH1(Q) to EH1
(Q̄) = EH(R). On the

other hand, since EG(Q) is involved in EG(P) by (1), and since EG(Q) possesses a sub-
group NH1(Q)CG(Q)/CG(Q) ∼= EH1(Q), we have that EH1(Q) ∼= L/K for some K � L ≤
EG(P). This implies that there exist surjective homomorphisms L → EH1(Q) → EH(R).
Therefore EH(R) is involved in EG(P). �

LEMMA 1. Let G be a finite group, and P a p-subgroup of G with p �∈ π(Z(G)).
Then EG(P) ∼= EḠ(P̄ ) where Ḡ = G/Z(G).

PROOF. Straightforward. �

3. Alternating groups and sporadic groups

PROPOSITION 2. Let X be the alternating group An (n ≥ 5) with an abelian Sylow
p-subgroup P . Then either EX(P ) contains an involution or P is cyclic; except for X =
A5 ∼= PSL(2, 4) and p = 2, and in which case EA5(P ) ∼= C3 and P ∼= C2 × C2.

PROOF. If p = 2 then, since P is abelian, we have that X = A5 and EA5(P ) ∼= C3.
Now we may assume that p ≥ 3, and express n as pk + h (k ∈ N, 0 ≤ h ≤ p − 1). If
k = 1 then P is cyclic. Thus we may also assume that k ≥ 2. Now we can use at least

2p letters i
(1)
1 , . . . , i

(1)
p , i

(2)
1 , . . . , i

(2)
p . For d = 1, 2, let Qd := 〈(i(d)

1 , . . . , i
(d)
p )〉 ≤ X and

Q := Q1 × Q2. Up to conjugacy, we may assume that Q ≤ P . Furthermore let

αd := (i
(d)
1 , i(d)

p )(i
(d)
2 , i

(d)
p−1)(i

(d)
3 , i

(d)
p−2) · · · (i(d)

r , i
(d)
r+2) (d = 1, 2) ,

a permutation on {i(d)
1 , . . . , i

(d)
p } where r := 1

2 (p−1) ≥ 1 as p ≥ 3. Notice that αd normalizes
Qd but not centralize Qd . Then an even permutation α1α2 is an involution lying in EX(Q).



296 MASATO SAWABE

But since |EX(Q)| divides |EX(P )| by Proposition 1(1), we have that |EX(P )| is even. The
proof is complete. �

REMARK. Even if P is cyclic, EX(P ) does not necessarily contain an involution. In-
deed, if p = 2r +1 is an odd prime then for Cp

∼= P ∈ Sylp(Ap), EAp(P ) is of order r . Thus
if r is odd then so is |EAp(P )|.

PROPOSITION 3. Let X be a sporadic simple group with an abelian Sylow p-subgroup
P . Then either EX(P ) contains an involution or P is cyclic; except for the first Janko group
X = J1 and p = 2, and in which case EJ1(P ) ∼= (7 : 3).

PROOF. See for example [3] or [5, Section 5]. �

For later use, we prepare the following on the symmetric groups.

PROPOSITION 4. Let X be the symmetric group Sn (n ≥ 3) with an abelian Sylow
p-subgroup P with an odd prime p. Then EX(P ) contains an involution.

PROOF. As p is odd, we can write p as 2r + 1 for r ≥ 1. Let x = (i1, i2, . . . , ip) in P

of order p, and let Q := 〈x〉 ∼= Cp be a subgroup of P . Then for an involution

α := (i1, ip)(i2, ip−1)(i3, ip−2) · · · (ir , ir+2)

in X, we have that xα = x−1 �= x as p �= 2. Thus α lies in EX(Q). But since |EX(Q)| divides
|EX(P )| by Proposition 1(1), we have that |EX(P )| is even. �

4. Some cases of Lie type groups

In this section, we will consider some special cases of Lie type groups. We refer to [2]
for their standard property.

PROPOSITION 5 (Defining characteristic). Let X be a simple group of Lie type over
GF(q) where q = pe for some prime p. Suppose that X possesses an abelian Sylow p-
subgroup P . Then X ∼= PSL(2, q).

PROOF. This follows from the Chevalley’s commutator formula (see also [6, Proposi-
tion 5.1]). �

PROPOSITION 6. Let X be a simple group of Lie type, Xu a universal version of X,
and P an abelian Sylow p-subgroup of X with p ∈ π(Z(Xu)) and p �= 2. Then EX(P )

contains an involution.

PROOF. As p ∈ π(Z(Xu)), it is enough to consider the following (see also in the proof
of [6, Proposition 5.2]):

Al(q)(l ≥ 1) , p|(l + 1, q − 1) ; E6(q) , p = 3 ;
2Al(q

2)(l ≥ 2) , p|(l + 1, q + 1) ; 2E6(q
2) , q + 1 ≡ 0(3) , p = 3 .
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CASE. E6(q), p = 3: A Sylow 3-subgroup of E6(q) is not abelian, since the Weyl
group O−(6, 2) of type E6 possesses a non-abelian Sylow 3-subgroup.

CASE. Al(q) = PSL(l + 1, q), p|(l + 1, q − 1): Let X = PSL(l + 1, q). Since
p|(l + 1, q − 1), we have that l + 1 ≥ p ≥ 3, and that there exists t ∈ GF(q)× ∼= Cq−1

such that tp = 1 and t �= 1. Let D := {M = diag(α1, . . . , αl+1) ∈ X | (M)p = 1}, modulo
Z(Xu), be a p-subgroup of X where diag(α1, . . . , αl+1) is a diagonal matrix in SL(l +1, q).

Let w := A ⊕ B be an involution of X where

A =
(

0 1
1 0

)

and B = diag(1, . . . , 1,−1) ∈ GL(l − 1, q). Evidently w normalizes D but does not

centralize an element z = diag(t, t−1, 1, . . . , 1) in D. Note that t �= t−1 as p �= 2. This
implies that an involution w is contained in EX(D). But since |EX(D)| divides |EX(P )| by
Proposition 1(1), |EX(P )| is even.

CASE. 2Al(q
2) = PSU(l+1, q2), p|(l+1, q +1): Let X = PSU(l+1, q2). Recall

that SU(l + 1, q2) = {M ∈ SL(l + 1, q2) | (tM)θ(M) = I } where θ is an associated field
automorphism; which is defined by θ(α) = αq for α ∈ GF(q2)×. θ is of order 2. Now since

p|q + 1, there exists t ∈ {α ∈ GF(q2)× | 1 = αθ(α) = αq+1} ∼= Cq+1 such that tp = 1
and t �= 1. Then the same argument as above can be applied. Indeed, define D,w, z as in the

case of Al(q). Then D is a p-subgroup of X = PSU(l + 1, q2) with z ∈ D. Furthermore
an involution w ∈ X lies in EX(D). But since |EX(D)| divides |EX(P )| by Proposition 1(1),
|EX(P )| is even.

CASE. 2E6(q
2), q +1 ≡ 0(3), p = 3: Let X = 2E6(q

2), and then H = PSU(6, q2)

is involved in X. Since p = 3|(6, q + 1), we have that p divides |Z(SU(6, q2))|. Then
applying the unitary case above, we have that |EH(Q)| is even for Q ∈ Sylp(H), and thus so
is |EX(P )|. The proof is complete. �

PROPOSITION 7 (Weyl groups). Let X = dXl(q
d) be a universal group of Lie type,

and P a Sylow p-subgroup of X with p �= 2, p � q and p �∈ π(W(Xl)) where W(Xl) is the
Weyl group of type Xl . Then EX(P ) contains an involution.

REMARK. For formality of notation, 1Xl(q
1) implies the untwisted group Xl(q). In the

case of Suzuki and Ree groups, namely dXl = 2B2,
2F4,

2G2, we set dXl(q
d) = 2B2(q) (q =

22m+1), 2F4(q) (q = 22m+1), 2G2(q) (q = 32m+1). The twisted group dXl(q
d) (d ≥ 2) is

a set of elements of Xl(q
d); which is fixed by a graph-field automorphism of order d in

Aut(Xl(q
d)). (In the Atlas [3], dXl(q

d) is denoted by dXl(q, qd), and a abbreviated notation
dXl(q) := dXl(q

d) is also used there.)

PROOF. Concerning the Sylow structure of P , we follow the argument in the proof of
[5, (10-1)]. See [5] for the details. Let m be the multiplicative order of q modulo p, and set
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Y := Xl(q
dm) a universal group. Then there exists a group F = 〈ρ, β〉 ≤ Aut(Y ) generated

by a graph-field automorphism ρ = σθ of order d and a field automorphism β of order m

such that X ∼= CY (F ). (As mentioned above, in the case of Suzuki and Ree groups, we have

that Y = B2(q
2m), F4(q

2m),G2(q
2m), and thus β is of order 2m in these cases.) We identify

X with CY (F ). Furthermore we may assume that up to conjugacy, P is contained in a Sylow
p-subgroup R of a Cartan subgroup H of Y ; in particular P is abelian. Then we have that
P = CR(F) as P = CP (F) ≤ CR(F) ≤ X and P ∈ Sylp(X). Recall that up to conjugacy,

H = 〈hr (t) |r ∈ Π, t ∈ GF(qmd)×〉 where Π is a set of fundamental roots of Y and hr(t) is
a standard generator of H . Thus letting E the unique Sylow p-subgroup of the multiplicative
group GF(qmd)×, we have that

R = 〈hr (t) | r ∈ Π, t ∈ E〉 .

Now let {ωr | r ∈ Π} be a set of standard generators of the Weyl group of Y . Then setting
N = 〈ωr ,H | r ∈ Π〉 ≤ Y , we have that N/H ∼= W(Xl).

CASE. X is untwisted: Since F = 〈β〉 in this case, P = CR(β) = 〈hr(t) | r ∈
Π, t ∈ E, tβ = t〉. Take any r ∈ Π . Since [ωr, β] = 1 and hs(t)

ωr = hωr (s)(t) for any root
s, we have that ωr is in X and also normalizes CR(β) = P ; namely ωr ∈ NX(P). On the
other hand, for t ∈ E with t �= 1 and tβ = t , an element hr(t) lies in P\{1}, and we have that
hr(t)

ωr = h−r (t) = hr(t)
−1 �= hr(t) as p �= 2. This implies that ωr �∈ CX(P). Furthermore

since ω2
r ∈ X ∩ H ≤ X ∩ CY (P ) = CX(P), EX(P ) contains an involution ωrCX(P ).

CASE. X is twisted: First we recall some ρ-invariant subgroups of CY (ρ) ∼=
dXl((q

m)d). For a σ -orbit J on Π , set W(J ) = 〈ωr = ωrH | r ∈ J 〉 ≤ N/H . Then

there exists a unique element w0(J ) of order 2 in W(J ) such that w0(J )
ρ = w0(J ).

Then 〈w0(J ) | J = σ -orbit on Π〉 is the Weyl group of CY (ρ); which is isomorphic to

N1/H 1 ∼= N1H/H where N1 = CY (ρ) ∩ N and H 1 = CY (ρ) ∩ H . We may assume

that w0(J ) ∈ N1. Recall that w0(J ) is a reflection along the vector a(r) where r ∈ J and

a(r) is the average of the vectors in the σ -orbit J . Next define an element of H 1 as follows:

hJ (t) := hr(t) for t ∈ GF(qdm)× with t̄ = t , if J = {r} ,

hJ (t) := hr(t)hr̄ (t̄ ) for r ∈ J and t ∈ GF(qdm)× , if |J | = 2 ,

hJ (t) := hr(t)hr̄ (t̄ )h ¯̄r ( ¯̄t ) for r ∈ J and t ∈ GF(qdm)×, if |J | = 3 ,

where r̄ = rσ for a root r , and t̄ = tθ for t ∈ GF(qdm). (Note that if the characteristic

of Suzuki-Ree groups CY (ρ) is 2 or 3, then hJ (t) is defined respectively as hr(t)hr̄ (
¯t2) or

hr(t)hr̄ (
¯t3) for a short root r in J .) Any element of H 1 can be uniquely expressed as a

product ΠhJ (t) where J runs through all σ -orbits on Π . Thus a Sylow p-subgroup R1 of

H 1 is as follows:

R1 =
〈
hJ (t)

∣∣∣∣ J = σ -orbit on Π, t ∈ E such that t̄ = t

if t is a coefficient of hJ (t) with |J | = 1

〉
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where E ∈ Sylp(GF(qdm)×). Then P = CR(F) = CR1(β).

Return back to the proof of Proposition 7. Take a σ -orbit J on Π . Then we may assume
that [w0(J ), ρ] = [w0(J ), β] = 1, and thus w0(J ) ∈ X. Furthermore since w0(J ) normalizes
R1, a unique Sylow p-subgroup of H 1, we can see that w0(J ) acts on CR1(β) = P ; namely

w0(J ) ∈ NX(P). Now we may assume that |J | ≥ 2. Then, for t ∈ E with t �= 1 and tβ = t ,

an element hJ (t) lies in P\{1}. But hJ (t)w0(J ) = h−J (t) �= hJ (t) as p �= 2; which implies

that w0(J ) �∈ CX(P). Furthermore since w0(J )2 ∈ X ∩ H ≤ X ∩ CY (P ) = CX(P), EX(P )

contains an involution w0(J )CX(P ). The proof is complete. �

PROPOSITION 8 (Primes p with p|q − 1). Let X = dXl(q
d) be a universal group of

Lie type, and P an abelian Sylow p-subgroup of X with p �= 2 and p|q − 1. Then EX(P )

contains an involution.

PROOF. As p|q − 1, p divides the order of a Cartan subgroup H of X. But we have
shown in Proposition 7 implicitly that |EX(Q)| is even for Q ∈ Sylp(H), and so is |EX(P )|.
(see also [6, Propositions 5.3, 5.4]). �

Finally, we mention simple groups with abelian Sylow 2-subgroups (See [4, Chapter
16.6]):

PROPOSITION 9 (Abelian Sylow 2-subgroups). Let X be a nonabelian simple group
with an abelian Sylow 2-subgroup P . Then one of the followings holds.

1. X ∼= PSL(2, q) with q > 3 and q ≡ 3, 5(mod 8), or q = 2e.
2. X ∼= J1; the first Janko group.
3. X ∼= 2G2(32m+1); the Ree group.

Note that if X ∼= PSL(2, q) with q > 3 and q ≡ 3, 5(mod 8) then P ∼= C2 × C2, and
that if X ∼= J1 or 2G2(32m+1) then EX(P ) ∼= (7 : 3).

5. Classical groups

The aim of this section is to show the following:

PROPOSITION 10. Let X be a classical simple group, and P an abelian Sylow p-
subgroup of X with p �= 2 and p � q . Then either EX(P ) contains an involution or P is
cyclic.

PROPOSITION 11 (Untwisted classical). Let X = Xl(q) be one of universal groups
Al(q)(l ≥ 1), Bl(q)(l ≥ 2, q ≡ 1(2)), Cl(q)(l ≥ 2), Dl(q)(l ≥ 4), and P an abelian Sylow
p-subgroup of X with p �= 2 and p � q . Then EX(P ) contains an involution.

PROOF. Let W(Xl) be the Weyl group of type Xl . By Proposition 7, we may assume

that p ∈ π(W(Xl)). Recall W(Al) ∼= Sl+1, W(Bl) ∼= W(Cl) ∼= 2lSl , and W(Dl) ∼= 2l−1Sl .
As p �= 2, p divides the order of the symmetric group Sn (n = l or l + 1). Then |ESn(Q)| is
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even for Q ∈ Sylp(Sn) by Proposition 4. But since |ESn(Q)| divides |EX(P )| by Proposition
1(2), we have that |EX(P )| is even. The proof is complete. �

Let X = 2Xl(q
2) be a universal version of a classical group. Then the order of X is

expressed as

|X| = qNΠm∈O(2Xl)
Φm(q)rm

where Φm(q) the cyclotomic polynomial for the mth roots of unity, O(2Xl) a set of positive

integers depending on 2Xl , N the number of positive roots in the root system corresponding
to X, and rm a positive integer (see [5, Section 10] for the details). Note that rm is known as
in Table 1:

TABLE 1. rm ([5, Table 10:1])

2Al rm =
[

l + 1

lcm(2, m)

]
if m �≡ 2(4)

rm =
[

2(l + 1)

m

]
if m ≡ 2(4), m > 2

r2 = l

2Dl rm =
[

2l

lcm(2, m)

]
if m � l

rm =
[

2l

lcm(2, m)

]
− 1 if m|l

Let e be the smallest positive integer such that p|Φe(q), and mp(X) the maximal p-rank
of a Sylow p-subgroup of X. Set

π := {p ∈ π(X) | p �= 2, p � q, p �∈ π(Z(X))} .

LEMMA 2 ((10-2) in [5]). For p ∈ π , we have that mp(X) = mp(X/Z(X)) = re.

We will keep the above notation throughout this section.

PROPOSITION 12 (Unitary groups). Let X = 2Al(q
2) ∼= SU(l + 1, q2)(l ≥ 2) a

universal group with an abelian Sylow p-subgroup P for p ∈ π . Then either EX(P ) contains
an involution or P is cyclic.

PROOF. Set l = 2k or 2k − 1 for k ≥ 1.
STEP 1. We may assume that p �∈ π(Sk):
Suppose that p ∈ π(Sk), and let Q ∈ Sylp(Sk). Then ESk (Q) contains an involution

by Proposition 4. But since Sk is involved in X as the (twisted) Weyl group, we have that
|EX(P )| is even by Proposition 1(2). Thus we may assume that p �∈ π(Sk).

STEP 2. We may assume that e > 1 and re > 1:
If e = 1 then p|Φ1(q) = q − 1 and thus |EX(P )| is even by Proposition 8. On the other

hand if re = 1 then mp(X) = re = 1 by Lemma 2 and thus an abelian Sylow p-subgroup P

is cyclic.
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STEP 3. If e = 2i and i ≥ 2 is even then EX(P ) contains an involution:

Since e �≡ 2(4) and 2 ≤ re = [ l+1
e

], we have that 2e ≤ l + 1 and e ≤ l+1
2 = k or k + 1

2 ;

which follows that e ≤ k and π(Se) ⊆ π(Sk). Let H = 2Ae−1(q
2) ∼= SU(e, q2) (e ≥ 4) be a

subgroup of X. As re = [ e
e
] = 1 for H , p ∈ π(H). But since π(W(Ae−1)) = π(Se) ⊆ π(Sk),

p �∈ π(W(Ae−1)) by Step 1. Thus |EH(Q)| is even for Q ∈ Sylp(H) by Proposition 7. Now
|EH(Q)| divides |EX(P )| by Proposition 1(2), and hence |EX(P )| is even.

STEP 4. If e = 2i and i ≥ 1 is odd then EX(P ) contains an involution:
Suppose e = 2; that is, p|Φ2(q) = q + 1. Let H = 2A1(q

2) ∼= SU(2, q2) ∼= SL(2, q)

be a subgroup of X. As |H | = q(q − 1)(q + 1), p ∈ π(H). Then |EH(Q)| is even for
Q ∈ Sylp(H) by Proposition 11. Thus we may assume that i ≥ 3.

Since e ≡ 2(4) and e > 2, we have that 2 ≤ re = [ 2(l+1)
e

] and i = e
2 ≤ l+1

2 = k or

k+ 1
2 ; which follows that i ≤ k and π(Si) ⊆ π(Sk). Let H = 2Ai−1(q

2) ∼= SU(i, q2) (i ≥ 3)

be a subgroup of X. As re = [ 2i
e
] = 1 for H , p ∈ π(H). But since π(W(Ai−1)) = π(Si) ⊆

π(Sk), p �∈ π(W(Ai−1)) by Step 1. Thus |EH(Q)| is even for Q ∈ Sylp(H) by Proposition
7.

STEP 5. If e ≥ 3 is odd then EX(P ) contains an involution:
Since e �≡ 2(4), we have that 2 ≤ re = [ l+1

2e
] and 2e ≤ l+1

2 = k or k + 1
2 ; which follows

that 2e ≤ k and π(S2e) ⊆ π(Sk). Let H = 2A2e−1(q
2) ∼= SU(2e, q2) (2e ≥ 6) be a subgroup

of X. As re = [ 2e
2e

] = 1 for H , p ∈ π(H). But since π(W(A2e−1)) = π(S2e) ⊆ π(Sk),
p �∈ π(W(A2e−1)) by Step 1. Thus |EH(Q)| is even for Q ∈ Sylp(H) by Proposition 7. The
proof is complete. �

PROPOSITION 13 (Orthogonal groups of type −). Let X = 2Dl(q
2) ∼= Ω−(2l, q)

(l ≥ 4) a universal group with an abelian Sylow p-subgroup P for p ∈ π . Then either
EX(P ) contains an involution or P is cyclic.

PROOF. STEP 1. We may assume that p �∈ π(Sl−1):
Suppose that p ∈ π(Sl−1), and let Q ∈ Sylp(Sl−1). Then ESl−1(Q) contains an involu-

tion by Proposition 4. But since 2l−1Sl−1 is involved in X as the (twisted) Weyl group, we
have that |EX(P )| is even by Proposition 1(2). Thus we may assume that p �∈ π(Sl−1).

STEP 2. We may assume that e > 1 and re > 1:
By the same reason as in the proof of Step 2 in Proposition 12.
STEP 3. If e = 2i is even then EX(P ) contains an involution:
Suppose e = 2 or 4; that is p|Φ2(q) = q + 1 or p|Φ4(q) = q2 + 1. Let H = 2D2(q

2) ∼=
A1(q

2) be a subgroup of X. As |H | = q2(q2 − 1)(q2 + 1), p ∈ π(H). Then |EH(Q)| is even
for Q ∈ Sylp(H) by Proposition 11. But since |EH(Q)| divides |EX(P )| by Proposition 1(2),
we have that |EX(P )| is even. Thus we may assume that i ≥ 3.

Since 1 < re ≤ [ 2l
e
], we have that e < 2l and i = e

2 < l; which follows that i ≤ l − 1

and π(Si) ⊆ π(Sl−1). Let H = 2Di(q
2) ∼= Ω−(2i, q) (i ≥ 3) be a subgroup of X. (Note

that 2D3(q
2) ∼= 2A3(q

2).) As, for H , re = [ 2i
e
] = 1 if i ≥ 4 and re = [ 2(3+1)

e
] = 1 if i = 3,
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we have that p ∈ π(H). Furthermore if i ≥ 4 then since π(W(Di)) = π(2i−1Si) ⊆ π(Sl−1)

we have that p �∈ π(W(Di)) by Step 1, and if i = 3 then since π(W(A3)) = π(S4) and
p > l − 1 ≥ i = 3 we have that p �∈ π(W(A3)). In either case, p does not divide the order of
the Weyl group W(Di) or W(A3) of H . Thus EH(Q) is even for Q ∈ Sylp(H) by Proposition
7.

STEP 4. If e is odd then EX(P ) contains an involution:
Since 2 ≤ re ≤ [ 2l

2e
], we have that e ≤ l

2 < l − 1 and e + 1 ≤ l − 1; which follows that

π(Se+1) ⊆ π(Sl−1). Let H = 2De+1(q
2) (e+1 ≥ 4) be a subgroup of X. As re = [ 2(e+1)

2e
] =

1 for H , p ∈ π(H). But since π(W(De+1)) = π(2eSe+1) ⊆ π(Sl−1), p �∈ π(W(De+1)) by
Step 1. Thus |EH(Q)| is even for Q ∈ Sylp(H) by Proposition 7. The proof is complete. �

PROOF OF PROPOSITION 10. Let Xu be a universal version of X. By Proposition 6,
we may assume that p �∈ π(Z(Xu)). Then we have, by Propositions 11, 12, 13, that either

|EXu(R)| is even or R is cyclic for R ∈ Sylp(Xu). But this implies that, for P := R̄ ∈
Sylp(X) modulo Z(Xu), either |EX(P )| = |EXu(R)| is even by Lemma 1, or P ∼= R is cyclic,
as desired. �

6. Exceptional groups

The aim of this section is to show the following:

PROPOSITION 14. Let X be an exceptional simple group, and P an abelian Sylow
p-subgroup of X with p �= 2 and p � q . Then either EX(P ) contains an involution or P is
cyclic.

PROPOSITION 15 (Untwisted exceptional). Let X = Xl(q) be one of universal
groups E6(q), E7(q), E8(q), F4(q), G2(q), and P an abelian Sylow p-subgroup of X with
p �= 2 and p � q . Then EX(P ) contains an involution.

PROOF. Let W(Xl) be the Weyl group of type Xl . By Proposition 7, we may assume
that p ∈ π(W(Xl)). Recall W(E6) ∼= PSp(4, 3)2, W(E7) ∼= 2 × Sp(6, 2), W(E8) ∼=
2Ω+(8, 2)2, W(F4) ∼= (23S4)S3, and W(G2) ∼= D12. As p �= 2, p divides the order of a
group H ; which is a classical group, the symmetric group, or the dihedral group D12. Thus
|EH(Q)| is even for Q ∈ Sylp(H) by Propositions 4 or 11. But since |EH(Q)| divides |EX(P )|
by Proposition 1(2), we have that |EX(P )| is even. The proof is complete. �

PROPOSITION 16 (Twisted exceptional). Let X = dXl(q
d) be one of universal

groups 3D4(q
3), 2E6(q

2), 2F4(22m+1), 2G2(32m+1), 2B2(22m+1), and P an abelian Sylow
p-subgroup of X with p �= 2, p � q , p �∈ π(Z(X)). Then either EX(P ) contains an involution
or P is cyclic.

PROOF. If X = 2G2(32m+1) or 2B2(22m+1) then an abelian Sylow p-subgroup P of
X is always cyclic (see [5, (10-2)] or Lemma 2). Thus we may assume that X is otherwise.



FINITE SIMPLE GROUPS WITH ABELIAN SYLOW p-SUBGROUPS 303

Now let W(Xl) be the Weyl group of type Xl . By Proposition 7, we may assume that p ∈
π(W(Xl)).

CASE. X = 3D4(q
3): Since p ∈ π(W(D4)) = π(23S4) = {2, 3}, we have that

p = 3. Note that X possesses W(G2) ∼= D12 as the (twisted) Weyl group, and |ED12(Q)| is
even for Q ∈ Syl3(D12). But since |ED12(Q)| divides |EX(P )| by Proposition 1(2), we have
that |EX(P )| is even.

CASE. X = 2F4(q) (q = 22m+1,m ≥ 1): Since p ∈ π(W(F4)) = π(W(D4)S3) =
{2, 3}, we have that p = 3. Let H = SL(2, q) be a subgroup of X. As |H | = q(q −1)(q +1),
p ∈ π(H). (Note that if p = 3 does not divide q − 1 then q + 1 is divisible by p.) Thus
|EH(Q)| is even for Q ∈ Sylp(H) by Proposition 11.

CASE. X = 2E6(q
2): Since p ∈ π(W(E6)) = π(PSp(4, 3)2) = {2, 3, 5}, we have

that p = 3 or 5. Note that X possesses W(F4) ∼= (23S4)S3 as the (twisted) Weyl group. So
if p = 3 then, for an involved group S3, we have that ES3(R) ∼= C2 for R ∈ Syl3(S3). Thus
|EX(P )| is even, and we may assume that p = 5.

Let H = F4(q) be a subgroup of X of order

|H | = q24Φ1(q)4Φ2(q)4Φ3(q)2Φ4(q)2Φ6(q)2Φ8(q)Φ12(q) ,

where Φm(q) is the cyclotomic polynomial for the mth roots of unity (see [5, Table 4-1]
for the existence of F4(q) in X). Now it is easy to see that if p = 5 does not divide both
Φ1(q) = q − 1 and Φ2(q) = q + 1 then Φ4(q) = q2 + 1 is divisible by p. Thus p always

divides |H |. But since π(W(F4)) = π((23S4)S3), p = 5 �∈ π(W(F4)). Thus |EH(Q)| is even
for Q ∈ Sylp(H) by Proposition 7. The proof is complete. �

PROOF OF PROPOSITION 14. The same as in that of Proposition 10. �

7. Proof of Theorem 1

Suppose that X is the alternating group or a sporadic group. Then by Propositions 2 and
3, |EX(P )| is even; (1), P is cyclic; (2), P ∼= C2 × C2; (3), or X = J1; (5).

Suppose next that X is a Lie type group dXl(q
d). If p = 2 then by Proposition 9,

P ∼= C2×C2; (3), X ∼= PSL(2, pe); (4), or X ∼= 2G2(32m+1); (5). If p|q then by Proposition
5, X ∼= PSL(2, pe); (4). Thus we may assume that p �= 2 and p � q . Then by Propositions
10 and 14, |EX(P )| is even; (1), or P is cyclic; (2).

Finally we consider the Tits simple group X = 2F4(2)′ of order 211 · 33 · 52 · 13. Then it
easy to see that |EG(P)| is even; (1), or P is cyclic; (2), (see [3]). The proof is complete. �
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