Токуо J. Матн. Vol. 29, No. 2, 2006

Whitney's Umbrellas in Stable Perturbations of a Map Germ $(\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^{2n-1}, 0)$

Mariko OHSUMI

Nihon University

(Communicated by Y. Maeda)

Abstract. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ be a C^{∞} map-germ. We are interested in whether the number modulo 2 of stable singular points of codimension *n* that appear near the origin in a generic perturbation of *f* is a topological invariant. In this paper we concentrate on investigating the problem when *p* is 2n - 1, where stable singular points of codimension *n* are only Whitney's umbrellas, and give a positive answer to the problem.

1. Introduction

1.1. Main theorem. In this paper we show that the number modulo 2 of Whitney's umbrellas that appear in stable perturbations of a generic C^{∞} map-germ $f : (\mathbf{R}^n, 0) \rightarrow (\mathbf{R}^{2n-1}, 0)$ is a topological invariant.

A C^{∞} map-germ $f : (\mathbf{R}^n, p) \to (\mathbf{R}^{2n-1}, q)$ is called Whitney's umbrella if it is \mathcal{A} -equivalent to the map-germ from $(\mathbf{R}^n, 0)$ to $(\mathbf{R}^{2n-1}, 0)$ defined by

$$(x_1, \ldots, x_n) \to (x_1, \ldots, x_{n-1}, x_n^2, x_1 x_n, \ldots, x_{n-1} x_n).$$

Here two C^{∞} map-germs $f : (M_1, p_1) \to (N_1, q_1)$ and $g : (M_2, p_2) \to (N_2, q_2)$ are said to be \mathcal{A} -equivalent if there exist C^{∞} diffeomorphism-germs $h : (M_1, p_1) \to (M_2, p_2)$ and $k : (N_1, q_1) \to (N_2, q_2)$ such that $k \circ f = g \circ h$.

Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be a generic C^{∞} map-germ and let $\overline{f} : U \to \mathbf{R}^{2n-1}$ be a C^{∞} representive of f, U being a small open neighborhood of the origin 0 in \mathbf{R}^n . By Whitney's theorem([29], [31]), \overline{f} can be approximated by a stable mapping $\widetilde{f} : U \to \mathbf{R}^{2n-1}$ whose singularities are only Whitney's umbrellas. We call such $\widetilde{f} : U \to \mathbf{R}^{2n-1}$ a stable perturbation of $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$.

We are interested in the number of Whitney's umbrellas of \tilde{f} .

Let \mathcal{E}_n be the ring of C^{∞} function-germs of $(\mathbf{R}^n, 0)$ into \mathbf{R} . Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be a C^{∞} map-germ. Let $\mathcal{I}(\Sigma^1(f))$ be the ideal in \mathcal{E}_n generated by $n \times n$ minor determinants of the jacobian matrix of f.

Received November 25, 2004; revised April 1, 2005

²⁰⁰⁰ Mathematics Subject Classification 32S30, 32S50, 58C25 (primary), 58K15, 58K60, 58K65 (secondary).

MAIN THEOREM. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be a generic C^{∞} map-germ such that $\dim_{\mathbf{R}} \mathcal{E}_n/\mathcal{I}(\Sigma^1(f)) < +\infty$. The number of Whitney's umbrellas that appear in a stable perturbation of f is equal to $\dim_{\mathbf{R}} \mathcal{E}_n/\mathcal{I}(\Sigma^1(f))$ (modulo 2) and it is a topological invariant of f.

Here we call a map-germ "generic map-germ" in a strong sense. See Definition 2.4 in §2 for the precise definition.

REMARK 1.1. The statement that the number of Whitney's umbrellas that appear in the stable perturbation is equal to $\dim_{\mathbf{R}} \mathcal{E}_n/\mathcal{I}(\Sigma^1(f)) \pmod{2}$ is a consequence of [4], [5], [19], [21], [22]. Our assertion in the above theorem is that it is a topological invariant of f.

1.2. History of the problem. The problem of counting isolated singular points in stable perturbations of a degenerated map-germ is old and new.

The case of complex holomorphic functions is rather classical. Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic function-germ which defines an isolated singularity at 0. It is well known that Milnor number $\mu(f)$ of f is the number of critical points of a Morse function near f and it is a topological invariant of f (J. W. Milnor [17]).

In the real case also, it is known that for a C^{∞} map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}, 0)$ with $\mu(f) < +\infty, \mu(f)$ modulo 2 is a topological invariant of f (C. T. C. Wall [27]).

The problem in the case of map-germs was investigated first by Fukuda and Ishikawa [3]. Let $f : (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0)$ be a generic C^{∞} map-germ, let U be a sufficiently small neighborhood of the origin and let $\overline{f} : U (\subset \mathbf{R}^2) \to \mathbf{R}^2$ be a representive mapping of f. Then we may suppose that \overline{f} has no degenerate singular points except for the origin. By Whitney's theorem [32], \overline{f} can be approximated by a C^{∞} stable mapping $\widetilde{f} : U \to \mathbf{R}^2$. The degenerate singularity of \overline{f} at the origin of \mathbf{R}^2 bifurcates into stable singular points of \widetilde{f} . Again by Whitney's theorem [32], the singular points of \widetilde{f} are \mathcal{A} -equivalent to one of the following two map-germs from ($\mathbf{R}^2, 0$) to ($\mathbf{R}^2, 0$):

(1)
$$(x, y) \mapsto (x, y^2)$$
, fold
(2) $(x, y) \mapsto (x, y^3 + xy)$, cusp

Suppose that $f : (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0)$ is generic and U is a sufficiently small neighborhood of the origin so that $\overline{f} : U \to \mathbf{R}^2$ has only fold singular points off the origin. The cusp singular points of \overline{f} are isolated. Let f_1 and f_2 denote the component function germs of f:

$$f = (f_1, f_2) : (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0).$$

Let $Jf = J(f_1, f_2)$ denote the Jacobian determinant of f:

$$Jf(x) = \det\left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \le i, j \le 2}.$$

$$J_1 f = J(Jf, f_2) = \det \begin{pmatrix} \frac{\partial Jf}{\partial x_1} & \frac{\partial Jf}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix},$$
$$J_2 f = J(f_1, Jf) = \det \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial Jf}{\partial x_1} & \frac{\partial Jf}{\partial x_2} \end{pmatrix}.$$

Throughout this paper we use the following notations.

 $\langle a, b, \ldots \rangle$; the ideal generated by a, b, \ldots .

THEOREM 1.2 (Fukuda and Ishikawa, [3]). Let $f : (\mathbf{R}^2, 0) \to (\mathbf{R}^2, 0)$ be a C^{∞} mapgerm such that $\dim_{\mathbf{R}} \mathcal{E}_2/\langle Jf, J_1f, J_2f \rangle < +\infty$. Then the following holds for any stable perturbation $\tilde{f} : U(\subset \mathbf{R}^2) \to \mathbf{R}^2$ of f.

(1) The number of cusps of \tilde{f} that appear near the origin is less than or equal to $\dim_{\mathbf{R}} \mathcal{E}_2/\langle Jf, J_1f, J_2f \rangle$.

(2) The number of cusps of \tilde{f} that appear near the origin is equal to $\dim_{\mathbf{R}} \mathcal{E}_2/\langle Jf, J_1f, J_2f \rangle$ modulo 2.

(3) The number modulo 2 of cusps of \tilde{f} is a topological invariant of f.

In the complex case, Gaffney and Mond [8] showed that Theorem 1.2 holds more precisely. Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be a holomorphic map-germ, let U be a sufficiently small neighborhood of the origin in \mathbb{C}^2 and let $\bar{f} : U(\subset \mathbb{C}^2) \to \mathbb{C}^2$ be a representive mapping of f. Then Whitney's theorem [32] also hold in the complex case, and \bar{f} can be approximated by a stable holomorphic mapping $\tilde{f} : U \to \mathbb{C}^2$ that has only fold and cusp type singular points.

THEOREM 1.3 (Gaffney and Mond, [8]). Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ be an analytic map-germ such that $\dim_{\mathbb{C}} \mathcal{O}_2/\langle Jf, J_1f, J_2f \rangle < +\infty$. Then the following holds for any stable perturbation $\tilde{f} : U(\subset \mathbb{C}^2) \to \mathbb{C}^2$ of f.

(1) The number of cusps of \tilde{f} that appear near the origin is equal to $\dim_{\mathbb{C}} \mathcal{O}_2/\langle Jf, J_1f, J_2f \rangle$.

(2) The number of cusps of \tilde{f} that appear near the origin is a topological invariant of f.

REMARK 1.4. The conditions that $\dim_{\mathbf{R}} \mathcal{E}_2/\langle Jf, J_1f, J_2f \rangle < +\infty$ and that $\dim_{\mathbf{C}} \mathcal{O}_2/\langle Jf, J_1f, J_2f \rangle < +\infty$ are generic conditions in a strong sense. That is, the set of map-germs which do not fulfill this condition is of ∞ -codimension in the set of all map germs.

Apart from the problem of topological invariance, the study on the number of 0dimensional singular points in generic perturbations of a degenerate map-germ is recently widely developed.

Set

For a k-tuple of integers $I = (i_1, i_2, ..., i_k)$ with $i_1 \ge i_2 \ge ... \ge i_k \ge 0$, there is a submanifold Σ^I of $J^l(\mathbf{C}^n, \mathbf{C}^p)(l \ge k)$ called Thom-Boadman singularity set with symbol I. We will not give the definition of Σ^I , see [1] and [20] for the definition. If codim Σ^I in $J^l(\mathbf{C}^n, \mathbf{C}^p) = n$, then for a generic mapping $\tilde{f} : \mathbf{C}^n \to \mathbf{C}^p$ singular points of f with type Σ^I appear isolatedly.

D. Mond [19] investigated the number of Σ^1 type singular points, that is, Whitney's umbrellas, for a holomorphic map-germ ($\mathbb{C}^2, 0$) \rightarrow ($\mathbb{C}^3, 0$).

A generalization of Theorems 1.2, 1.3 and [19] on the number of codim n Thom-Boardman singular points was first done by J. Nuño Ballesteros and M. Saia [21], then was followed by T. Fukui, J. Nuño Ballesteros and M. Saia [4], J. Nuño Ballesteros and M. Saia [22], T. Fukui, J. Nuño Ballesteros and M. Saia [5], T. Fukui and J. Weyman [6].

For a holomorphic map-germ $f : (\mathbf{C}^n, 0) \to (\mathbf{C}^p, 0)$, we suppose that $j^l f(0) \in \overline{\Sigma^I}$ in $J^l(\mathbf{C}^n, \mathbf{C}^p)$. Let $\mathcal{I}(\Sigma^I)$ denote the defining ideal of the set-germ $\overline{\Sigma^I}$ in $(J^l(\mathbf{C}^n, \mathbf{C}^p), j^l f(0))$:

$$\mathcal{I}(\Sigma^{I}) = \{ \alpha \in \mathcal{O}_{j^{l}(\mathbb{C}^{n},\mathbb{C}^{p}), j^{l}f(0)} | \alpha|_{\Sigma^{I}} = 0 \} \subset \mathcal{O}_{J^{l}(\mathbb{C}^{n},\mathbb{C}^{p}), j^{l}f(0)}$$

and we define an ideal $\mathcal{I}(\Sigma^{I}(f))$ in \mathcal{O}_{n} by

$$\mathcal{I}(\Sigma^{I}(f)) = (j^{l}f)^{*}(\mathcal{I}(\Sigma^{I})).$$

For example, the Thom-Boardman singularity of cusp singularity $(\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^2, 0)$ is $\Sigma^{1,1,0}$ and we have

$$\overline{\Sigma^{1,1,0}} = \overline{\Sigma^{1,1}} \,.$$

And for a holomorphic map-germ $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$, the ideal $\mathcal{I}(\Sigma^{1,1}(f))$ is the ideal $\langle Jf, J_1f, J_2f \rangle$ appeared in Theorems 1.2 and 1.3.

The Thom-Boardman singularity of Whitney's umbrella $(\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^{2n-1}, 0)$ is $\Sigma^{1,0}$ and we have

$$\overline{\Sigma^{1,0}} = \overline{\Sigma^1} \,.$$

And for a holomorphic map-germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$ with $n \leq p$ and for

$$\Sigma^{i_1} = \{ j^l g(q) \in J^l(\mathbf{C}^n, \mathbf{C}^p) | \operatorname{corank} J g(q) = i_1 \},\$$

 $\mathcal{I}(\Sigma^{i_1}(f))$ is the ideal generated by $(n - i_1 + 1) \times (n - i_1 + 1)$ minor determinants of the jacobian matrix of f and for a map-germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{2n-1}, 0), \mathcal{I}(\Sigma^1(f))$ is the ideal generated by $n \times n$ minor determinants of the jacobian matrix of f, which appeared in our main theorem.

THEOREM 1.5 (T. Fukui, J. Nuño Ballesteros and M. Saia, [5], [22]). Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$ be a holomorphic map-germ such that $\dim_{\mathbb{C}} \mathcal{O}_n / \mathcal{I}(\Sigma^I(f)) < +\infty$. Then the following properties hold for any generic perturbation $\tilde{f} : U(\subset \mathbb{C}^n) \to \mathbb{C}^p$ of f.

(1) The number of singular points of type Σ^{I} of \tilde{f} is equal to or less than

 $\dim_{\mathbf{C}} \mathcal{O}_n/\mathcal{I}(\Sigma^I(f)).$

(2) The number of singular points of type Σ^{I} of \tilde{f} is equal to dim_C $\mathcal{O}_{n}/\mathcal{I}(\Sigma^{I}(f))$ if and only if the Zariski closure of Σ^{I} is Cohen-Macaulay at a point $j^{k} f(0) \in \Sigma^{I}$.

(3) When the length is equal to 1, the Zariski closure of Σ^{I} is always Cohen-Macaulay at $j^{1} f(0)$.

REMARK 1.6. T. Fukui and J. Weyman [6, 7] investigate when the Zariski closure of Σ^{I} is Cohen-Macaulay and proved that the defining ideals of the Zariski closure of some $\Sigma^{i,j}$, for example $\Sigma^{2,1}((n, p) = (3, 2))$, $\Sigma^{3,1}((n, p) = (4, 2))$, are Cohen-Macaulay.

In the real case, for a C^{∞} map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, the defining ideal $\mathcal{I}(\Sigma^I(f))$ can be defined in the same way as in the complex case. From Theorem 1.5, we have

THEOREM 1.7. Let Σ^{I} have codimension n. Let $f : (\mathbf{R}^{n}, 0) \to (\mathbf{R}^{p}, 0)$ be a C^{∞} map-germ such that $\dim_{\mathbf{R}} \mathcal{E}_{n}/\mathcal{I}(\Sigma^{I}(f)) < +\infty$. Let U be an open neighborhood of the origin 0 in \mathbf{R}^{n} and let $\tilde{f} : U(\subset \mathbf{R}^{n}) \to \mathbf{R}^{p}$ be a generic perturbation of f. Then the number of singular points of type Σ^{I} that appear in \tilde{f} is equal to $\dim_{\mathbf{R}} \mathcal{E}_{n}/\mathcal{I}(\Sigma^{I}(f))$ modulo 2.

As seen in the above, the numbers of singular points that appear in generic perturbations of map-germs are well investigated. However, strangely enough, the topological invariance of these numbers is not considered after [3], [8]. Thus, the following natural problem arises.

PROBLEM. Let Σ^{I} be a Thom-Boardman singularity with codimension n.

(1) Is the number of singular points of type Σ^{I} that appear in a generic perturbation $\tilde{f} : U(\subset \mathbb{C}^{n}) \to \mathbb{C}^{p}$ of a holomorphic map-germ $f : (\mathbb{C}^{n}, 0) \to (\mathbb{C}^{p}, 0)$ a topological invariant of f?

(2) Is the number (modulo 2) of singular points of type Σ^I that appear in a generic perturbation $\tilde{f} : U(\subset \mathbf{R}^n) \to \mathbf{R}^p$ of a C^{∞} map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$ a topological invariant of f?

In this paper, we answer this problem for Whitney's umbrellas in the real case.

2. A generic property of map-germs

We recall Fukuda's theorem [2] on generic properties of C^{∞} map-germs. Let $C^{\infty}(\mathbf{R}^n, \mathbf{R}^p; 0, 0)$ denote the set of all C^{∞} map-germ from $(\mathbf{R}^n, 0)$ to $(\mathbf{R}^p, 0)$. Let $\pi_r : C^{\infty}(\mathbf{R}^n, \mathbf{R}^p; 0, 0) \to J^r(\mathbf{R}^n, \mathbf{R}^p)$ be the canonical projection defined by $\pi_r(f) = j^r f(0)$. A subset Σ of $C^{\infty}(\mathbf{R}^n, \mathbf{R}^p; 0, 0)$ is said to be ∞ -codimensional in $C^{\infty}(\mathbf{R}^n, \mathbf{R}^p; 0, 0)$, if for any positive integer k, there exist a positive integer r and a semi-algebraic subset Σ_k in $J^r(\mathbf{R}^n, \mathbf{R}^p)$ with codimension $\geq k$ such that $\Sigma \subset \pi_r^{-1}(\Sigma_k)$.

Since dim_{**R**} $\mathcal{E}_n/\mathcal{I}(\Sigma^1(f)) < +\infty$ if and only if $\mathcal{I}(\Sigma^1(f)) \supset \langle x_1, \ldots, x_m \rangle^k$ for some k, we have

LEMMA 2.1. The set

$$\Sigma^* = \{ f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^p; 0, 0) | \dim_{\mathbb{R}} \mathcal{E}_n / \mathcal{I}(\Sigma^1(f)) = +\infty \}$$

is an ∞ -codimensional subset of $C^{\infty}(\mathbf{R}^n, \mathbf{R}^p; 0, 0)$.

THEOREM 2.2 (Fukuda [2], Theorem 1). Let X be a semi-algebraic submanifold of the multi-jet space ${}_m J^k(\mathbf{R}^n, \mathbf{R}^p)$. Then there exists an ∞ -codimensional subset Σ_∞ of $C^\infty(\mathbf{R}^n, \mathbf{R}^p; 0, 0)$ such that any $f \in C^\infty(\mathbf{R}^n, \mathbf{R}^p; 0, 0) - \Sigma_\infty$ has a C^∞ representative $\overline{f}: U \to \mathbf{R}^p$ that satisfies the following two properties;

(1) for any m-tuple $S = \{x_1, \ldots, x_m\}$ of distinct points of $U - \{0\}$, the multijet extension $_m j^k \bar{f} : U^{(m)} \to _m J^k(\mathbf{R}^n, \mathbf{R}^p)$ is transversal to X at (x_1, \ldots, x_m) ,

(2) *if* $\operatorname{codim} X \ge mn$, *then*

$${}_{m}j^{k}\bar{f}((U-\{0\})^{(m)})\cap X=\emptyset.$$

As an easy Corollary of Theorem 2.2, we have

COROLLARY 2.3. There exists an ∞ -codimensional subset Σ_{∞} of $C^{\infty}(\mathbb{R}^n, \mathbb{R}^{2n-1}; 0, 0)$ such that any $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^{2n-1}; 0, 0) - \Sigma_{\infty}$ has a C^{∞} representive $\bar{f} : U \to \mathbb{R}^{2n-1}$ that satisfies the following properties.

(1) \bar{f} has no singular points except for the origin,

(2) if $x_1, x_2, ..., x_m$ are distinct points in $U - \{0\}$ such that $\overline{f}(x_1) = \overline{f}(x_2) = \cdots = \overline{f}(x_m)$, then the images of the germs of \overline{f} at $x_1, x_2, ..., x_m$ meet transversally at $y = \overline{f}(x_1) = \overline{f}(x_2) = \cdots = \overline{f}(x_m)$,

(3) as a consequence of (1) and (2), $\overline{f}: U - \{0\} \to \mathbb{R}^{2n-1}$ is A-stable.

DEFINITION 2.4. A map-germ $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ is said to be generic if $\dim_{\mathbf{R}} \mathcal{E}_n/\mathcal{I}(\Sigma^1(f)) < +\infty$ and f has a representative $\bar{f} : U \to \mathbf{R}^{2n-1}$ that satisfies conditions (1), (2) and (3) in Corollary 2.3. Such a representative $\bar{f} : U \to \mathbf{R}^{2n-1}$ is called a proper representive of f.

LEMMA 2.5. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be a generic C^{∞} map-germ and let $\overline{f} : U \to \mathbf{R}^{2n-1}$ be a proper representative of f, U being a sufficiently small neighborhood of the origin $0 \in \mathbf{R}^n$. Let U' be an open neighborhood of 0 such that

$$0\in U'\subset \overline{U}'\subset U.$$

Let $\tilde{f}: U \to \mathbf{R}^{2n-1}$ be a stable perturbation of \bar{f} sufficiently close to \bar{f} . Then the restricted mapping $\bar{f}|_{U-\overline{U}'}$ and $\tilde{f}|_{U-\overline{U}'}$ are \mathcal{A} -equivalent.

PROOF. By Corollary 2.3 (3), we have that $\bar{f}|_{U-\{0\}} : U - \{0\} \to \mathbb{R}^{2n-1}$ is \mathcal{A} -stable. Thus the restricted mapping $\bar{f}|_{U-\overline{U}'}$ is \mathcal{A} -stable. Since $\tilde{f} : U \to \mathbb{R}^{2n-1}$ approximates $\bar{f} : U \to \mathbb{R}^{2n-1}$ sufficiently closely with respect to the Whitney topology of $C^{\infty}(U, \mathbb{R}^{2n-1}; 0, 0)$, $\tilde{f}|_{U-\overline{U}'}$ is also sufficiently close to $\bar{f}|_{U-\overline{U}'}$ with respect to the Whitney topology of $C^{\infty}(U, \mathbb{R}^{2n-1}; 0, 0)$,

 $\overline{U}', \mathbf{R}^{2n-1}; 0, 0)$. Since $\overline{f}|_{U-\overline{U}'}$ is \mathcal{A} -stable, $\widetilde{f}|_{U-\overline{U}'}$ and $\overline{f}|_{U-\overline{U}'}$ are \mathcal{A} -equivalent from the definition of stability. \Box

REMARK 2.1. Even when $\tilde{f}: U \to \mathbb{R}^{2n-1}$ approximates $\bar{f}: U \to \mathbb{R}^{2n-1}$ sufficiently closely with respect to the Whitney topology of $C^{\infty}(U, \mathbb{R}^{2n-1}; 0, 0)$, it is not necessarily that $\tilde{f}|_{U-\{0\}}: U - \{0\} \to \mathbb{R}^{2n-1}$ approximates $\bar{f}|_{U-\{0\}}: U - \{0\} \to \mathbb{R}^{2n-1}$ sufficiently closely with respect to the Whitney topology of $C^{\infty}(U - \{0\}, \mathbb{R}^{2n-1}; 0, 0)$. Therefore even if $\bar{f}|_{U-\{0\}}$ is \mathcal{A} -stable, we can not claim that $\bar{f}|_{U-\{0\}}$ and $\tilde{f}|_{U-\{0\}}$ are \mathcal{A} -equivalent.

3. Double points of a mapping

The key of the proof of our main theorem is an observation of double points of a mapping.

DEFINITION 3.1. A *double point* of a mapping $f : X \to Y$ is a point x for which there exists a different point y from x such that f(x) = f(y). We denote by D(f) the set of double points of f.

EXAMPLE 3.2. The double point set of Whitney's umbrella $f : \mathbf{R}^n \to \mathbf{R}^{2n-1}$,

$$f(x_1,...,x_n) = (x_1,...,x_{n-1},x_n^2,x_1x_n,...,x_{n-1}x_n),$$

is given by

$$D(f) = \{(0, \ldots, 0, x_n) | x_n \neq 0\}.$$

The singular point set $\{(0, ..., 0)\}$ of Whitney's umbrella f is coincident with $\overline{D(f)} - D(f)$, where $\overline{D(f)}$ is the topological closure of D(f). See Figure 1.

From Corollary 2.3, we have

LEMMA 3.3. For a proper representative $\bar{f} : U(\subset \mathbb{R}^n) \to \mathbb{R}^{2n-1}$ of a generic mapgerm $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^{2n-1}, 0), D(\bar{f})$ is a smooth curve and consists of a finite number of connected components.

DEFINITION 3.4. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be a generic C^{∞} map-germ and let $\bar{f} : U \to \mathbf{R}^{2n-1}$ be a proper representative of f. Then, $D(\bar{f})$ consists of an even number of

FIGURE 1. Whitney's umbrella

connected smooth curves which we call *half branches of* $\overline{D(\bar{f})}$. For every half branch γ of $\overline{D(\bar{f})}$, there exists a distinct half branch γ^* of $\overline{D(\bar{f})}$ such that for every point x of γ , there exists a point y of γ^* with f(x) = f(y), which we call the *partner branch of* γ . We call the union of a half branch, its partner branch and the origin, $\gamma \cup \gamma^* \cup \{0\}$, a *branch of* $\overline{D(\bar{f})}$.

LEMMA 3.5. Let $f, g: (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be generic C^{∞} map-germs and let $\overline{f}: U \to \mathbf{R}^{2n-1}$ and $\overline{g}: V \to \mathbf{R}^{2n-1}$ be their proper representive mappings respectively. If \overline{f} and \overline{g} are topological equivalent, that is, if there exist homeomorphisms $h_1: U \to V$ and $h_2: \mathbf{R}^{2n-1} \to \mathbf{R}^{2n-1}$ such that $h_2 \circ \overline{f} = \overline{g} \circ h_1$, then $\overline{D(\overline{f})}$ and $\overline{D(\overline{g})}$ are homeomorphic and the number of branches of $\overline{D(\overline{f})}$ and the number of branches of $\overline{D(\overline{g})}$ coincide.

4. Proof of the main theorem

From Lemma 3.5, to prove the main theorem, it suffices to prove.

THEOREM 4.1. Let $f : (\mathbf{R}^n, 0) \to (\mathbf{R}^{2n-1}, 0)$ be a generic C^{∞} map-germ and let $\overline{f} : U \to \mathbf{R}^{2n-1}$ be a proper representive mapping of f, U being a sufficiently small neighborhood of the origin $0 \in \mathbf{R}^n$. Then the number of Whitney's umbrella of a stable perturbation $\widetilde{f} : U \to \mathbf{R}^{2n-1}$ of f is equal to the number of branches of $\overline{D(\overline{f})}$ modulo 2

PROOF. The closure $\overline{D(\tilde{f})}$ of the set of double point of $\tilde{f}: U \to \mathbb{R}^{2n-1}$ is the union of $D(\tilde{f})$ and the singular point set of \tilde{f} :

$$\overline{D(\tilde{f})} = D(\tilde{f}) \cup \{\text{the singularities of } \tilde{f}\} = D(\tilde{f}) \cup \{\text{Whitney's umbrella of } \tilde{f}\}.$$

 $D(\tilde{f})$ consists of connected smooth curves any two of which have no common points. On the other hand branches of $\overline{D(\tilde{f})}$ are not closed curves and they have the origin as a unique common point. See Figure 2.

Let U' be an open neighborhood of 0 such that

$$0 \in U' \subset \overline{U'} \subset U$$

and that $\tilde{f}|_{U-\overline{U'}}$ and $\bar{f}|_{U-\overline{U'}}$ are \mathcal{A} -equivalent. The existence of such a neighborhood U' is guaranteed by Lemma 2.5. Now consider connected components of $\overline{D(\tilde{f})}$. There may be connected components of $\overline{D(\tilde{f})}$ that are closed curves. Taking U' wide if necessary, we may suppose that all the closed curve components of $\overline{D(\tilde{f})}$ are contained in U' and that the number of connected components of $\overline{D(\tilde{f})}$ not contained in U' is equal to the number of branches of $\overline{D(\tilde{f})}$. See Figure 3.

Let \tilde{C} be a connected component of $\overline{D(\tilde{f})}$. There are four cases to consider.

Case (1); where $\tilde{C} \cap (U - U') = \emptyset$ and there exists another connected component \tilde{C}' of $\overline{D(\tilde{f})}$ such that for every point $x \in \tilde{C}$ there exists a point $x' \in \tilde{C}'$ with $\tilde{f}(x) = \tilde{f}(x')$. See Figure 4.

483

In this case \tilde{C} and \tilde{C}' contain no singular points of \tilde{f} , hence they contain no Whitney's umbrellas.

Case (2); where $\tilde{C} \cap (U - U') \neq \emptyset$ and there exists another connected component \tilde{C}' of $\overline{D(\tilde{f})}$ such that for every point of x in \tilde{C} there exists a point $x' \in \tilde{C}'$ with $\tilde{f}(x) = \tilde{f}(x')$. See Figure 5.

In this case \tilde{C} and \tilde{C}' contain no singular points of \tilde{f} , hence they contain no Whitney's umbrellas.

FIGURE 2.

FIGURE 3.

U

FIGURE 4.

Case (3); where $\tilde{C} \cap (U - U') \neq \emptyset$ and there exist distinct two points x and y in $\tilde{C} \cap (U - \overline{U'})$ such that $\tilde{f}(x) = \tilde{f}(y)$. See Figure 6.

In this case, there is a unique Whitney's umbrella in the middle of x and y in \tilde{C} , as seen as follows. Since \tilde{f} meets transversally at x and y, there exist neighborhood V(x) of x and V(y) of y such that $\tilde{f}|_{V(x)}$ and $\tilde{f}|_{V(y)}$ meet transversally along $\tilde{C} \cap V(x)$ and $\tilde{C} \cap V(y)$. Extending such neighborhoods V(x) toward y and V(y) toward x respectively as widely as possible, we have a unique Whitney's umbrella in the middle of x and y in \tilde{C} .

Case (4); where $\tilde{C} \cap (U - U') = \emptyset$ and there exist two distinct points $x_0 \in \tilde{C}$ and $y_0 \in \tilde{C}$ such that $\tilde{f}(x_0) = \tilde{f}(y_0)$. See Figure 7.

In this case, since \tilde{C} is a smooth connected curve contained in $\overline{U'}$ and hence \tilde{C} is a closed connected curve, $\tilde{C} - \{x_0, y_0\}$ can be devided into two connected components \tilde{C}_1, \tilde{C}_2 :

$$\tilde{C} - \{x_0, y_0\} = \tilde{C}_1 \cup \tilde{C}_2$$

For any point $x_1 \in \tilde{C}_1$ sufficiently close to x_0 , there exists a point $y_1 \in \tilde{C}$ sufficiently close to y_0 such that $\tilde{f}(y_1) = \tilde{f}(x_1)$. The point y_1 corresponding to x_1 belongs to either \tilde{C}_1 or \tilde{C}_2 .

(4-1); the case where $y_1 \in \tilde{C}_1$.

FIGURE 5.

FIGURE 6.

In this case, with the same reason as in the Case (3), there exists a unique Whitney's umbrella in \tilde{C}_1 . In this case, also for any point $x_2 \in \tilde{C}_2$ sufficiently close to x_0 , there exists a point $y_2 \in \tilde{C}_2$ such that $\tilde{f}(y_2) = \tilde{f}(x_2)$. Then, again with the same reason, there exists a unique Whitney's umbrella in \tilde{C}_2 . Thus, we have exactly two Whitney's umbrellas on \tilde{C} . See Figure 8.

(4-2); the case where $y_1 \in \tilde{C}_2$.

In this case, for every point $x \in \tilde{C}_1$, there exists a point $y \in \tilde{C}_2$ such that $\tilde{f}(y) = \tilde{f}(x)$ and there is no Whitney's umbrellas on \tilde{C} . See Figure 9.

Now, the connected components \tilde{C} of $\overline{D(\tilde{f})}$ of Case (1), (2) do not contribute to the number of Whitney's umbrellas of \tilde{f} . Since connected components of $\overline{D(\tilde{f})}$ of Case (4) contain either two Whitney's umbrellas or none each, they also do not contribute to the number modulo 2 of Whitney's umbrellas of \tilde{f} . Thus we have

485

the number of Whitney's umbrella

 \equiv the number of the connected components of $\overline{D(\tilde{f})}$ of Case (3)

(modulo 2).

On the other hand connected components of $\overline{D(\tilde{f})}$ of Cases (1) and (4) are contained in $\overline{U'}$ and connected components of $\overline{D(\tilde{f})}$ of Cases (2) and (3) are not contained in $\overline{U'}$. The number of connected components of $\overline{D(\tilde{f})}$ of Case (2) is even, since for each connected component \tilde{C} of Case (2), the corresponding component $\tilde{C'}$ is also of Case (2). Thus

the number of Whitney's umbrella

- \equiv the number of connected components of $\overline{D(\tilde{f})}$ of Case (3) (modulo 2)
- \equiv the number of connected components of $\overline{D(\tilde{f})}$ of Cases (2) and (3) (modulo 2)
- = the number of connected components of $\overline{D(\tilde{f})}$ not contained in U'
- = the number of branches of $\overline{D}(\overline{f})$.

This completes the proof of Theorem 4.1 and hence of the main theorem.

5. Some examples

In this section, we observe A-simple map-germs ($\mathbb{R}^2, 0$) \rightarrow ($\mathbb{R}^3, 0$) classified by D. Mond [18], and see that Theorem 4.1 holds for them.

THEOREM 5.1 (D. Mond [18]). Each of the germs in the following list is A-simple, and every A-simple germ of a map from a 2-manifold to a 3-manifold is equivalent to one of the germs on the list.

Germ	$\mathcal{A} ext{-}codimension$	Name
f(x, y) = (x, y)	0	Immersion
$f(x, y) = (x, y^2, xy)$	2	Cross-cap (S_0)
$f(x, y) = (x, y^2, y^3 \pm x^{k+1}y), k \ge 1$	k+2	S_k^{\pm}
$f(x, y) = (x, y^2, x^2y \pm y^{2k+1}), k \ge 2$	k+2	B_k^{\pm}
$f(x, y) = (x, y^2, xy^3 \pm x^k y), k \ge 3$	k+2	$egin{array}{c} B_k^\pm\ C_k^\pm \end{array}$
$f(x, y) = (x, y^2, x^3y + y^5)$	6	F_4
$f(x, y) = (x, xy + y^{3k-1}, y^3), k \ge 2$	k+2	H_k

EXAMPLE 5.2. We consider the normal form $S_k^{\pm} : f_k^{\pm} : (\mathbf{R}^2, 0) \to (\mathbf{R}^3, 0)$ given by

$$f_k^{\pm}(x, y) = (x, y^2, y^3 \pm x^{k+1}y), \quad k \ge 1.$$

Since $\mathcal{I}(\Sigma^1(f_k^{\pm}))$ is the ideal generated by 2×2 minors of the jacobian matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 2y \\ \pm (k+1)x^{k}y & 3y^{2} \pm x^{k+1} \end{pmatrix}$$

of f, we have

$$\mathcal{I}(\Sigma^1(f_k^{\pm})) = \langle y, x^{k+1} \rangle$$

and we have

$$\dim_{\mathbf{R}} \mathcal{E}_2 / \mathcal{I}(\Sigma^1(f_k^{\pm})) = k + 1.$$

On the other hand,

$$D(f_k^+) = \{(x, y) | x^{k+1} + y^2 = 0, y \neq 0\},$$
$$D(f_k^-) = \{(x, y) | x^{k+1} - y^2 = 0, y \neq 0\}.$$

Thus we see that

the number of branches of
$$\overline{D(\overline{f_k^+})} = \begin{cases} 1, & \text{if } k+1 \equiv 1 \mod 2\\ 0, & \text{if } k+1 \equiv 0 \mod 2 \end{cases}$$

the number of branches of
$$\overline{D(\overline{f_k^-})} = \begin{cases} 1, & \text{if } k+1 \equiv 1 \mod 2\\ 2, & \text{if } k+1 \equiv 0 \mod 2 \end{cases}$$

Hence we have

the number of branches of
$$\overline{D(\overline{f_k^{\pm}})} \equiv \dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f_k^{\pm})) \pmod{2}$$

as Theorem 4.1 asserts.

For any integer *l* with $0 \le l \le k + 1$ and with $l \equiv k + 1 \pmod{2}$, we have a stable perturbation of *f*

$$\tilde{f}_{k,l}^{\pm}: U(\subset \mathbf{R}^2) \to \mathbf{R}^3$$

such that the number of Whitney's umbrellas of $\tilde{f}_{\pm l}$ is exactly *l*, constructed as follows. Let $\varepsilon_1, \ldots, \varepsilon_l$ be sufficiently small distinct real numbers. Set $m = \frac{k+1-l}{2}$ and let $\delta_1, \ldots, \delta_m$ be small positive numbers. Then,

$$\tilde{f}_{k,l}^{\pm}(x,y) = (x, y^2, y^3 \pm y(x-\varepsilon_1)\cdots(x-\varepsilon_l)(x^2+\delta_1)\cdots(x^2+\delta_m))$$

is a stable perturbation of f. Whitney's umbrellas of $\tilde{f}_{k,l}^{\pm}$ are the points $(\varepsilon_1, 0), \ldots, (\varepsilon_l, 0)$. Thus the number of Whitney's umbrellas of $\tilde{f}_{k,l}^{\pm}$ is exactly l. See Figure 10, 11, 12, 13, 14, 15.

EXAMPLE 5.3. Now we consider the normal form B_k^{\pm} : f_k^{\pm} : $(\mathbf{R}^2, 0) \rightarrow (\mathbf{R}^3, 0)$ given by

$$f_k^{\pm}(x, y) = (x, y^2, x^2y \pm y^{2k+1}), \quad k \ge 2.$$

Since $\mathcal{I}(\Sigma^1(f_k^{\pm})) = \langle y, x^2 \rangle$, we have

$$\dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f_k^{\pm})) = 2.$$

On the other hand,

$$D(f_k^+) = \{(x, y) | x^2 + y^{2k} = 0, y \neq 0\} = \emptyset,$$

$$D(f_k^-) = \{(x, y) | x^2 - y^{2k} = 0, y \neq 0\}.$$

Thus we see that

the number of branches of
$$D(\overline{f_k^+}) = 0$$

FIGURE 10. $S_1^+: f_1^+(x, y) = (x, y^2, y^3 + x^2y), \dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f_1^+)) = 2.$

Figure 11. $\tilde{f}^+_{1,0}(x, y) = (x, y^2, y^3 + y(x^2 + \delta_1)), \ D(\tilde{f}^+_{1,0}) = \emptyset.$

FIGURE 12. $\tilde{f}_{1,2}^+(x, y) = (x, y^2, y^3 + y(x - \varepsilon_1)(x - \varepsilon_2)), D(\tilde{f}_{1,2}^+) = \{(x, y) \in \mathbb{R}^2 | y^2 + (x - \varepsilon_1)(x - \varepsilon_2) = 0, y \neq 0\}.$

FIGURE 13. $S_2^+: f_2^+(x, y) = (x, y^2, y^3 + x^3 y), \dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f_2^+)) = 3.$

$$\begin{split} \text{Figure 14.} \quad & \tilde{f}_{2,1}^+(x,y) \,=\, (x,y^2,y^3+y(x-\varepsilon_1)(x^2+\delta_1)), \, D(\tilde{f}_{2,1}^+) \,=\, \{(x,y) \,\in\, & \mathbf{R}^2 \,|\, y^2+(x-\varepsilon_1)(x^2+\delta_1)=0, \, y\neq 0\}. \end{split}$$

$$\begin{split} \text{FIGURE 15.} \quad & \tilde{f}_{2,3}^+(x,y) = (x,y^2,y^3 + y(x-\varepsilon_1)(x-\varepsilon_2)(x-\varepsilon_3)), \, D(\tilde{f}_{2,3}^+) = \{(x,y) \in \\ & \mathbf{R}^2 | \, y^2 + (x-\varepsilon_1)(x-\varepsilon_2)(x-\varepsilon_3) = 0, \, y \neq 0 \}. \end{split}$$

the number of branches of $\overline{D(\overline{f_k^-})} = 2$.

Hence we have

the number of branches of
$$\overline{D(f_k^{\pm})} \equiv \dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f_k^{\pm})) \pmod{2}$$

as Theorem 4.1 asserts.

For any integer *l* with $0 \le l \le 2$ and with $l \equiv 2 \pmod{2}$, (that is, *l* is 0 or 2), we have a stable perturbation of *f*

$$\tilde{f}_{k,l}^{\pm}: U(\subset \mathbf{R}^2) \to \mathbf{R}^3$$

such that the number of Whitney's umbrellas of $\tilde{f}_{k,l}^{\pm}$ is exactly *l*, constructed as follows. Let $\varepsilon_1, \varepsilon_2$ be sufficiently small distinct real numbers. Let δ_1 be small positive number. Then,

$$\begin{split} \tilde{f}^{\pm}_{k,0}(x,\,y) &= (x,\,y^2,\,\pm y^{2k+1} + y(x^2 + \delta_1))\,, \\ \tilde{f}^{\pm}_{k,2}(x,\,y) &= (x,\,y^2,\,\pm y^{2k+1} + y(x - \varepsilon_1)(x - \varepsilon_2)) \end{split}$$

are stable perturbations of f. $\tilde{f}_{k,0}^{\pm}$ has no Whitney's umbrellas and Whitney's umbrellas of $\tilde{f}_{k,2}^{\pm}$ are the points (ε_1 , 0), (ε_2 , 0). Thus the number of Whitney's umbrellas of $\tilde{f}_{k,0}^{\pm}$ and $\tilde{f}_{k,2}^{\pm}$ is exactly 0 and 2 respectively. See Figure 16, 17, 18.

FIGURE 16. $B_2^-: f_2^-(x, y) = (x, y^2, x^2y - y^5), \dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma(f_2^-)) = 2.$

FIGURE 17. $\tilde{f}_{2,0}^{-}(x, y) = (x, y^2, -y^5 + y(x^2 + \delta_1)), D(\tilde{f}_{2,0}^{-}) = \{(x, y) \in \mathbf{R}^2 | y^4 - (x^2 + \delta_1) = 0\}.$

In this way, we have the following table and we see that for Mond's normal forms $\dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f_k^{\pm})) \equiv \text{the number of branches of } \overline{D(\overline{f_k^{\pm}})} \pmod{2} \text{ as Theorem 4.1 asserts.}$ $\dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f)) \qquad \text{number of branches of } \overline{D(\overline{f})}$

	$\dim_{\mathbf{R}} \mathcal{E}_2/\mathcal{I}(\Sigma^1(f))$	number of branches of $D(f)$		
S_k^+	L + 1	∫ 1,	$\text{if } k+1 \equiv 1 \mod 2$	
S_k^+ $k+1$	0,	$\text{if } k+1 \equiv 0 \mod 2$		
$S_k^ k+1$	L + 1	∫ 1,	$\text{if } k+1 \equiv 1 \mod 2$	
	$\kappa \pm 1$	2,	if $k + 1 \equiv 1 \mod 2$ if $k + 1 \equiv 0 \mod 2$	
B_k^+	2	0,		
B_k^-	2	2,		
$egin{array}{ccc} B_k^+ & 2 \ B_k^- & 2 \ C_k^+ & k \end{array}$	k	∫ 1,	$if k \equiv 1 \mod 2$ $if k \equiv 0 \mod 2$ $if k \equiv 1 \mod 2$ $if k \equiv 0 \mod 2$	
	2,	$\text{if } k \equiv 0 \mod 2$		
$ \begin{array}{ccc} C_k^- & k \\ F_4 & 3 \\ H_k & 2 \end{array} $	lr.	∫ 3,	$\text{if } k \equiv 1 \mod 2$	
	2,	$\text{if } k \equiv 0 \mod 2$		
F_4	3	1,		
H_k	2	0.		

References

- [1] J. M. BOARDMAN, Singularities of differentiable maps, Inst. Hautes Etudes Sci. Publ. Math. 33 (1967), 21–57.
- [2] T. FUKUDA, Local Topological properties of differentiable mappings. I, Invent. Math. 65 (1981), 227–250.
- [3] T. FUKUDA and G. ISHIKAWA, On the number of cusps of stable perturbations of a plane-to-plane singlarity, Tokyo J. Math. 10 (1987), 375–384.
- [4] T. FUKUI, J. NUÑO BALLESTEROS and M. SAIA, Counting singularities in stable perturbations of map germs, Sūrikaisekikenkyūsho kōkyūroku 926 (1995), 1–20.
- [5] T. FUKUI, J. NUÑO BALLESTEROS and M. SAIA, On the number of singlarities in generic deformations of map germs, J. London Math. Soc. (2) 58 (1998), 141–152.
- [6] T. FUKUI and J. WEYMAN, Cohen-Macaulay properties of Thom-Boardman strata I, Morin's ideal, Proc. London Math. Soc. (3) 80 (2000), 257–303.
- [7] T. FUKUI and J. WEYMAN, Cohen-Macaulay properties of Thom-Boardman strata II, The defining ideals of $\Sigma^{i,j}$, Proc. London Math. Soc. (3) 87 (2003), 137–163.
- [8] T. GAFFNEY and D. MOND, Cusps and double folds of germs of analytic maps $\mathbb{C}^2 \to \mathbb{C}^2$, J. London Math. Soc. (2) **43** (1991), 185–192.
- [9] J. MATHER, Stability of C^{∞} -mappings I. The division theorem, Ann. of Math. 87 (1968), 89–104.
- [10] J. MATHER, Stability of C^{∞} -mappings II. Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254–291.
- [11] J. MATHER, Stability of C^{∞} -mappings III. Finitely determined map-germs, Publ. Math. Inst. Hautes Etudes Sci. **35** (1968), 127–156.
- [12] J. MATHER, Stability of C^{∞} -mappings IV. Classification of stable germs by **R**-algebras, Publ. Math. Inst. Hautes Etudes Sci. **37** (1969), 223–248.
- [13] J. MATHER, Stability of C^{∞} -mappings V. Transversality, Advances in Math. 4 (1970), 301–336.
- [14] J. MATHER, Stability of C^{∞} -mappings VI. The nice dimensions, Springer Lecture Notes in Math. **192** (1971), 207–253.
- [15] J. MATHER, Stratifications and mappings, Proceedings of the Dynamical Systems Conference, Salvador, Academic Press (1971).
- [16] J. MATHER, How to stratify mappings and jet spaces, Springer Lecture Notes in Math. 535 (1976), 128–176.
- [17] J. W. MILNOR, Singular Points of Complex Hypersurfaces, Priceton University Press (1968).
- [18] D. M. Q. MOND, On the classification of germs of maps from \mathbb{R}^2 to \mathbb{R}^3 , Proc. London Math. Soc. (3) 50 (1985), 333–369.

- [19] D. M. Q. MOND, Vanishing cycles for analytic maps, *Singularity theory and its applications*, Lecture Notes in Math. 1462, Springer (1991), 221–234.
- [20] B. MORIN, Calcul jacobien, Ann. Sci. Ecole Norm. Sup. 8 (1975), 1-98.
- [21] J. NUÑO BALLESTEROS and M. SAIA, An invariant for map germs (preprint, 1995).
- [22] J. NUÑO BALLESTEROS and M. SAIA, 'Multiplicity of Boardman strata and deformations of map germs', Glasgow Math. J. 40 (1998), 21–32.
- [23] T. NISHIMURA, Singular points and Mather's theory, Mathematical of singular points vol.2 F Singularities and bifurcation Part I, Kyöritu Publisher (in Japanese) (2002).
- [24] R. THOM, Les singularités des applications différéntables, Ann. Inst. Fourier 6 (1955), 43-87.
- [25] R. THOM, Un lemme sur les applications différéntiables, Bol. Soc. Math. Mexic. 2nd series 1 (1956), 59–71.
- [26] C. T. C. WALL, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481–539.
- [27] C. T. C. WALL, Topological invariance of the Milnor number mod 2, Topology 22 (1983), 345–350.
- [28] H. WHITNEY, Differentiable manifolds, Ann. of Math. 37 (1936), 645-680.
- [29] H. WHITNEY, The general type of singularity of a set of 2n 1 smooth functions of *n* variables, Duke Math. J. **10** (1943), 161–172.
- [30] H. WHITNEY, The self-intersections of a smooth *n*-manifolds in 2*n*-space, Ann. of Math. 45 (1944), 220–246.
- [31] H. WHITNEY, The singularities of a smooth *n*-manifold in (2n-1)-space, Ann. of Math. **45** (1944), 247–293.
- [32] H. WHITNEY, On singularities of mappings of Euclidean spaces I. Mappings of the plane into the plane, Ann. of Math. 62 (1955), 374–410.

Present Address: DEPARTMENT OF MATHEMATICS, COLLEGE OF HUMANITIES AND SCIENCES NIHON UNIVERSITY, SAKURAJOSUI SETAGAYA-KU, TOKYO, 156–8550 JAPAN. *e-mail*: m_ohsumi@math.chs.nihon-u.ac.jp