Whitney's Umbrellas in Stable Perturbations
 of a Map $\operatorname{Germ}\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$

Mariko OHSUMI

Nihon University

(Communicated by Y. Maeda)

Abstract

Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be a C^{∞} map-germ. We are interested in whether the number modulo 2 of stable singular points of codimension n that appear near the origin in a generic perturbation of f is a topological invariant. In this paper we concentrate on investigating the problem when p is $2 n-1$, where stable singular points of codimension n are only Whitney's umbrellas, and give a positive answer to the problem.

1. Introduction

1.1. Main theorem. In this paper we show that the number modulo 2 of Whitney's umbrellas that appear in stable perturbations of a generic C^{∞} map-germ $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow$ $\left(\mathbf{R}^{2 n-1}, 0\right)$ is a topological invariant.

A C^{∞} map-germ $f:\left(\mathbf{R}^{n}, p\right) \rightarrow\left(\mathbf{R}^{2 n-1}, q\right)$ is called Whitney's umbrella if it is \mathcal{A} equivalent to the map-germ from $\left(\mathbf{R}^{n}, 0\right)$ to $\left(\mathbf{R}^{2 n-1}, 0\right)$ defined by

$$
\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}, x_{1} x_{n}, \ldots, x_{n-1} x_{n}\right)
$$

Here two C^{∞} map-germs $f:\left(M_{1}, p_{1}\right) \rightarrow\left(N_{1}, q_{1}\right)$ and $g:\left(M_{2}, p_{2}\right) \rightarrow\left(N_{2}, q_{2}\right)$ are said to be \mathcal{A}-equivalent if there exist C^{∞} diffeomorphism-germs $h:\left(M_{1}, p_{1}\right) \rightarrow\left(M_{2}, p_{2}\right)$ and $k:\left(N_{1}, q_{1}\right) \rightarrow\left(N_{2}, q_{2}\right)$ such that $k \circ f=g \circ h$.

Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ be a generic C^{∞} map-germ and let $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ be a C^{∞} representive of f, U being a small open neighborhood of the origin 0 in \mathbf{R}^{n}. By Whitney's theorem([29], [31]), \bar{f} can be approximated by a stable mapping $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ whose singularities are only Whitney's umbrellas. We call such $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ a stable perturbation of $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$.

We are interested in the number of Whitney's umbrellas of \tilde{f}.
Let \mathcal{E}_{n} be the ring of C^{∞} function-germs of $\left(\mathbf{R}^{n}, 0\right)$ into \mathbf{R}. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow$ $\left(\mathbf{R}^{2 n-1}, 0\right)$ be a C^{∞} map-germ. Let $\mathcal{I}\left(\Sigma^{1}(f)\right)$ be the ideal in \mathcal{E}_{n} generated by $n \times n$ minor determinants of the jacobian matrix of f.

Received November 25, 2004; revised April 1, 2005
2000 Mathematics Subject Classification 32S30, 32S50, 58C25 (primary), 58K15, 58K60, 58 K 65 (secondary).

MAIN THEOREM. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ be a generic C^{∞} map-germ such that $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{1}(f)\right)<+\infty$. The number of Whitney's umbrellas that appear in a stable perturbation of f is equal to $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{1}(f)\right)$ (modulo 2) and it is a topological invariant of f.

Here we call a map-germ "generic map-germ" in a strong sense. See Definition 2.4 in §2 for the precise definition.

REMARK 1.1. The statement that the number of Whitney's umbrellas that appear in the stable perturbation is equal to $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{1}(f)\right)(\bmod 2)$ is a consequence of [4], [5], [19], [21], [22]. Our assertion in the above theorem is that it is a topological invariant of f.
1.2. History of the problem. The problem of counting isolated singular points in stable perturbations of a degenerated map-germ is old and new.

The case of complex holomorphic functions is rather classical. Let $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow(\mathbf{C}, 0)$ be a holomorphic function-germ which defines an isolated singularity at 0 . It is well known that Milnor number $\mu(f)$ of f is the number of critical points of a Morse function near f and it is a topological invariant of f (J. W. Milnor [17]).

In the real case also, it is known that for a C^{∞} map-germ $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$ with $\mu(f)<+\infty, \mu(f)$ modulo 2 is a topological invariant of $f(\mathrm{C}$. T. C. Wall [27]).

The problem in the case of map-germs was investigated first by Fukuda and Ishikawa [3]. Let $f:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$ be a generic C^{∞} map-germ, let U be a sufficiently small neighborhood of the origin and let $\bar{f}: U\left(\subset \mathbf{R}^{2}\right) \rightarrow \mathbf{R}^{2}$ be a representive mapping of f. Then we may suppose that \bar{f} has no degenerate singular points except for the origin. By Whitney's theorem [32], \bar{f} can be approximated by a C^{∞} stable mapping $\tilde{f}: U \rightarrow \mathbf{R}^{2}$. The degenerate singularity of \bar{f} at the origin of \mathbf{R}^{2} bifurcates into stable singular points of \tilde{f}. Again by Whitney's theorem [32], the singular points of \tilde{f} are \mathcal{A}-equivalent to one of the following two map-germs from $\left(\mathbf{R}^{2}, 0\right)$ to $\left(\mathbf{R}^{2}, 0\right)$:

$$
\text { (1) } \quad(x, y) \mapsto\left(x, y^{2}\right), \quad \text { fold }
$$

(2) $\quad(x, y) \mapsto\left(x, y^{3}+x y\right), \quad$ cusp .

Suppose that $f:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$ is generic and U is a sufficiently small neighborhood of the origin so that $\bar{f}: U \rightarrow \mathbf{R}^{2}$ has only fold singular points off the origin. The cusp singular points of \tilde{f} are isolated. Let f_{1} and f_{2} denote the component function germs of f :

$$
f=\left(f_{1}, f_{2}\right):\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)
$$

Let $J f=J\left(f_{1}, f_{2}\right)$ denote the Jacobian determinant of f :

$$
J f(x)=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)_{1 \leq i, j \leq 2}
$$

Set

$$
\begin{aligned}
& J_{1} f=J\left(J f, f_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial J f}{\partial x_{1}} & \frac{\partial J f}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right), \\
& J_{2} f=J\left(f_{1}, J f\right)=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial J f}{\partial x_{1}} & \frac{\partial J f}{\partial x_{2}}
\end{array}\right) .
\end{aligned}
$$

Throughout this paper we use the following notations.

$$
\langle a, b, \ldots\rangle ; \quad \text { the ideal generated by } a, b, \ldots .
$$

THEOREM 1.2 (Fukuda and Ishikawa, [3]). Let $f:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$ be a C^{∞} mapgerm such that $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle<+\infty$. Then the following holds for any stable perturbation $\tilde{f}: U\left(\subset \mathbf{R}^{2}\right) \rightarrow \mathbf{R}^{2}$ of f.
(1) The number of cusps of \tilde{f} that appear near the origin is less than or equal to $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle$.
(2) The number of cusps of \tilde{f} that appear near the origin is equal to $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle$ modulo 2.
(3) The number modulo 2 of cusps of \tilde{f} is a topological invariant of f.

In the complex case, Gaffney and Mond [8] showed that Theorem 1.2 holds more precisely. Let $f:\left(\mathbf{C}^{2}, 0\right) \rightarrow\left(\mathbf{C}^{2}, 0\right)$ be a holomorphic map-germ, let U be a sufficiently small neighborhood of the origin in \mathbf{C}^{2} and let $\bar{f}: U\left(\subset \mathbf{C}^{2}\right) \rightarrow \mathbf{C}^{2}$ be a representive mapping of f. Then Whitney's theorem [32] also hold in the complex case, and \bar{f} can be approximated by a stable holomorphic mapping $\tilde{f}: U \rightarrow \mathbf{C}^{2}$ that has only fold and cusp type singular points.

Theorem 1.3 (Gaffney and Mond, [8]). Let $f:\left(\mathbf{C}^{2}, 0\right) \rightarrow\left(\mathbf{C}^{2}, 0\right)$ be an analytic map-germ such that $\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle<+\infty$. Then the following holds for any stable perturbation $\tilde{f}: U\left(\subset \mathbf{C}^{2}\right) \rightarrow \mathbf{C}^{2}$ of f.
(1) The number of cusps of \tilde{f} that appear near the origin is equal to $\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle$.
(2) The number of cusps of \tilde{f} that appear near the origin is a topological invariant of f.

REMARK 1.4. The conditions that $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle<+\infty$ and that $\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{2} /\left\langle J f, J_{1} f, J_{2} f\right\rangle<+\infty$ are generic conditions in a strong sense. That is, the set of map-germs which do not fulfill this condition is of ∞-codimension in the set of all map germs.

Apart from the problem of topological invariance, the study on the number of 0 dimensional singular points in generic perturbations of a degenerate map-germ is recently widely developed.

For a k-tuple of integers $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with $i_{1} \geq i_{2} \geq \ldots \geq i_{k} \geq 0$, there is a submanifold Σ^{I} of $J^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right)(l \geq k)$ called Thom-Boadman singularity set with symbol I. We will not give the definition of Σ^{I}, see [1] and [20] for the definition. If codim Σ^{I} in $J^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right)=n$, then for a generic mapping $\tilde{f}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{p}$ singular points of f with type Σ^{I} appear isolatedly.
D. Mond [19] investigated the number of Σ^{1} type singular points, that is, Whitney's umbrellas, for a holomorphic map-germ $\left(\mathbf{C}^{2}, 0\right) \rightarrow\left(\mathbf{C}^{3}, 0\right)$.

A generalization of Theorems 1.2, 1.3 and [19] on the number of codim n ThomBoardman singular points was first done by J. Nuño Ballesteros and M. Saia [21], then was followed by T. Fukui, J. Nuño Ballesteros and M. Saia [4], J. Nuño Ballesteros and M. Saia [22], T. Fukui, J. Nuño Ballesteros and M. Saia [5], T. Fukui and J. Weyman [6].

For a holomorphic map-germ $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{p}, 0\right)$, we suppose that $j^{l} f(0) \in \overline{\Sigma^{I}}$ in $J^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right)$. Let $\mathcal{I}\left(\Sigma^{I}\right)$ denote the defining ideal of the set-germ $\overline{\Sigma^{I}}$ in $\left(J^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right), j^{l} f(0)\right)$:

$$
\mathcal{I}\left(\Sigma^{I}\right)=\left\{\alpha \in \mathcal{O}_{j^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right), j^{l} f(0)}|\alpha|_{\overline{\Sigma^{I}}}=0\right\} \subset \mathcal{O}_{J^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right), j^{l} f(0)}
$$

and we define an ideal $\mathcal{I}\left(\Sigma^{I}(f)\right)$ in \mathcal{O}_{n} by

$$
\mathcal{I}\left(\Sigma^{I}(f)\right)=\left(j^{l} f\right)^{*}\left(\mathcal{I}\left(\Sigma^{I}\right)\right)
$$

For example, the Thom-Boardman singularity of cusp singularity $\left(\mathbf{C}^{2}, 0\right) \rightarrow\left(\mathbf{C}^{2}, 0\right)$ is $\Sigma^{1,1,0}$ and we have

$$
\overline{\Sigma^{1,1,0}}=\overline{\Sigma^{1,1}} .
$$

And for a holomorphic map-germ $f:\left(\mathbf{C}^{2}, 0\right) \rightarrow\left(\mathbf{C}^{2}, 0\right)$, the ideal $\mathcal{I}\left(\Sigma^{1,1}(f)\right)$ is the ideal $\left\langle J f, J_{1} f, J_{2} f\right\rangle$ appeared in Theorems 1.2 and 1.3.

The Thom-Boardman singularity of Whitney's umbrella $\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{2 n-1}, 0\right)$ is $\Sigma^{1,0}$ and we have

$$
\overline{\Sigma^{1,0}}=\overline{\Sigma^{1}}
$$

And for a holomorphic map-germ $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{p}, 0\right)$ with $n \leq p$ and for

$$
\Sigma^{i_{1}}=\left\{j^{l} g(q) \in J^{l}\left(\mathbf{C}^{n}, \mathbf{C}^{p}\right) \mid \operatorname{corank} J g(q)=i_{1}\right\}
$$

$\mathcal{I}\left(\Sigma^{i_{1}}(f)\right)$ is the ideal generated by $\left(n-i_{1}+1\right) \times\left(n-i_{1}+1\right)$ minor determinants of the jacobian matrix of f and for a map-germ $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{2 n-1}, 0\right), \mathcal{I}\left(\Sigma^{1}(f)\right)$ is the ideal generated by $n \times n$ minor determinants of the jacobian matrix of f, which appeared in our main theorem.

Theorem 1.5 (T. Fukui, J. Nuño Ballesteros and M. Saia, [5], [22]). Let $f:\left(\mathbf{C}^{n}, 0\right)$ $\rightarrow\left(\mathbf{C}^{p}, 0\right)$ be a holomorphic map-germ such that $\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{n} / \mathcal{I}\left(\Sigma^{I}(f)\right)<+\infty$. Then the following properties hold for any generic perturbation $\tilde{f}: U\left(\subset \mathbf{C}^{n}\right) \rightarrow \mathbf{C}^{p}$ of f.
(1) The number of singular points of type Σ^{I} of \tilde{f} is equal to or less than
$\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{n} / \mathcal{I}\left(\Sigma^{I}(f)\right)$.
(2) The number of singular points of type Σ^{I} of \tilde{f} is equal to $\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{n} / \mathcal{I}\left(\Sigma^{I}(f)\right)$ if and only if the Zariski closure of Σ^{I} is Cohen-Macaulay at a point $j^{k} f(0) \in \Sigma^{I}$.
(3) When the length is equal to 1 , the Zariski closure of Σ^{I} is always Cohen-Macaulay at $j^{1} f(0)$.

REmark 1.6. T. Fukui and J. Weyman [6, 7] investigate when the Zariski closure of Σ^{I} is Cohen-Macaulay and proved that the defining ideals of the Zariski closure of some $\Sigma^{i, j}$, for example $\Sigma^{2,1}((n, p)=(3,2)), \Sigma^{3,1}((n, p)=(4,2))$, are Cohen-Macaulay.

In the real case, for a C^{∞} map-germ $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$, the defining ideal $\mathcal{I}\left(\Sigma^{I}(f)\right)$ can be defined in the same way as in the complex case. From Theorem 1.5, we have

THEOREM 1.7. Let Σ^{I} have codimension n. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be a C^{∞} map-germ such that $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{I}(f)\right)<+\infty$. Let U be an open neighborhood of the origin 0 in \mathbf{R}^{n} and let $\tilde{f}: U\left(\subset \mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{p}$ be a generic perturbation of f. Then the number of singular points of type Σ^{I} that appear in \tilde{f} is equal to $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{I}(f)\right)$ modulo 2.

As seen in the above, the numbers of singular points that appear in generic perturbations of map-germs are well investigated. However, strangely enough, the topological invariance of these numbers is not considered after [3], [8]. Thus, the following natural problem arises.

Problem. Let Σ^{I} be a Thom-Boardman singularity with codimension n.
(1) Is the number of singular points of type Σ^{I} that appear in a generic perturbation $\tilde{f}: U\left(\subset \mathbf{C}^{n}\right) \rightarrow \mathbf{C}^{p}$ of a holomorphic map-germ $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{p}, 0\right)$ a topological invariant of f ?
(2) Is the number (modulo 2) of singular points of type Σ^{I} that appear in a generic perturbation $\tilde{f}: U\left(\subset \mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{p}$ of a C^{∞} map-germ $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ a topological invariant of f ?

In this paper, we answer this problem for Whitney's umbrellas in the real case.

2. A generic property of map-germs

We recall Fukuda's theorem [2] on generic properties of C^{∞} map-germs. Let $C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right)$ denote the set of all C^{∞} map-germ from $\left(\mathbf{R}^{n}, 0\right)$ to $\left(\mathbf{R}^{p}, 0\right)$. Let π_{r} : $C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right) \rightarrow J^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ be the canonical projection defined by $\pi_{r}(f)=j^{r} f(0)$. A subset Σ of $C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right)$ is said to be ∞-codimensional in $C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right)$, if for any positive integer k, there exist a positive integer r and a semi-algebraic subset Σ_{k} in $J^{r}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ with codimension $\geq k$ such that $\Sigma \subset \pi_{r}^{-1}\left(\Sigma_{k}\right)$.

Since $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{1}(f)\right)<+\infty$ if and only if $\mathcal{I}\left(\Sigma^{1}(f)\right) \supset\left\langle x_{1}, \ldots, x_{m}\right\rangle^{k}$ for some k, we have

Lemma 2.1. The set

$$
\Sigma^{*}=\left\{f \in C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right) \mid \operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{1}(f)\right)=+\infty\right\}
$$

is an ∞-codimensional subset of $C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right)$.
THEOREM 2.2 (Fukuda [2], Theorem 1). Let X be a semi-algebraic submanifold of the multi-jet space ${ }_{m} J^{k}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$. Then there exists an ∞-codimensional subset Σ_{∞} of $C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right)$ such that any $f \in C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{p} ; 0,0\right)-\Sigma_{\infty}$ has a C^{∞} representative $\bar{f}: U \rightarrow \mathbf{R}^{p}$ that satisfies the following two properties;
(1) for any m-tuple $S=\left\{x_{1}, \ldots, x_{m}\right\}$ of distinct points of $U-\{0\}$, the multi jet extension $_{m} j^{k} \bar{f}: U^{(m)} \rightarrow{ }_{m} J^{k}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ is transversal to X at $\left(x_{1}, \ldots, x_{m}\right)$,
(2) if $\operatorname{codim} X \geq m n$, then

$$
{ }_{m} j^{k} \bar{f}\left((U-\{0\})^{(m)}\right) \cap X=\emptyset .
$$

As an easy Corollary of Theorem 2.2, we have
Corollary 2.3. There exists an ∞-codimensional subset Σ_{∞} of $C^{\infty}\left(\mathbf{R}^{n}\right.$, $\left.\mathbf{R}^{2 n-1} ; 0,0\right)$ such that any $f \in C^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{2 n-1} ; 0,0\right)-\Sigma_{\infty}$ has a C^{∞} representive \bar{f} : $U \rightarrow \mathbf{R}^{2 n-1}$ that satisfies the following properties.
(1) \bar{f} has no singular points except for the origin,
(2) if $x_{1}, x_{2}, \ldots, x_{m}$ are distinct points in $U-\{0\}$ such that $\bar{f}\left(x_{1}\right)=\bar{f}\left(x_{2}\right)=$ $\cdots=\bar{f}\left(x_{m}\right)$, then the images of the germs of \bar{f} at $x_{1}, x_{2}, \ldots, x_{m}$ meet transversally at $y=\bar{f}\left(x_{1}\right)=\bar{f}\left(x_{2}\right)=\cdots=\bar{f}\left(x_{m}\right)$,
(3) as a consequence of (1) and (2), $\bar{f}: U-\{0\} \rightarrow \mathbf{R}^{2 n-1}$ is \mathcal{A}-stable.

DEFINITION 2.4. A map-germ $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ is said to be generic if $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{n} / \mathcal{I}\left(\Sigma^{1}(f)\right)<+\infty$ and f has a representative $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ that satisfies conditions (1), (2) and (3) in Corollary 2.3. Such a representative $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ is called a proper representive of f.

LEMMA 2.5. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ be a generic C^{∞} map-germ and let \bar{f} : $U \rightarrow \mathbf{R}^{2 n-1}$ be a proper representative of f, U being a sufficiently small neighborhood of the origin $0 \in \mathbf{R}^{n}$. Let U^{\prime} be an open neighborhood of 0 such that

$$
0 \in U^{\prime} \subset \bar{U}^{\prime} \subset U .
$$

Let $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ be a stable perturbation of \bar{f} sufficiently close to \bar{f}. Then the restricted mapping $\left.\bar{f}\right|_{U-\bar{U}^{\prime}}$ and $\left.\tilde{f}\right|_{U-\bar{U}^{\prime}}$ are \mathcal{A}-equivalent.

Proof. By Corollary 2.3 (3), we have that $\left.\bar{f}\right|_{U-\{0\}}: U-\{0\} \rightarrow \mathbf{R}^{2 n-1}$ is \mathcal{A}-stable. Thus the restricted mapping $\left.\bar{f}\right|_{U-\bar{U}^{\prime}}$ is \mathcal{A}-stable. Since $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ approximates \bar{f} : $U \rightarrow \mathbf{R}^{2 n-1}$ sufficiently closely with respect to the Whitney topology of $C^{\infty}\left(U, \mathbf{R}^{2 n-1} ; 0,0\right)$, $\left.\tilde{f}\right|_{U-\bar{U}^{\prime}}$ is also sufficiently close to $\left.\bar{f}\right|_{U-\bar{U}^{\prime}}$ with respect to the Whitney topology of $C^{\infty}(U-$
$\left.\bar{U}^{\prime}, \mathbf{R}^{2 n-1} ; 0,0\right)$. Since $\left.\bar{f}\right|_{U-\bar{U}^{\prime}}$ is \mathcal{A}-stable, $\left.\tilde{f}\right|_{U-\bar{U}^{\prime}}$ and $\left.\bar{f}\right|_{U-\bar{U}^{\prime}}$ are \mathcal{A}-equivalent from the definition of stability.

REMARK 2.1. Even when $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ approximates $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ sufficiently closely with respect to the Whitney topology of $C^{\infty}\left(U, \mathbf{R}^{2 n-1} ; 0,0\right)$, it is not necessarily that $\left.\tilde{f}\right|_{U-\{0\}}: U-\{0\} \rightarrow \mathbf{R}^{2 n-1}$ approximates $\left.\bar{f}\right|_{U-\{0\}}: U-\{0\} \rightarrow \mathbf{R}^{2 n-1}$ sufficiently closely with respect to the Whitney topology of $C^{\infty}\left(U-\{0\}, \mathbf{R}^{2 n-1} ; 0,0\right)$. Therefore even if $\left.\bar{f}\right|_{U-\{0\}}$ is \mathcal{A}-stable, we can not claim that $\left.\bar{f}\right|_{U-\{0\}}$ and $\left.\tilde{f}\right|_{U-\{0\}}$ are \mathcal{A}-equivalent.

3. Double points of a mapping

The key of the proof of our main theorem is an observation of double points of a mapping.
DEFINITION 3.1. A double point of a mapping $f: X \rightarrow Y$ is a point x for which there exists a different point y from x such that $f(x)=f(y)$. We denote by $D(f)$ the set of double points of f.

Example 3.2. The double point set of Whitney's umbrella $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{2 n-1}$,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}, x_{1} x_{n}, \ldots, x_{n-1} x_{n}\right)
$$

is given by

$$
D(f)=\left\{\left(0, \ldots, 0, x_{n}\right) \mid x_{n} \neq 0\right\}
$$

The singular point set $\{(0, \ldots, 0)\}$ of Whitney's umbrella f is coincident with $\overline{D(f)}-D(f)$, where $\overline{D(f)}$ is the topological closure of $D(f)$. See Figure 1.

From Corollary 2.3, we have
LEMMA 3.3. For a proper representative $\bar{f}: U\left(\subset \mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{2 n-1}$ of a generic mapgerm $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right), D(\bar{f})$ is a smooth curve and consists of a finite number of connected components.

DEFINITION 3.4. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ be a generic C^{∞} map-germ and let $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ be a proper representative of f. Then, $D(\bar{f})$ consists of an even number of

Figure 1. Whitney's umbrella
connected smooth curves which we call half branches of $\overline{D(\bar{f})}$. For every half branch γ of $\overline{D(\bar{f})}$, there exists a distinct half branch γ^{*} of $\overline{D(\bar{f})}$ such that for every point x of γ, there exists a point y of γ^{*} with $f(x)=f(y)$, which we call the partner branch of γ. We call the union of a half branch, its partner branch and the origin, $\gamma \cup \gamma^{*} \cup\{0\}$, a branch of $\overline{D(\bar{f})}$.

LEMMA 3.5. Let $f, g:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ be generic C^{∞} map-germs and let $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ and $\bar{g}: V \rightarrow \mathbf{R}^{2 n-1}$ be their proper representive mappings respectively. If \bar{f} and \bar{g} are topological equivalent, that is, if there exist homeomorphisms $h_{1}: U \rightarrow V$ and $h_{2}: \mathbf{R}^{2 n-1} \rightarrow \mathbf{R}^{2 n-1}$ such that $h_{2} \circ \bar{f}=\bar{g} \circ h_{1}$, then $\overline{D(\bar{f})}$ and $\overline{D(\bar{g})}$ are homeomorphic and the number of branches of $\overline{D(\bar{f})}$ and the number of branches of $\overline{D(\bar{g})}$ coincide.

4. Proof of the main theorem

From Lemma 3.5, to prove the main theorem, it suffices to prove.
THEOREM 4.1. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{2 n-1}, 0\right)$ be a generic C^{∞} map-germ and let $\bar{f}: U \rightarrow \mathbf{R}^{2 n-1}$ be a proper representive mapping of f, U being a sufficiently small neighborhood of the origin $0 \in \mathbf{R}^{n}$. Then the number of Whitney's umbrella of a stable perturbation $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ of f is equal to the number of branches of $\overline{D(\bar{f})}$ modulo 2

Proof. The closure $\overline{D(\tilde{f})}$ of the set of double point of $\tilde{f}: U \rightarrow \mathbf{R}^{2 n-1}$ is the union of $D(\tilde{f})$ and the singular point set of \tilde{f} :
$\overline{D(\tilde{f})}=D(\tilde{f}) \cup\{$ the singularities of $\tilde{f}\}=D(\tilde{f}) \cup\{$ Whitney's umbrella of $\tilde{f}\}$.
$\overline{D(\tilde{f})}$ consists of connected smooth curves any two of which have no common points. On the other hand branches of $\overline{D(\bar{f})}$ are not closed curves and they have the origin as a unique common point. See Figure 2.

Let U^{\prime} be an open neighborhood of 0 such that

$$
0 \in U^{\prime} \subset \overline{U^{\prime}} \subset U
$$

and that $\left.\tilde{f}\right|_{U-\overline{U^{\prime}}}$ and $\left.\bar{f}\right|_{U-\overline{U^{\prime}}}$ are \mathcal{A}-equivalent. The existence of such a neighborhood U^{\prime} is guaranteed by Lemma 2.5. Now consider connected components of $\overline{D(\tilde{f})}$. There may be connected components of $\overline{D(\tilde{f})}$ that are closed curves. Taking U^{\prime} wide if necessary, we may suppose that all the closed curve components of $\overline{D(\tilde{f})}$ are contained in U^{\prime} and that the number of connected components of $\overline{D(\tilde{f})}$ not contained in U^{\prime} is equal to the number of branches of $\overline{D(\bar{f})}$. See Figure 3.

Let \tilde{C} be a connected component of $\overline{D(\tilde{f})}$. There are four cases to consider.

Case (1); where $\tilde{C} \cap\left(U-U^{\prime}\right)=\emptyset$ and there exists another connected component \tilde{C}^{\prime} of $\overline{D(\tilde{f})}$ such that for every point $x \in \tilde{C}$ there exists a point $x^{\prime} \in \tilde{C}^{\prime}$ with $\tilde{f}(x)=\tilde{f}\left(x^{\prime}\right)$. See Figure 4.

In this case \tilde{C} and \tilde{C}^{\prime} contain no singular points of \tilde{f}, hence they contain no Whitney's umbrellas.

Case (2); where $\tilde{C} \cap\left(U-U^{\prime}\right) \neq \emptyset$ and there exists another connected component \tilde{C}^{\prime} of $\overline{D(\tilde{f})}$ such that for every point of x in \tilde{C} there exists a point $x^{\prime} \in \tilde{C}^{\prime}$ with $\tilde{f}(x)=\tilde{f}\left(x^{\prime}\right)$. See Figure 5.

In this case \tilde{C} and \tilde{C}^{\prime} contain no singular points of \tilde{f}, hence they contain no Whitney's umbrellas.

Figure 2.

Figure 3.

Figure 4.

Case (3); where $\tilde{C} \cap\left(U-U^{\prime}\right) \neq \emptyset$ and there exist distinct two points x and y in $\tilde{C} \cap\left(U-\overline{U^{\prime}}\right)$ such that $\tilde{f}(x)=\tilde{f}(y)$. See Figure 6.

In this case, there is a unique Whitney's umbrella in the middle of x and y in \tilde{C}, as seen as follows. Since \tilde{f} meets transversally at x and y, there exist neighborhood $V(x)$ of x and $V(y)$ of y such that $\left.\tilde{f}\right|_{V(x)}$ and $\left.\tilde{f}\right|_{V(y)}$ meet transversally along $\tilde{C} \cap V(x)$ and $\tilde{C} \cap V(y)$. Extending such neighborhoods $V(x)$ toward y and $V(y)$ toward x respectively as widely as possible, we have a unique Whitney's umbrella in the middle of x and y in \tilde{C}.

Case (4); where $\tilde{C} \cap\left(U-U^{\prime}\right)=\emptyset$ and there exist two distinct points $x_{0} \in \tilde{C}$ and $y_{0} \in \tilde{C}$ such that $\tilde{f}\left(x_{0}\right)=\tilde{f}\left(y_{0}\right)$. See Figure 7 .

In this case, since \tilde{C} is a smooth connected curve contained in $\overline{U^{\prime}}$ and hence \tilde{C} is a closed connected curve, $\tilde{C}-\left\{x_{0}, y_{0}\right\}$ can be devided into two connected components $\tilde{C}_{1}, \tilde{C}_{2}$:

$$
\tilde{C}-\left\{x_{0}, y_{0}\right\}=\tilde{C}_{1} \cup \tilde{C}_{2}
$$

For any point $x_{1} \in \tilde{C}_{1}$ sufficiently close to x_{0}, there exists a point $y_{1} \in \tilde{C}$ sufficiently close to y_{0} such that $\tilde{f}\left(y_{1}\right)=\tilde{f}\left(x_{1}\right)$. The point y_{1} corresponding to x_{1} belongs to either \tilde{C}_{1} or \tilde{C}_{2}.
(4-1); the case where $y_{1} \in \tilde{C}_{1}$.

Figure 5.

Figure 6.

In this case, with the same reason as in the Case (3), there exists a unique Whitney's umbrella in \tilde{C}_{1}. In this case, also for any point $x_{2} \in \tilde{C}_{2}$ sufficiently close to x_{0}, there exists a point $y_{2} \in \tilde{C}_{2}$ such that $\tilde{f}\left(y_{2}\right)=\tilde{f}\left(x_{2}\right)$. Then, again with the same reason, there exists a unique Whitney's umbrella in \tilde{C}_{2}. Thus, we have exactly two Whitney's umbrellas on \tilde{C}. See Figure 8.
(4-2); the case where $y_{1} \in \tilde{C}_{2}$.
In this case, for every point $x \in \tilde{C}_{1}$, there exists a point $y \in \tilde{C}_{2}$ such that $\tilde{f}(y)=\tilde{f}(x)$ and there is no Whitney's umbrellas on \tilde{C}. See Figure 9.

Now, the connected components \tilde{C} of $D(\tilde{f})$ of Case (1), (2) do not contribute to the number of Whitney's umbrellas of \tilde{f}. Since connected components of $\overline{D(\bar{f})}$ of Case (4) contain either two Whitney's umbrellas or none each, they also do not contribute to the number modulo 2 of Whitney's umbrellas of \tilde{f}. Thus we have

Figure 7.

Whitney's umbrella
Figure 8.

Figure 9.
the number of Whitney's umbrella
\equiv the number of the connected components of $\overline{D(\tilde{f})}$ of Case (3)
(modulo 2) .
On the other hand connected components of $\overline{D(\tilde{f})}$ of Cases (1) and (4) are contained in $\overline{U^{\prime}}$ and connected components of $\overline{D(\tilde{f})}$ of Cases (2) and (3) are not contained in $\overline{U^{\prime}}$. The number of connected components of $\overline{D(\tilde{f})}$ of Case (2) is even, since for each connected component \tilde{C} of Case (2), the corresponding component \tilde{C}^{\prime} is also of Case (2). Thus
the number of Whitney's umbrella

$$
\begin{aligned}
& \equiv \text { the number of connected components of } \overline{D(\tilde{f})} \text { of Case (3) (modulo 2) } \\
& \equiv \text { the number of connected components of } \overline{D(\tilde{f})} \text { of Cases (2) and (3) (modulo 2) } \\
& =\text { the number of connected components of } \overline{D(\tilde{f})} \text { not contained in } U^{\prime} \\
& =\text { the number of branches of } \overline{D(\bar{f})} .
\end{aligned}
$$

This completes the proof of Theorem 4.1 and hence of the main theorem.

5. Some examples

In this section, we observe \mathcal{A}-simple map-germs $\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{3}, 0\right)$ classified by D . Mond [18], and see that Theorem 4.1 holds for them.

THEOREM 5.1 (D. Mond [18]). Each of the germs in the following list is \mathcal{A}-simple, and every \mathcal{A}-simple germ of a map from a 2-manifold to a 3-manifold is equivalent to one of the germs on the list.

\quad Germ	\mathcal{A}-codimension	Name
$f(x, y)=(x, y)$	0	Immersion
$f(x, y)=\left(x, y^{2}, x y\right)$	2	Cross-cap $\left(S_{0}\right)$
$f(x, y)=\left(x, y^{2}, y^{3} \pm x^{k+1} y\right), k \geq 1$	$k+2$	$S_{k}^{ \pm}$
$f(x, y)=\left(x, y^{2}, x^{2} y \pm y^{2 k+1}\right), k \geq 2$	$k+2$	$B_{k}^{ \pm}$
$f(x, y)=\left(x, y^{2}, x y^{3} \pm x^{k} y\right), k \geq 3$	$k+2$	$C_{k}^{ \pm}$
$f(x, y)=\left(x, y^{2}, x^{3} y+y^{5}\right)$	6	F_{4}
$f(x, y)=\left(x, x y+y^{3 k-1}, y^{3}\right), k \geq 2$	$k+2$	H_{k}

EXAMPLE 5.2. We consider the normal form $S_{k}^{ \pm}: f_{k}^{ \pm}:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{3}, 0\right)$ given by

$$
f_{k}^{ \pm}(x, y)=\left(x, y^{2}, y^{3} \pm x^{k+1} y\right), \quad k \geq 1
$$

Since $\mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right)$is the ideal generated by 2×2 minors of the jacobian matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 2 y \\
\pm(k+1) x^{k} y & 3 y^{2} \pm x^{k+1}
\end{array}\right)
$$

of f, we have

$$
\mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right)=\left\langle y, x^{k+1}\right\rangle
$$

and we have

$$
\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right)=k+1
$$

On the other hand,

$$
\begin{aligned}
& D\left(f_{k}^{+}\right)=\left\{(x, y) \mid x^{k+1}+y^{2}=0, y \neq 0\right\} \\
& D\left(f_{k}^{-}\right)=\left\{(x, y) \mid x^{k+1}-y^{2}=0, y \neq 0\right\} .
\end{aligned}
$$

Thus we see that
the number of branches of $\overline{D\left(\overline{f_{k}^{+}}\right)}=\left\{\begin{array}{lll}1, & \text { if } k+1 \equiv 1 & \bmod 2 \\ 0, & \text { if } k+1 \equiv 0 & \bmod 2\end{array}\right.$
the number of branches of $\overline{D\left(\overline{f_{k}^{-}}\right)}=\left\{\begin{array}{lll}1, & \text { if } k+1 \equiv 1 & \bmod 2 \\ 2 . & \text { if } k+1 \equiv 0 & \bmod 2\end{array}\right.$
Hence we have
the number of branches of $\overline{D\left(\overline{f_{k}^{ \pm}}\right)} \equiv \operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right) \quad(\bmod 2)$
as Theorem 4.1 asserts.

For any integer l with $0 \leq l \leq k+1$ and with $l \equiv k+1(\bmod 2)$, we have a stable perturbation of f

$$
\tilde{f}_{k, l}^{ \pm}: U\left(\subset \mathbf{R}^{2}\right) \rightarrow \mathbf{R}^{3}
$$

such that the number of Whitney's umbrellas of $\tilde{f}_{ \pm l}$ is exactly l, constructed as follows. Let $\varepsilon_{1}, \ldots, \varepsilon_{l}$ be sufficiently small distinct real numbers. Set $m=\frac{k+1-l}{2}$ and let $\delta_{1}, \ldots, \delta_{m}$ be small positive numbers. Then,

$$
\tilde{f}_{k, l}^{ \pm}(x, y)=\left(x, y^{2}, y^{3} \pm y\left(x-\varepsilon_{1}\right) \cdots\left(x-\varepsilon_{l}\right)\left(x^{2}+\delta_{1}\right) \cdots\left(x^{2}+\delta_{m}\right)\right)
$$

is a stable perturbation of f. Whitney's umbrellas of $\tilde{f}_{k, l}^{ \pm}$are the points $\left(\varepsilon_{1}, 0\right), \ldots,\left(\varepsilon_{l}, 0\right)$. Thus the number of Whitney's umbrellas of $\tilde{f}_{k, l}^{ \pm}$is exactly l. See Figure 10, 11, 12, 13, 14, 15.

EXAMPLE 5.3. Now we consider the normal form $B_{k}^{ \pm}: f_{k}^{ \pm}:\left(\mathbf{R}^{2}, 0\right) \rightarrow\left(\mathbf{R}^{3}, 0\right)$ given by

$$
f_{k}^{ \pm}(x, y)=\left(x, y^{2}, x^{2} y \pm y^{2 k+1}\right), \quad k \geq 2
$$

Since $\mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right)=\left\langle y, x^{2}\right\rangle$, we have

$$
\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right)=2
$$

On the other hand,

$$
\begin{aligned}
& D\left(f_{k}^{+}\right)=\left\{(x, y) \mid x^{2}+y^{2 k}=0, y \neq 0\right\}=\emptyset \\
& D\left(f_{k}^{-}\right)=\left\{(x, y) \mid x^{2}-y^{2 k}=0, y \neq 0\right\}
\end{aligned}
$$

Thus we see that

$$
\text { the number of branches of } \overline{D\left(\overline{f_{k}^{+}}\right)}=0
$$

FIGURE 10. $\quad S_{1}^{+}: f_{1}^{+}(x, y)=\left(x, y^{2}, y^{3}+x^{2} y\right), \operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{1}^{+}\right)\right)=2$.

WHITNEY'S UMBRELLAS IN STABLE PERTURBATIONS

FIGURE 11. $\tilde{f}_{1,0}^{+}(x, y)=\left(x, y^{2}, y^{3}+y\left(x^{2}+\delta_{1}\right)\right), D\left(\tilde{f}_{1,0}^{+}\right)=\emptyset$.

Figure 12. $\tilde{f}_{1,2}^{+}(x, y)=\left(x, y^{2}, y^{3}+y\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)\right), D\left(\tilde{f}_{1,2}^{+}\right)=\{(x, y) \in$ $\left.\mathbf{R}^{2} \mid y^{2}+\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)=0, y \neq 0\right\}$.

Figure 13. $S_{2}^{+}: f_{2}^{+}(x, y)=\left(x, y^{2}, y^{3}+x^{3} y\right), \operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{2}^{+}\right)\right)=3$.

Figure
14. $\tilde{f}_{2,1}^{+}(x, y)=\left(x, y^{2}, y^{3}+y\left(x-\varepsilon_{1}\right)\left(x^{2}+\delta_{1}\right)\right), D\left(\tilde{f}_{2,1}^{+}\right)=\{(x, y) \in$ $\left.\mathbf{R}^{2} \mid y^{2}+\left(x-\varepsilon_{1}\right)\left(x^{2}+\delta_{1}\right)=0, y \neq 0\right\}$.

FIGURE 15. $\quad \tilde{f}_{2,3}^{+}(x, y)=\left(x, y^{2}, y^{3}+y\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)\left(x-\varepsilon_{3}\right)\right), D\left(\tilde{f}_{2,3}^{+}\right)=\{(x, y) \in$ $\left.\mathbf{R}^{2} \mid y^{2}+\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)\left(x-\varepsilon_{3}\right)=0, y \neq 0\right\}$.
the number of branches of $\overline{D\left(\overline{f_{k}^{-}}\right)}=2$.
Hence we have

$$
\text { the number of branches of } \overline{D\left(\overline{f_{k}^{ \pm}}\right)} \equiv \operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right) \quad(\bmod 2)
$$

as Theorem 4.1 asserts.
For any integer l with $0 \leq l \leq 2$ and with $l \equiv 2(\bmod 2)$, (that is, l is 0 or 2), we have a stable perturbation of f

$$
\tilde{f}_{k, l}^{ \pm}: U\left(\subset \mathbf{R}^{2}\right) \rightarrow \mathbf{R}^{3}
$$

such that the number of Whitney's umbrellas of $\tilde{f}_{k, l}^{ \pm}$is exactly l, constructed as follows. Let $\varepsilon_{1}, \varepsilon_{2}$ be sufficiently small distinct real numbers. Let δ_{1} be small positive number. Then,

$$
\begin{aligned}
& \tilde{f}_{k, 0}^{ \pm}(x, y)=\left(x, y^{2}, \pm y^{2 k+1}+y\left(x^{2}+\delta_{1}\right)\right) \\
& \tilde{f}_{k, 2}^{ \pm}(x, y)=\left(x, y^{2}, \pm y^{2 k+1}+y\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)\right)
\end{aligned}
$$

are stable perturbations of $f . \tilde{f}_{k, 0}^{ \pm}$has no Whitney's umbrellas and Whitney's umbrellas of $\tilde{f}_{k, 2}^{ \pm}$are the points $\left(\varepsilon_{1}, 0\right),\left(\varepsilon_{2}, 0\right)$. Thus the number of Whitney's umbrellas of $\tilde{f}_{k, 0}^{ \pm}$and $\tilde{f}_{k, 2}^{ \pm}$ is exactly 0 and 2 respectively. See Figure 16, 17, 18.

FIGURE 16. $\quad B_{2}^{-}: f_{2}^{-}(x, y)=\left(x, y^{2}, x^{2} y-y^{5}\right), \operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma\left(f_{2}^{-}\right)\right)=2$.

FIGURE 17. $\tilde{f}_{2,0}^{-}(x, y)=\left(x, y^{2},-y^{5}+y\left(x^{2}+\delta_{1}\right)\right), D\left(\tilde{f}_{2,0}^{-}\right)=\left\{(x, y) \in \mathbf{R}^{2} \mid y^{4}-\left(x^{2}+\delta_{1}\right)=0\right\}$.

In this way, we have the following table and we see that for Mond's normal forms $\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}\left(f_{k}^{ \pm}\right)\right) \equiv$ the number of branches of $\overline{D\left(\overline{f_{k}^{ \pm}}\right)}(\bmod 2)$ as Theorem 4.1 asserts.

	$\operatorname{dim}_{\mathbf{R}} \mathcal{E}_{2} / \mathcal{I}\left(\Sigma^{1}(f)\right)$	number of branches of $\overline{D(\bar{f})}$	
S_{k}^{+}	$k+1$	$\left\{\begin{array}{l}1, \\ 0,\end{array}\right.$	$\begin{array}{ll}\text { if } k+1 \equiv 1 & \bmod 2 \\ \text { if } k+1 \equiv 0 & \bmod 2\end{array}$
S_{k}^{-}	$k+1$	$\left\{\begin{array}{l}1, \\ 2,\end{array}\right.$	if $k+1 \equiv 1 \quad \bmod 2$ if $k+1 \equiv 0 \quad \bmod 2$
B_{k}^{+}	2	0 ,	
B_{k}^{-}	2	2,	
C_{k}^{+}	k	$\left\{\begin{array}{l}1, \\ 2,\end{array}\right.$	$\begin{array}{ll}\text { if } k \equiv 1 & \bmod 2 \\ \text { if } k \equiv 0 & \bmod 2\end{array}$
C_{k}^{-}	k	$\left\{\begin{array}{l}3, \\ 2,\end{array}\right.$	$\begin{array}{ll} \text { if } k \equiv 1 & \bmod 2 \\ \text { if } k \equiv 0 & \bmod 2 \end{array}$
F_{4}	3	1,	
H_{k}	2	0.	

Figure 18. $\quad \tilde{f}_{2,2}^{-}(x, y)=\left(x, y^{2},-y^{5}+y\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)\right), D\left(\tilde{f}_{2,2}^{-}\right)=\{(x, y) \in$ $\left.\mathbf{R}^{2} \mid y^{4}-\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right)=0, y \neq 0\right\}$.

References

[1] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Ẽtudes Sci. Publ. Math. 33 (1967), 21-57.
[2] T. FUKUDA, Local Topological properties of differentiable mappings. I, Invent. Math. 65 (1981), 227-250.
[3] T. FUKUDA and G. ISHIKAWA, On the number of cusps of stable perturbations of a plane-to-plane singlarity, Tokyo J. Math. 10 (1987), 375-384.
[4] T. FUKUI, J. NUÑO BALLESTEROS and M. SAIA, Counting singularities in stable perturbations of map germs, Sūrikaisekikenkyūsho kōkyūroku 926 (1995), 1-20.
[5] T. Fukui, J. Nuño Ballesteros and M. Saia, On the number of singlarities in generic deformations of map germs, J. London Math. Soc. (2) 58 (1998), 141-152.
[6] T. Fukui and J. Weyman, Cohen-Macaulay properties of Thom-Boardman strata I, Morin's ideal, Proc. London Math. Soc. (3) 80 (2000), 257-303.
[7] T. Fukui and J. Weyman, Cohen-Macaulay properties of Thom-Boardman strata II, The defining ideals of $\Sigma^{i, j}$, Proc. London Math. Soc. (3) 87 (2003), 137-163.
[8] T. Gaffney and D. Mond, Cusps and double folds of germs of analytic maps $\mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$, J. London Math. Soc. (2) 43 (1991), 185-192.
[9] J. MATHER, Stability of C^{∞}-mappings I. The division theorem, Ann. of Math. 87 (1968), 89-104.
[10] J. MATHER, Stability of C^{∞}-mappings II. Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254-291.
[11] J. Mather, Stability of C^{∞}-mappings III. Finitely determined map-germs, Publ. Math. Inst. Hautes Etudes Sci. 35 (1968), 127-156.
[12] J. Mather, Stability of C^{∞}-mappings IV. Classification of stable germs by \mathbf{R}-algebras, Publ. Math. Inst. Hautes Etudes Sci. 37 (1969), 223-248.
[13] J. MATHER, Stability of C^{∞}-mappings V. Transversality, Advances in Math. 4 (1970), 301-336.
[14] J. MATHER, Stability of C^{∞}-mappings VI. The nice dimensions, Springer Lecture Notes in Math. 192 (1971), 207-253.
[15] J. MATHER, Stratifications and mappings, Proceedings of the Dynamical Sytems Conference, Salvador, Academic Press (1971).
[16] J. MATHER, How to stratify mappings and jet spaces, Springer Lecture Notes in Math. 535 (1976), 128-176.
[17] J. W. Milnor, Singular Points of Complex Hypersurfaces, Priceton University Press (1968).
$[18] \quad$ D. M. Q. Mond, On the classification of germs of maps from \mathbf{R}^{2} to \mathbf{R}^{3}, Proc. London Math. Soc. (3) $\mathbf{5 0}$ (1985), 333-369.
[19] D. M. Q. Mond, Vanishing cycles for analytic maps, Singularity theory and its applications, Lecture Notes in Math. 1462, Springer (1991), 221-234.
[20] B. Morin, Calcul jacobien, Ann. Sci. Ẽcole Norm. Sup. 8 (1975), 1-98.
[21] J. Nuño Ballesteros and M. Saia, An invariant for map germs (preprint, 1995).
[22] J. Nuño Ballesteros and M. Saia, 'Multiplicity of Boardman strata and deformations of map germs', Glasgow Math. J. 40 (1998), 21-32.
[23] T. Nishimura, Singular points and Mather's theory, Mathematical of singular points vol. 2 『Singularities and bifurcation』Part I, Kyōritu Publisher (in Japanese) (2002).
[24] R. Thom, Les singularités des applications différéntables, Ann. Inst. Fourier 6 (1955), 43-87.
[25] R. Thom, Un lemme sur les applications différéntiables, Bol. Soc. Math. Mexic. 2nd series $\mathbf{1}$ (1956), 59-71.
[26] C. T. C. WALL, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481-539.
[27] C. T. C. WALL, Topological invariance of the Milnor number mod 2, Topology 22 (1983), 345-350.
[28] H. Whitney, Differentiable manifolds, Ann. of Math. 37 (1936), 645-680.
[29] H. Whitney, The general type of singularity of a set of $2 n-1$ smooth functions of n variables, Duke Math. J. 10 (1943), 161-172.
[30] H. Whitney, The self-intersections of a smooth n-manifolds in $2 n$-space, Ann. of Math. 45 (1944), 220-246.
[31] H. Whitney, The singularities of a smooth n-manifold in $(2 n-1)$-space, Ann. of Math. 45 (1944), 247-293.
[32] H. Whitney, On singularities of mappings of Euclidean spaces I. Mappings of the plane into the plane, Ann. of Math. 62 (1955), 374-410.

Present Address:

Department of Mathematics, College of Humanities and Sciences
Nihon University,
Sakurajosui Setagaya-ku, Tokyo, 156-8550 Japan.
e-mail: m_ohsumi@math.chs.nihon-u.ac.jp

