Токуо J. Матн. Vol. 29, No. 2, 2006

D-Modules and Arrangements of Hyperplanes

Francisco James LEÓN TRUJILLO

University of Rome "La Sapienza"

(Communicated by M. Guest)

Abstract. Let \mathcal{A} be a central arrangement of hyperplanes in \mathbb{C}^n defined by the homogeneous polynomial $d_{\mathcal{A}}$. Let D_n be the Weyl algebra of rank *n* over \mathbb{C} and let $P = \mathbb{C}[x_1, \ldots, x_n, d_{\mathcal{A}}^{-1}]$ be the algebra of rational functions on the variety $Y_{\mathcal{A}} = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}} H$. Studying the structure of P as a D_n -module we obtain a sequence of new D_n -modules. These modules allow us to define useful complexes that determine the De Rham cohomology of $Y_{\mathcal{A}} = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}} H$. Finally we compute the Poincaré series of P.

1. Introduction

Let $\mathcal{A} = \{H_1, \ldots, H_k\}$ be a finite central arrangement of hyperplanes in \mathbb{C}^n , i.e., every hyperplane contains the origin. For each $H \in \mathcal{A}$, fix a linear form α_H whose kernel is H. The arrangement \mathcal{A} is also defined by the homogeneous polynomial $d_{\mathcal{A}} = \prod_{H \in \mathcal{A}} \alpha_H$.

Let $D_n = C\langle x_1, \ldots, x_n, \partial/\partial x_1, \ldots, \partial/\partial x_n \rangle$ be the Weyl algebra of rank *n* over *C* and let $P = P(\mathcal{A}) = C[x_1, \ldots, x_n, d_\mathcal{A}^{-1}]$ be the algebra of rational functions on $Y_\mathcal{A} = C^n \setminus \bigcup_{H \in \mathcal{A}} H$. In the present work we construct a sequence of D_n -submodules of *P* and direct sum decompositions of the associated quotient modules. Furthermore, using this decomposition, we compute the cohomology ring $H^*(Y_\mathcal{A})$ (Section 3), and the Poincaré series of *P* (Section 4). All D_n -modules mentioned here are left D_n -modules. Denote the poset of intersections of elements of \mathcal{A} by $L = L(\mathcal{A})$ ordered by reversed inclusion, and with a rank function defined by $r(X) = \operatorname{codim} X, X \in L$. Let $r = r(\mathcal{A}) = r(\bigcap_{H \in \mathcal{A}} H)$ be the rank of the maximal element of $L(\mathcal{A})$, namely, the cardinality of a maximal linearly independent subset of the form $f/\prod_{j=1}^h \alpha_{i_j}^{m_j}$, where $0 \le h \le r$, $\{\alpha_{i_1}, \ldots, \alpha_{i_h}\}$ is a linearly independent subset of $\mathcal{A}^*, m_j \in N, f \in C[\mathbf{x}] = C[x_1, \ldots, x_n]$ and $\prod_{j=1}^0 \alpha_{i_j}^{m_j} := 1$. This allows us to obtain the following sequence of holonomic D_n -submodules of $P : 0 = P_{-1} \subset C[\mathbf{x}] = P_0 \subset P_1 \subset$

Received March 24, 2003; revised September 30, 2004

Mathematics Subject Classification: 32S22, 52C35, 13N10, 13D40.

This research, supported by the ICTP, Trieste, represents part of the author's doctoral dissertation.

 $\cdots \subset P_r = P$, where

$$P_h = \left\{ \sum \frac{f_{i_1\cdots i_t}^{m_1\cdots m_t}}{\alpha_{i_1}^{m_1}\cdots \alpha_{i_t}^{m_t}} \mid 0 \le t \le h, \ f_{i_1\cdots i_t}^{m_1\cdots m_t} \in C[\mathbf{x}], \ m_1,\ldots,m_t \in N \right\}.$$

For each $X \in L_h = L_h(\mathcal{A}) = \{X \in L(\mathcal{A}) \mid r(X) = h\}$ consider its dual subspace X^* of $(\mathbb{C}^n)^*$ of dimension *h*. Let \mathcal{B}_{X^*} be the set of all possible bases of X^* constituted with elements of \mathcal{A}^* . For each X^* and basis $B = \{\alpha_{i_1}, \ldots, \alpha_{i_h}\} \in \mathcal{B}_{X^*}$, we define the following holonomic D_n -submodule of P_h/P_{h-1}

$$V_{X^*}^B = \left\{ \sum \left(\frac{f_{i_1 \cdots i_h}^{m_1 \cdots m_h}}{\alpha_{i_1}^{m_1} \cdots \alpha_{i_h}^{m_h}} \bmod P_{h-1} \right) \mid f_{i_1 \cdots i_h}^{m_1 \cdots m_h} \in C[\mathbf{x}], \ m_1, \dots, m_h \in N \right\}.$$

We show in Proposition 2.9 that for each basis $B \in \mathcal{B}_{X^*}$ the D_n -modules $V_{X^*}^B$ are isomorphic, and after a linear change of coordinates in $(\mathbb{C}^n)^*$ such that $X^* = \langle y_1, \ldots, y_h \rangle$, $V_{X^*}^B$ is isomorphic, as a D_n -module, to $M_{X^*} = \mathbb{C}[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$ where $\partial_{y_j} = \partial/\partial y_j$. Now let $V_{X^*}^{\text{mod}}$ be the \mathbb{C} -subspace of P_h/P_{h-1} generated by all $[1/\prod_{\alpha \in B} \alpha]$, $B \in \mathcal{B}_{X^*}$, then the holonomic D_n -module P_h/P_{h-1} has the following decomposition:

$$P_h/P_{h-1} = \bigoplus_{X \in L_h} \sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B = \bigoplus_{X \in L_h} M_{X^*} \otimes_C V_{X^*}^{\mathrm{mod}}.$$

It is possible to determine a basis of $V_{X^*}^{\text{mod}}$ applying the notion of "no broken circuit" nbc (cf. [7]) to \mathcal{B}_{X^*} . Let V_{X^*} be the *C*-vector space generated by the set of rational forms $\{1/\prod_{\alpha\in B} \alpha \mid B \in \mathcal{B}_{X^*}\}$, then the set $\{1/\prod_{\alpha\in B} \alpha \mid B \in \mathcal{B}_{X^*}\}$ and *B* is a nbc} is a basis of V_{X^*} , cf. Lemma 2.14, and we have:

THEOREM 2.19. For $1 \le h \le r$, we have $P_h = \bigoplus_{j=0}^h \bigoplus_{X \in L_j(\mathcal{A})} M_{X^*} \otimes_C V_{X^*}$. In particular, since $P = P_r$, we have $P = \bigoplus_{X \in L(\mathcal{A})} M_{X^*} \otimes_C V_{X^*}$.

THEOREM 2.20. For $0 \le h \le r$, the natural map $\psi : \bigoplus_{X \in L_h} M_{X^*} \otimes_C V_{X^*} \to P_h/P_{h-1}$ is an isomorphism of D_n -modules.

This allows us to decompose the De Rham complex for Y_A as a direct sum of complexes with cohomology just in one degree and 1-dimensional. Define the following cochain complex $(\mathcal{L}_h^*, \delta_{\mathcal{L}_h^*})$:

$$\mathcal{L}_h^s = \mathcal{L}_h^s(\{y_1, \dots, y_h\}) = \left\{ \sum_{1 \le i_1 < \dots < i_s \le n} f_{i_1 \cdots i_s} \bullet \frac{1}{y_1 \cdots y_h} dy_{i_1} \cdots dy_{i_s} \right\}$$

with $\delta_{\mathcal{L}_h^*} : \mathcal{L}_h^* \to \mathcal{L}_h^*$ the usual differential, and $f_{i_1 \cdots i_s} \in C[y_{h+1}, \dots, y_n, \partial_{y_1}, \dots, \partial_{y_h}]$. Thus, cf. Corollary 3.4, the cohomology groups $H^*(\mathcal{L}_h^*)$ are $C \cdot \frac{1}{y_1 \cdots y_h} dy_1 \cdots dy_h$ in dimension

$\mathcal D\text{-}\mathsf{MODULES}$ and arrangements of hyperplanes

431

h and 0 elsewhere. Now for each $X \in L_h(\mathcal{A})$ we associate the following complex

$$\mathcal{L}_{h}(X) = \bigoplus_{\substack{\langle \alpha_{j_{1}}, \dots, \alpha_{j_{h}} \rangle = X^{*} \\ (j_{1}, \dots, j_{h}) \text{ nbc}}} \mathcal{L}_{h}(\{\alpha_{j_{1}}, \dots, \alpha_{j_{h}}\})$$

where $\mathcal{L}_h(\{\alpha_{j_1}, \ldots, \alpha_{j_h}\})$ is the same complex \mathcal{L}_h^* but it is just defined for $\{\alpha_{j_1}, \ldots, \alpha_{j_h}\}$. Finally, associated to the D_n -module $\mathcal{P}_h = P_h/P_{h-1}$, the complex $\mathcal{L}(\mathcal{P}_h) = \bigoplus_{X \in L_h} \mathcal{L}_h(X)$ allows us to calculate the *h*-th cohomology of Y_A .

THEOREM 3.6. For $1 \le h \le r$, there exists an isomorphism between $H^h_{DR}(Y_A)$ and $H^h(\mathcal{L}(\mathcal{P}_h))$:

$$H^{h}_{DR}(Y_{\mathcal{A}}) \cong H^{h}(\mathcal{L}(\mathcal{P}_{h})) = \bigoplus_{X \in L_{h}} \bigoplus_{\substack{\langle \alpha_{j_{1}}, \dots, \alpha_{j_{h}} \rangle = X^{*} \\ (j_{1}, \dots, j_{h}) \text{ nbc}}} C \cdot \frac{1}{\alpha_{j_{1}} \cdots \alpha_{j_{h}}} d\alpha_{j_{1}} \wedge \cdots \wedge d\alpha_{j_{h}}.$$

Finally, we compute the Poincaré series of P(A) as a function of the Poincaré polynomial of A:

THEOREM 4.4. The Poincaré series Poin(P(A), t) of the graded D_n -module P(A) is equal to $(1 - t)^{-n}Poin(A, t)$.

Throughout the paper we follow notation, definitions and results of [8], [9] on arrangements, and of [1], [3] for the Weyl algebra and its left modules.

2. The D_n -module $C[\mathbf{x}, d_A^{-1}]$

This section is dedicated to the algebraic properties of the left D_n -module $P = P(\mathcal{A}) = C[\mathbf{x}, d_{\mathcal{A}}^{-1}]$. The main results are Theorem 2.19 and Theorem 2.20.

Due to [3, 3.2 Theorem (p. 92)], the D_n -module $P(\mathcal{A})$ is holonomic.

Recall that the rank r = r(A) of A is the cardinality of a maximal linearly independent subset of A^* . The following Lemma is straightforward and allows us to write in a very convenient way every element of P.

LEMMA 2.1. It is possible to write every element in P as a finite sum of quotients of the form $f/\prod_{j=1}^{h} \alpha_{i_j}^{m_j}$, where $0 \le h \le r$, $\{\alpha_{i_1}, \ldots, \alpha_{i_h}\}$ is a linearly independent subset of $\mathcal{A}^*, m_1, \ldots, m_h \in N, f \in C[\mathbf{x}]$ and $\prod_{j=1}^{0} \alpha_{i_j}^{m_j} := 1$.

This Lemma inspires the following definition.

DEFINITION 2.2. For h = 0, 1, ..., r, define the D_n -submodule of P by

$$P_h = \left\{ \sum \frac{f_{i_1 \cdots i_t}^{m_1 \cdots m_t}}{\prod_{j=1}^t \alpha_{i_j}^{m_i}} \mid 0 \le t \le h, \ f_{i_1 \cdots i_t}^{m_1 \cdots m_t} \in C[\mathbf{x}], \ m_1, \dots, m_t \in N \right\}.$$

where $\{\alpha_{i_1}, \ldots, \alpha_{i_t}\}$ varies over all the linearly independent subsets of \mathcal{A}^* of cardinality *t*.

Hence, by Lemma 2.1, we have the following finite ascending chain of D_n -submodules of P:

$$0 =: P_{-1} \subseteq \boldsymbol{C}[\mathbf{x}] = P_0 \subseteq P_1 \subseteq P_2 \subseteq \cdots \subseteq P_r = P.$$
(2.1)

Note that every module P_h and every quotient P_h/P_{h-1} is holonomic since P is, cf. [3, p. 86].

Our next aim is to get a decomposition of P_h/P_{h-1} as a direct sum of isotropy component D_n -modules associated to each $X \in L_h(\mathcal{A})$, cf. Proposition 2.10.

For each $X \in L(\mathcal{A})$, consider the dual subspace X^* of $(\mathbb{C}^n)^*$ of dimension r(X).

DEFINITION 2.3. For each X in $L_h(\mathcal{A})$, $1 \le h \le r$, let \mathcal{B}_{X^*} be the set of all possible bases of X^* constituted with elements of \mathcal{A}^* , and for each basis $B = \{\alpha_{i_1}, \ldots, \alpha_{i_h}\}$ in \mathcal{B}_{X^*} define the holonomic D_n -submodule of P_h/P_{h-1}

$$V_{X^*}^B = \left\{ \sum \left(\frac{f_{i_1 \cdots i_h}^{m_1 \cdots m_h}}{\alpha_{i_1}^{m_1} \cdots \alpha_{i_h}^{m_h}} \bmod P_{h-1} \right) \mid f_{i_1 \cdots i_h}^{m_1 \cdots m_h} \in C[\mathbf{x}], \ m_1, \dots, m_h \in N \right\}.$$

From the definition it follows that $V_{X^*}^B$ is an irreducible D_n -module. Then it is cyclic (this is also a consequence of its holonomicity). A generator for $V_{X^*}^B$, as a D_n -module, is the class of $1/\prod_{\alpha \in B} \alpha$, cf. Proposition 2.5.

Let $X \in L_h$ and let $B = \{\alpha_{i_1}, \ldots, \alpha_{i_h}\}$ be a basis for X^* . Then there exists a basis $\{y_1 := \alpha_{i_1}, \ldots, y_h := \alpha_{i_h}, \ldots, y_r := \alpha_{i_r}, y_{r+1}, \ldots, y_n\}$ of $(\mathbb{C}^n)^*$, where $\{y_1, \ldots, y_r\}$ is a maximal linearly independent subset of \mathcal{A}^* . The element $[1/y_1 \cdots y_h]$ in $V_{X^*}^{\{y_1, \ldots, y_h\}}$ is annihilated by the linear operators $y_1, \ldots, y_h, \partial_{y_{h+1}}, \ldots, \partial_{y_n}$, i.e. by the left D_n -ideal $I_B = D_n(y_1, \ldots, y_h, \partial_{y_{h+1}}, \ldots, \partial_{y_n})$. Actually it is very easy to see that:

LEMMA 2.4. With the previous definitions we have

$$\operatorname{Ann}_{D_n}([1/y_1\cdots y_h])=I_B.$$

The ideal I_B plays an important role in what follows.

PROPOSITION 2.5. Let M_B be the D_n -module D_n/I_B . Then we have the isomorphism of D_n -modules

$$V_{X^*}^{\{y_1,\dots,y_h\}} \cong M_B \cong D_n \bullet [1/y_1 \cdots y_h].$$

$$(2.2)$$

PROOF. The first isomorphism follows from Lemma 2.4 and [3, p. 36]. The second isomorphism follows from the exact sequence $0 \to I_B \to D_n \to D_n \bullet [1/y_1 \cdots y_h] \to 0$. \Box

COROLLARY 2.6. Consider two different elements X_1, X_2 in $L_h, 1 \le h \le r$. Then $V_{X_1^*}^{B_1} \cap V_{X_2^*}^{B_2} = \{[0]\}$ for each B_1 in $\mathcal{B}_{X_1^*}$ and for each B_2 in $\mathcal{B}_{X_2^*}$.

PROPOSITION 2.7. There exists an isomorphism of D_n -modules between M_B and the ring of polynomials $C[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$. This last one is an irreducible, holonomic D_n -module, and its characteristic variety is the conormal space defined by the system of

$\mathcal D\text{-}\mathsf{MODULES}$ and arrangements of hyperplanes

equations $\xi_1 = \cdots = \xi_h = \xi_{n+h+1} = \cdots = \xi_{2n} = 0$, where for $i = 1, \ldots, h$ $\xi_i = \sigma_1(y_i)$, and for $i = 1, \ldots, n-h$, $\xi_{n+h+i} = \sigma_1(\partial_{y_{h+i}})$ (σ_1 is the symbol map of order 1, cf. [3, p. 57]).

PROOF. Let \mathcal{T} be the automorphism of D_n defined by

$$\begin{aligned} \mathcal{T}(y_i) &= \partial_{y_i} , \qquad \mathcal{T}(\partial_{y_i}) = -y_i \qquad \text{for} \quad 1 \leq i \leq h \\ \mathcal{T}(y_i) &= y_i , \qquad \mathcal{T}(\partial_{y_i}) = \partial_{y_i} \qquad \text{for} \quad h+1 \leq i \leq n . \end{aligned}$$

Recall that $C[y_1, \ldots, y_n] \cong D_n/J$, where $J = \sum_{i=1}^n D_n \cdot \partial_{y_i}$, then it is easy to see that

$$\mathcal{T}^{-1}(J) = \sum_{1}^{h} D_n \cdot y_i + \sum_{h+1}^{n} D_n \cdot \partial_{y_i} = I_B ,$$

and, by [3, p. 38], we get

$$M_B = D_n / \mathcal{T}^{-1}(J) \cong C[y_1, \ldots, y_n]_{\mathcal{T}} \cong C[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$$

Thus, by [3, p. 38, p. 86], $C[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$ is an irreducible, holonomic D_n -module isomorphic to M_B .

Let \mathcal{B} be the Bernstein filtration of D_n , cf. [1], [3]. Recall that the graded algebra $\operatorname{gr}^{\mathcal{B}} D_n$ is isomorphic to the polynomial ring in 2n variables $C[\xi] = C[\xi_1, \ldots, \xi_{2n}]$, cf. [3, p. 58]. Let Γ be a good filtration of $C[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$ with respect to \mathcal{B} , for example, the induced one by \mathcal{B} . The exact sequence $0 \to I_B \to D_n \to M_B \to 0$ in turns implies the following exact sequence of $C[\xi]$ -modules

$$0 \to \operatorname{gr}^{\Gamma'} I_B \to \operatorname{gr}^{\mathcal{B}} D_n \to \operatorname{gr}^{\Gamma} M_B \to 0,$$

where Γ' is the filtration induced by \mathcal{B} on I_B . Then $\operatorname{gr}^{\Gamma} M_B \cong \frac{C[\xi]}{\operatorname{gr}^{\Gamma'} I_B}$ and

$$\operatorname{Ann}(\boldsymbol{C}[y_{h+1},\ldots,y_n,\partial_{y_1},\ldots,\partial_{y_h}],\Gamma) = \operatorname{Ann}_{\boldsymbol{C}[\xi]}(\operatorname{gr}^{\Gamma}\boldsymbol{C}[y_{h+1},\ldots,y_n,\partial_{y_1},\ldots,\partial_{y_h}])$$
$$= \operatorname{Ann}_{\boldsymbol{C}[\xi]}(\operatorname{gr}^{\Gamma}\boldsymbol{M}_B) = \operatorname{gr}^{\Gamma'}\boldsymbol{I}_B$$
$$= \boldsymbol{C}[\xi](\xi_1,\ldots,\xi_h,\xi_{n+h+1},\ldots,\xi_{2n}).$$

Thus, by definition (cf. [1], [3]), the characteristic variety of $C[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$ is the zero set of the ideal $C[\xi](\xi_1, \ldots, \xi_h, \xi_{n+h+1}, \ldots, \xi_{2n})$.

By the isomorphism (2.2) and Proposition 2.7, we have the following Corollary.

COROLLARY 2.8. There exists an isomorphism of irreducible D_n -modules

$$V_{X^*}^{\{y_1,...,y_h\}} \cong C[y_{h+1},...,y_n,\partial_{y_1},...,\partial_{y_h}].$$
(2.3)

PROPOSITION 2.9. For each X in L_h , $1 \le h \le r$, and each basis B in \mathcal{B}_{X^*}

- (1) The vector spaces V_{X*}^B are isomorphic to each other as D_n -modules.
- (2) The ideal $I_{X^*} := I_B$ is independent of B.
- (3) The canonical holonomic D_n -module $M_{X^*} := D_n/I_{X^*}$ is isomorphic to $V_{X^*}^B$.

PROOF. Fix a basis $B = \{\alpha_{i_1}, \ldots, \alpha_{i_h}\}$ of X^* . There exists a basis $\{y_1 := \alpha_{i_1}, \ldots, y_h := \alpha_{i_h}, \ldots, y_r := \alpha_{i_r}, y_{r+1}, \ldots, y_n\}$ of $(\mathbb{C}^n)^*$, where $\{y_1, \ldots, y_r\}$ is a maximal linearly independent subset of \mathcal{A}^* . Every other basis $B' = \{\alpha_{j_1}, \ldots, \alpha_{j_h}\}$ of X^* satisfies $B' \subset \text{Span}\{y_1, \ldots, y_h\}$ and $\{y'_1 := \alpha_{j_1}, \ldots, y'_h := \alpha_{j_h}, y'_{h+1} := y_{h+1}, \ldots, y'_n := y_n\}$ is a basis of $(\mathbb{C}^n)^*$. Associated to the bases B and B' we have the change of bases matrix

$$C_{B'}^{B} = \left(\begin{array}{cc} D & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n-h} \end{array}\right)$$

where $D \in GL_h(\mathbb{C})$ and \mathbf{I}_s is the unit matrix of rank *s*, such that the corresponding bases of $(\mathbb{C}^n)^*$ change linearly by means of

$${}^{t}(y'_{1},\ldots,y'_{h},y'_{h+1},\ldots,y'_{n}) = C^{B}_{B'}{}^{t}(y_{1},\ldots,y_{h},y_{h+1},\ldots,y_{n}), \qquad (2.4)$$

and the partial derivatives by

$${}^{t}(\partial_{y'_{1}},\ldots,\partial_{y'_{h}},\partial_{y'_{h+1}},\ldots,\partial_{y'_{n}}) = ({}^{t}C^{B}_{B'})^{-1} {}^{t}(\partial_{y_{1}},\ldots,\partial_{y_{h}},\partial_{y_{h+1}},\ldots,\partial_{y_{n}}).$$
(2.5)

Then we obtain $C[\partial_{y'_1}, \ldots, \partial_{y'_h}, y'_{h+1}, \ldots, y'_n] = C[\partial_{y_1}, \ldots, \partial_{y_h}, y_{h+1}, \ldots, y_n]$ and (1) follows by Corollary 2.8. Moreover, (2) follows from (2.4) and (2.5); and (3) follows from (2) and Proposition 2.5.

PROPOSITION 2.10. For $1 \le h \le r$, the quotient of two consecutive D_n -modules of sequence (2.1) has the following decomposition

$$P_h/P_{h-1} = \bigoplus_{X \in L_h} \sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B = \bigoplus_{X \in L_h} \left(\bigoplus_{B \in \widetilde{\mathcal{B}}_{X^*}} V_{X^*}^B \right)$$
(2.6)

where $\widetilde{\mathcal{B}}_{X^*}$ is a convenient subset of \mathcal{B}_{X^*} , that is, a subset of \mathcal{B}_{X^*} such that $\sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B = \bigoplus_{B \in \widetilde{\mathcal{B}}_{Y^*}} V_{X^*}^B$.

PROOF. By Propositions 2.5 and 2.9(1), there exists a subset $\widetilde{\mathcal{B}}_{X^*}$ of \mathcal{B}_{X^*} such that the vector space $\sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B$ associated to X is equal to $\bigoplus_{B \in \widetilde{\mathcal{B}}_{X^*}} V_{X^*}^B$. Thus the last equality in (2.6) holds. For two different elements X_1, X_2 in L_h , it follows by Corollary 2.6 that $\sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B \cap \sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B = \{[0]\}$. Then $\bigoplus_{X \in L_h} \sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B \subset P_h/P_{h-1}$. Actually, by Lemma 2.1, $P_h/P_{h-1} = \bigoplus_{X \in L_h} \sum_{B \in \mathcal{B}_{X^*}} V_{X^*}^B$.

PROPOSITION 2.11. Let X in L_h , $1 \le h \le r$, and let $V_{X^*}^{\text{mod}}$ be the C-subspace of P_h/P_{h-1} annihilated by I_{X^*} . Then $V_{X^*}^{\text{mod}}$ is generated by

$$\mathcal{U}_{X^*}^{\mathrm{mod}} = \left\{ \frac{1}{\prod_{\alpha \in B} \alpha} \bmod P_{h-1} \mid B \in \mathcal{B}_{X^*} \right\}.$$

PROOF. By Proposition 2.9(2), $\operatorname{Ann}_{D_n}([1/\prod_{\alpha \in B} \alpha]) = I_{X^*}$ if and only if *B* is a basis of *X*^{*}. Then the space $V_{X^*}^{\text{mod}}$ maps into a unique component in the decomposition of P_h/P_{h-1} as in (2.6) and is generated by $\mathcal{U}_{X^*}^{\text{mod}}$.

$\mathcal D\text{-}\mathsf{MODULES}$ and ARRANGEMENTS OF HYPERPLANES

PROPOSITION 2.12. With the above notation we have

$$P_h/P_{h-1} \cong \bigoplus_{X \in L_h} M_{X^*} \otimes_{\mathcal{C}} V_{X^*}^{\text{mod}}.$$
(2.7)

PROOF. This follows from Propositions 2.10, 2.9(3) and 2.11.

Our next aim is to choose a basis for $V_{X^*}^{\text{mod}}$. This is possible using the notion of "no broken circuit" (nbc) for the set \mathcal{B}_{X^*} , consequently for $\mathcal{U}_{X^*}^{\text{mod}}$.

Fix a total order on \mathcal{A}^* by $\mathcal{A}^* = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$. A subset of \mathcal{A}^* is a circuit if it is a minimally dependent set. A *no broken circuit (nbc) subset* is a subset of elements containing no circuit with its smallest element deleted.

Throughout the rest of the paper we identify each ordered set $\{\alpha_{l_1}, \ldots, \alpha_{l_s}\}$ with its *s*-tuple (l_1, \ldots, l_s) .

DEFINITION 2.13. For every *X* in $L_h(\mathcal{A})$, $1 \le h \le r$, define the D_n -module

$$R_{X^*} = M_{X^*} \otimes_{\mathcal{C}} V_{X^*}$$

where V_{X^*} is the *C*-vector space generated by $\mathcal{U}_{X^*} = \{1 / \prod_{\alpha \in B} \alpha \mid B \in \mathcal{B}_{X^*}\}.$

For C^n in $L_0(\mathcal{A})$, define $V_{(C^n)^*} = C$ and $R_{(C^n)^*} = C[x_1, \ldots, x_n]$.

LEMMA 2.14. For $X \in L_h(\mathcal{A})$, define

$$\mathcal{B}_{X^*}^{\text{nbc}} = \{\{\alpha_{j_1}, \ldots, \alpha_{j_h}\} \in \mathcal{B}_{X^*} \mid (j_1, \ldots, j_h) \text{ is a nbc}\}.$$

The corresponding set $\mathcal{U}_{X^*}^{\text{nbc}} = \{1 / \prod_{\alpha \in B} \alpha \mid B \in \mathcal{B}_{X^*}^{\text{nbc}}\}$ is a basis of V_{X^*} .

PROOF. The set $\mathcal{U}_{X^*}^{\text{nbc}}$ generates V_{X^*} : For each basis $\{\alpha_{i_1}, \ldots, \alpha_{i_h}\}$ of X^* , there exist two possibilities: If (i_1, \ldots, i_h) is a nbc, then $\frac{1}{\alpha_{i_1} \cdots \alpha_{i_h}} \in \mathcal{U}_{X^*}^{\text{nbc}}$. Otherwise, there exists an *m*-subtuple (j_1, \ldots, j_m) of (i_1, \ldots, i_h) , 1 < m < h, such that (j_1, \ldots, j_m) is a broken circuit. Thus there exists $1 \le l < i_1$, such that (l, j_1, \ldots, j_m) is a circuit. Equivalently we have the following relation $a_1\alpha_{j_1} + \cdots + a_m\alpha_{j_m} = \alpha_l$, for some $a_1, \ldots, a_m \in C$. This implies that

$$\sum_{u=1}^{m} \frac{a_u}{\alpha_l \alpha_{j_1} \cdots \widehat{\alpha_{j_u}} \cdots \alpha_{j_m}} = \frac{1}{\alpha_{j_1} \cdots \alpha_{j_m}}.$$
(2.8)

Note that, for each $1 \le u \le m$, the set $\{\alpha_l, \alpha_{j_1}, \ldots, \widehat{\alpha_{j_u}}, \ldots, \alpha_{j_m}\}$ is linearly independent and $B_u = (\{\alpha_{i_1}, \ldots, \alpha_{i_h}\} \setminus \{\alpha_{j_u}\}) \cup \{\alpha_l\}$ is another basis of X^* . From (2.8) we get

$$\frac{a_1}{\alpha_l \alpha_{i_1} \cdots \widehat{\alpha_{j_1}} \cdots \alpha_{i_h}} + \dots + \frac{a_m}{\alpha_l \alpha_{i_1} \cdots \widehat{\alpha_{j_m}} \cdots \alpha_{i_h}} = \frac{1}{\alpha_{i_1} \cdots \alpha_{i_h}}.$$
 (2.9)

If each basis B_u is a nbc, then $\frac{1}{\alpha_{i_1} \cdots \alpha_{i_h}}$ is in $\langle \mathcal{U}_{X^*}^{nbc} \rangle$. Otherwise, there exists at least one *h*-tuple (l_1, \ldots, l_h) that is not a nbc. Then for each such (l_1, \ldots, l_h) we can repeat the initial

435

process, as with (i_1, \ldots, i_h) . This procedure ends after a finite number of steps because the cardinality of \mathcal{U}_{X^*} is finite. Finally we obtain $\frac{1}{\alpha_{i_1} \cdots \alpha_{i_h}} \in \langle \mathcal{U}_{X^*}^{\text{nbc}} \rangle$.

The set $\mathcal{U}_{X^*}^{\text{nbc}}$ is *C*-linearly independent: Suppose that

$$\sum_{\substack{(i_1,\ldots,i_h)\in\mathcal{B}_{X^*}^{\mathrm{nbc}}}}\frac{c_{i_1\cdots i_h}}{\alpha_{i_1}\cdots\alpha_{i_h}}=0$$

with $c_{i_1\cdots i_h} \in C$. Let l_X be the smallest among all the first entries of the *h*-tuples in $\mathcal{B}_{X^*}^{\text{nbc}}$. Thus we can divide the last sum as

$$\frac{1}{\alpha_{l_X}} \cdot \sum_{(l_X, i_2, \dots, i_h) \in \mathcal{B}_{X^*}^{\text{nbc}}} \frac{c_{l_X i_2 \cdots i_h}}{\alpha_{i_2} \cdots \alpha_{i_h}} + \underbrace{\sum_{\substack{(i_1, \dots, i_h) \in \mathcal{B}_{X^*}^{\text{nbc}} \\ i_1 \neq l_X}} \frac{c_{i_1 \cdots i_h}}{\alpha_{i_1} \cdots \alpha_{i_h}} = 0$$

or $\sum_{(l_X, i_2, \dots, i_h) \in \mathcal{B}_{X^*}^{nbc}} \frac{c_{l_X i_2 \cdots i_h}}{\alpha_{i_2} \cdots \alpha_{i_h}} + \alpha_{l_X} \cdot T_X = 0$. So $\sum_{(l_X, i_2, \dots, i_h) \in \mathcal{B}_{X^*}^{nbc}} \frac{c_{l_X i_2 \cdots i_h}}{\alpha_{i_2} \cdots \alpha_{i_h}} = 0$ within ker (α_{l_X}) . Note that $\{\alpha_{i_2}, \dots, \alpha_{i_h}\}$ is linearly independent modulo α_{l_X} , and $(i_2, \dots, i_h) \in \mathcal{B}_{Y^*}^{nbc}$ for some subspace $Y^* = \langle \alpha_{i_2}, \dots, \alpha_{i_h} \rangle$ of X^* obtained after removing α_{l_X} from every basis

 $\{\alpha_{l_X}, \alpha_{i_2}, \dots, \alpha_{i_h}\}$ in $\mathcal{B}_{X^*}^{\text{nbc}}$. Thus we have

$$\sum_{(l_X, i_2, \dots, i_h) \in \mathcal{B}_{X^*}^{\mathrm{nbc}}} \frac{c_{l_X i_2 \cdots i_h}}{\alpha_{i_2} \cdots \alpha_{i_h}} = 0$$

By induction on dim X^* , we shall prove $c_{l_X i_2 \cdots i_h} = 0$ for all (l_X, i_2, \ldots, i_h) in $\mathcal{B}_{X^*}^{nbc}$ and $T_X = 0$. In fact, let $\mathcal{Z}_{X^*} = \{Y^* \subset X^* \mid Y^* = \langle \alpha_{i_2}, \ldots, \alpha_{i_h} \rangle$ if $(l_X, i_2, \ldots, i_h) \in \mathcal{B}_{X^*}^{nbc}\}$ and fix one Y^* in \mathcal{Z}_{X^*} . Then we may divide the last sum to get

$$\sum_{\substack{(l_Y,i_3,\ldots,i_h)\in\mathcal{B}_{Y*}^{\mathrm{nbc}}}} \frac{c_{l_X l_Y i_3\cdots i_h}}{\alpha_{i_3}\cdots\alpha_{i_h}} + \alpha_{l_Y} \left(\underbrace{\sum_{\substack{(i_2,\ldots,i_h)\in\mathcal{B}_{Y*}^{\mathrm{nbc}}\\i_2\neq l_Y}} \frac{c_{l_X i_2\cdots i_h}}{\alpha_{i_2}\cdots\alpha_{i_h}}}_{T_Y} + \sum_{\substack{(\alpha_{j_2},\ldots,\alpha_{j_h})=Z*\\Z*\in \mathbb{Z}_{X*}\setminus \{Y*\}}} \frac{c_{l_X j_2\cdots j_h}}{\alpha_{j_2}\cdots\alpha_{j_h}}\right) = 0.$$

Then $\sum_{(l_Y, i_3, \dots, i_h) \in \mathcal{B}_{Y^*}^{nbc}} \frac{c_{l_X l_Y i_3 \cdots i_h}}{\alpha_{i_3} \cdots \alpha_{i_h}} = 0$ within ker (α_{l_Y}) . By induction on dim X^* , since dim $Y^* < \dim X^*$, $c_{l_X l_Y i_3 \cdots i_h} = 0$ for all (l_Y, i_3, \dots, i_h) in $\mathcal{B}_{Y^*}^{nbc}$, and $T_Y = 0$. But this is true for every Y^* in \mathcal{Z}_{X^*} . Thus, $c_{l_X i_2 \cdots i_h} = 0$ for all (l_X, i_2, \dots, i_h) in $\mathcal{B}_{X^*}^{nbc}$. This implies that $T_X = 0$. Thus α_{l_X} appears in every basis in $\mathcal{B}_{X^*}^{nbc}$ and $\mathcal{U}_{X^*}^{nbc}$ is linearly independent.

COROLLARY 2.15. Let $X \in L_h$, $1 \le h \le r$, and let l_X be the smallest among all the first entries of h-tuples (i_1, \ldots, i_h) such that $\{\alpha_{i_1}, \ldots, \alpha_{i_h}\} \in \mathcal{B}_{X^*}$. Then $B \in \mathcal{B}_{X^*}^{\text{nbc}}$ if and only if $\alpha_{l_X} \in B$.

\mathcal{D} -MODULES AND ARRANGEMENTS OF HYPERPLANES

LEMMA 2.16. Let X, Y be two elements in L_h , $1 \le h \le r$. Then $X \ne Y$ if and only if $V_{X^*} \cap V_{Y^*} = \{0\}$.

PROOF. Assume $X^* \neq Y^*$. Suppose that there exists a non-zero element v in $V_{X^*} \cap V_{Y^*}$. Since $[v] = v \mod P_{h-1}$ belongs to $M_{X^*} \otimes V_{X^*}^{\text{mod}} \cap M_{Y^*} \otimes V_{Y^*}^{\text{mod}} = \{[0]\}$, then v belongs to P_{h-1} . This is a contradiction.

The next two lemmas enable us to write the D_n -module P as a direct sum of the R_{X^*} .

LEMMA 2.17. Fix $I = (i_1, \ldots, i_h)$ and $J = (j_1, \ldots, j_s)$ such that h + s = n and consider a polynomial f in $C[y_{i_1}, \ldots, y_{i_h}, \partial_{y_{j_1}}, \ldots, \partial_{y_{j_s}}]$. Then

(a) If f is such that $f \bullet \frac{1}{y_{j_1} \cdots y_{j_s}} = 0$, then $f \equiv 0$. (b) If $f \cdot \partial_{y_{j_l}} \bullet \frac{1}{y_{j_1} \cdots y_{j_s}} = 0$ for some $1 \le l \le s$, then $f \equiv 0$.

More generally, if the subset $\{\alpha_1, \ldots, \alpha_s\}$ of Span $\{y_{j_1}, \ldots, y_{j_s}\}$ is linearly independent, then (a) and (b) hold with $\frac{1}{\alpha_1 \cdots \alpha_s}$ instead of $\frac{1}{y_{j_1} \cdots y_{j_s}}$.

PROOF. We start to show (a) by induction on s: If $f \in C[y_1, \ldots, y_n]$ (s = 0), then it is clear that $f \equiv 0$. Now let s > 0. If there is no $1 \le u \le s$ such that $\deg_{\partial_{y_{ju}}} f = m > 0$, then it is also clear that $f \equiv 0$, otherwise f can be written as

$$Q_m \partial_{y_{ju}}^m + Q_{m-1} \partial_{y_{ju}}^{m-1} + \dots + Q_1 \partial_{y_{ju}} + Q_0$$

where $Q_m, \ldots, Q_0 \in C[y_{i_1}, \ldots, y_{i_h}, \partial_{y_{j_1}}, \ldots, \widehat{\partial_{y_{j_u}}}, \ldots, \partial_{y_{j_s}}]$ and $Q_m \neq 0$. Thus $f \bullet \frac{1}{y_{j_1} \cdots y_{j_s}} = 0$ is equivalent to

$$\left(\frac{(-1)^m m!}{y_{j_u}^{m+1}}Q_m + \frac{(-1)^{m-1}(m-1)!}{y_{j_u}^m}Q_{m-1} + \dots + \frac{1}{y_{j_u}}Q_0\right) \bullet \frac{1}{y_{j_1}\cdots \widehat{y_{j_u}}\cdots y_{j_s}} = 0$$

or

$$((-1)^m m! Q_m + (-1)^{m-1} (m-1)! y_{j_u} Q_{m-1} + \dots + y_{j_u}^m Q_0) \bullet \frac{1}{y_{j_1} \cdots \widehat{y_{j_u}} \cdots y_{j_s}} = 0.$$

Denote by \tilde{f} the operator that acts on $\frac{1}{y_{j_1}\cdots \widehat{y_{j_u}}\cdots y_{j_s}}$ in the last equation. Note that \tilde{f} belongs to $C[y_{i_1},\ldots,y_{i_h},y_{j_u},\partial_{y_{j_1}},\ldots,\widehat{\partial_{y_{j_u}}},\ldots,\partial_{y_{j_s}}]$. By induction on *s* we have $\tilde{f} \equiv 0$. Then $Q_m = 0$ and $f \equiv 0$.

In order to prove (b), note that $f \cdot \partial_{y_{j_l}} = \partial_{y_{j_l}} \cdot f$. Again, by induction on *s*, if s = 0 then f = 0. For s > 0, if there is no $1 \le u \le s$ such that $\deg_{\partial_{y_{j_u}}} f = m > 0$, then it is also clear

that
$$f \cdot \partial_{y_{j_l}} \bullet \frac{1}{y_{j_1} \cdots y_{j_s}} = 0$$
 implies $f = 0$, otherwise $f \cdot \partial_{y_{j_l}}$ can be written as
 $(Q_m \partial_{y_{j_l}}) \partial_{y_{j_u}}^m + (Q_{m-1} \partial_{y_{j_l}}) \partial_{y_{j_u}}^{m-1} + \dots + (Q_1 \partial_{y_{j_l}}) \partial_{y_{j_u}} + (Q_0 \partial_{y_{j_l}})$

where $Q_m, \ldots, Q_0 \in C[y_{i_1}, \ldots, y_{i_h}, \partial_{y_{j_1}}, \ldots, \widehat{\partial_{y_{j_u}}}, \ldots, \partial_{y_{j_s}}]$ and $Q_m \neq 0$. If $l \neq u$ then again $Q'_p = Q_p \partial_{y_{j_l}} \in C[y_{i_1}, \ldots, y_{i_h}, \partial_{y_{j_1}}, \ldots, \widehat{\partial_{y_{j_u}}}, \ldots, \partial_{y_{j_s}}]$ for $p = 0, 1, \ldots, m$, and the result follows from (a). Otherwise $f \cdot \partial_{y_{j_l}} \bullet \frac{1}{y_{j_1} \cdots y_{j_s}} = 0$ is equivalent to

$$((-1)^{m+1}(m+1)!Q_m + (-1)^m m!y_{j_u}Q_{m-1} + \dots - y_{j_u}^m Q_0) \bullet \frac{1}{y_{j_1} \cdots \hat{y_{j_u}} \cdots y_{j_s}} = 0$$

and again the result follows from (a) and induction on s.

The general case follows by induction on *s* and from relations (2.4) and (2.5). \Box

LEMMA 2.18. Let X in L_h , $1 \le h \le r$. The natural map of D_n -modules $\phi_X : R_{X^*} = M_{X^*} \otimes_C V_{X^*} \to P$, $m \otimes \upsilon \mapsto m \bullet \upsilon$, is injective.

PROOF. Let $\{y_1, \ldots, y_n\}$ be a basis of $(\mathbb{C}^n)^*$ such that $X^* = \langle y_1, \ldots, y_h \rangle$. By Lemma 2.14, R_{X^*} can be written as $\mathbb{C}[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}] \otimes_{\mathbb{C}} \langle \mathcal{U}_{X^*}^{\text{nbc}} \rangle = \bigoplus_{B \in \mathcal{B}_{X^*}^{\text{nbc}}} M_{X^*} \otimes_{\mathbb{C}} (1/\prod_{\alpha \in B} \alpha)$. Then the map ϕ_X is injective if and only if for each $B \in \mathcal{B}_{X^*}^{\text{nbc}}$ the map $\phi_X^B : M_{X^*} \otimes_{\mathbb{C}} (1/\prod_{\alpha \in B} \alpha) \to P$ is injective, i.e., if $Q \bullet (1/\prod_{\alpha \in B} \alpha) = 0$, where $Q \in \mathbb{C}[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$ and $B \in \mathcal{B}_{X^*}^{\text{nbc}}$, then Q = 0. This follows from Lemma 2.17. \Box

THEOREM 2.19. For $1 \le h \le r$, we have

$$P_h = \bigoplus_{j=0}^h \bigoplus_{X \in L_j(\mathcal{A})} R_{X^*} \, .$$

In particular, since $P = P_r$, we have $P = \bigoplus_{X \in L(\mathcal{A})} R_{X^*}$.

PROOF. This is an immediate consequence of Lemma 2.18 and the definition of P_h . \Box

REMARK. M. Brion and M. Vergne [2], and H. Terao [10], have studied the action of $C[\partial]$ on P. Horiuchi and Terao [5] have also studied the naturally double filtration of P by the degrees of the denominators and numerators.

THEOREM 2.20. For $0 \le h \le r$, the natural map induced by ϕ_X , $\psi : \bigoplus_{X \in L_h} R_{X^*} \to P_h/P_{h-1}, m \otimes \upsilon \mapsto [m \bullet \upsilon]$, is an isomorphism of D_n -modules.

PROOF. It follows from Proposition 2.12 that the D_n -morphism ψ is surjective. In order to see that ψ is injective, it is sufficient to show that $\psi_X : R_{X^*} \to P_h/P_{h-1}$ is injective for each $X \in L_h$. Recall that $\mathcal{A}_X = \{H \in \mathcal{A} \mid H \subseteq X\}$. Let $\mathcal{A}_X = \prod_{\alpha \in \mathcal{A}_X^*} \alpha$ be the homogeneous polynomial that defines the subarrangement \mathcal{A}_X . Define the D_n -submodule P^X of P by $C[\mathbf{x}, \mathcal{A}_{\mathcal{A}_X}^{-1}]$. By Lemma 2.1, P^X admits a finite ascending chain similar to one of

\mathcal{D} -MODULES AND ARRANGEMENTS OF HYPERPLANES

(2.1) to *P*. Then, the map ψ_X is injective if and only if the map $\overline{\psi}_X : R_{X^*} \to P_h^X / P_{h-1}^X$ is injective, i.e., $V_{X^*} \cap P_{h-1}^X = \{0\}$. Suppose that there exists a non-zero element v in $V_{X^*} \cap P_{h-1}^X$. Let $\{y_1, \ldots, y_n\}$ be a basis of $(\mathbb{C}^n)^*$ such that $X^* = \langle y_1, \ldots, y_h \rangle$, then v can be written as

$$\upsilon = \sum_{B \in \mathcal{B}_{X^*}^{\mathrm{nbc}}} \frac{c_B}{\prod_{\alpha \in B} \alpha} = \sum \frac{a_{j_1 \cdots j_s}}{\alpha_{j_1}^{m_1} \cdots \alpha_{j_s}^{m_s}},$$

where the first sum belongs to V_{X^*} , the second to P_{h-1}^X , $c_B \in C$, $0 \le s \le h-1$, $a_{j_1\cdots j_s} \in C[y_1, \ldots, y_n], \{\alpha_{j_1}, \ldots, \alpha_{j_s}\}$ is a linearly independent subset of $\text{Span}\{y_1, \ldots, y_h\} \cap \mathcal{A}_X^*$ and $m_1, \ldots, m_s \in N$. It is clear that $\sum_{B \in \mathcal{B}_{Y^*}} (c_B / \prod_{\alpha \in B} \alpha) \mod P_{h-1} \neq [0]$ and

$$\sum (a_{j_1 \cdots j_s} / \alpha_{j_1}^{m_1} \cdots \alpha_{j_s}^{m_s}) \mod P_{h-1} = [0].$$
 This is a contradiction.

COROLLARY 2.21. If $X \in L_h$, $1 \leq h \leq r$, then the set of cosets $\{1/\prod_{\alpha \in B} \alpha \mod P_{h-1} \mid B \in \mathcal{B}_{X^*}^{\text{nbc}}\}$ is a *C*-basis of $V_{X^*}^{\text{mod}}$.

DEFINITION 2.22. Let \mathcal{A} be an arrangement in \mathbb{C}^n of rank r. Define the holonomic D_n -module $\mathcal{P} = \mathcal{P}(\mathcal{A}) = \bigoplus_{h=0}^r \mathcal{P}_h$, associated to the arrangement \mathcal{A} and isomorphic to $\mathcal{P}(\mathcal{A})$, as follows: let $\mathcal{P}_0 = \mathcal{P}_0 = \mathbb{C}[x_1, \ldots, x_n]$, and for $1 \le h \le r$

$$\mathcal{P}_{h} = P_{h}/P_{h-1} \cong \bigoplus_{X \in L_{h}} R_{X^{*}} = \bigoplus_{X \in L_{h}} M_{X^{*}} \otimes_{C} \langle \mathcal{U}_{X^{*}}^{\mathrm{nbc}} \rangle \cong \bigoplus_{X \in L_{h}} M_{X^{*}}^{a(X^{*})}$$

where $a(X^*) := \dim V_{X^*}$ is equal to $|\mathcal{U}_{X^*}^{\text{nbc}}|$, the multiplicity of M_{X^*} .

3. Complexes and cohomology of Y_A

We begin by defining some useful cochain complexes \mathcal{L}_{h}^{*} , \mathcal{G}_{h}^{*} and \mathcal{H}_{h}^{*} . The first complex \mathcal{L}_{h} , cf. (3.1), is associated to every basis $B \in \mathcal{B}_{X^{*}}$, $X \in L_{h}$, and then we get a complex $\mathcal{L}(\mathcal{P}_{h}) = \bigoplus_{X \in L_{h}} \bigoplus_{B \in \mathcal{B}_{X^{*}}^{\text{nbc}}} \mathcal{L}_{h}(B)$ associated to \mathcal{P}_{h} . The cohomology of $\mathcal{L}(\mathcal{P}_{h})$ is the *h*-th De Rham cohomology of $Y_{\mathcal{A}}$, cf. Theorem 3.6 (see also [9], Theorem 3.26, Theorem 3.43 and Theorem 5.90).

Fix $h, 0 \le h \le n$, we define the following cochain complexes (3.1), (3.2) and (3.3). The complex of rational differential forms on Y_A :

$$\mathcal{L}_{h}^{*} = \mathcal{L}_{h}^{*}(\{y_{1}, \dots, y_{h}\}): 0 \longrightarrow \mathcal{L}_{h}^{0} \xrightarrow{\delta_{\mathcal{L}}^{0}} \mathcal{L}_{h}^{1} \xrightarrow{\delta_{\mathcal{L}}^{1}} \mathcal{L}_{h}^{2} \longrightarrow \cdots \longrightarrow \mathcal{L}_{h}^{n-1} \xrightarrow{\delta_{\mathcal{L}}^{n-1}} \mathcal{L}_{h}^{n} \xrightarrow{\delta_{\mathcal{L}}^{n}} 0$$
(3.1)

where

$$\mathcal{L}_h^0 = \mathbf{C}[y_{h+1}, \dots, y_n, \partial_{y_1}, \dots, \partial_{y_h}] \bullet \frac{1}{y_1 \cdots y_h},$$
$$\mathcal{L}_h^s = \left\{ \sum_{1 \le i_1 < \dots < i_s \le n} f_{i_1 \cdots i_s} \bullet \frac{1}{y_1 \cdots y_h} dy_{i_1} \land \dots \land dy_{i_s} \right\}, \quad s = 1, \dots, n$$

 $f_{i_1\cdots i_s} \in C[y_{h+1}, \ldots, y_n, \partial_{y_1}, \ldots, \partial_{y_h}]$, and the differential $\delta_{\mathcal{L}} : \mathcal{L}_h \to \mathcal{L}_h$ is the usual differential.

A subcomplex of \mathcal{L}_h :

$$\mathcal{G}_{h}^{*}: 0 \longrightarrow \mathcal{G}_{h}^{0} \xrightarrow{\delta_{\mathcal{G}}^{0}} \mathcal{G}_{h}^{1} \xrightarrow{\delta_{\mathcal{G}}^{1}} \mathcal{G}_{h}^{2} \longrightarrow \cdots \longrightarrow \mathcal{G}_{h}^{h-1} \xrightarrow{\delta_{\mathcal{G}}^{h-1}} \mathcal{G}_{h}^{h} \xrightarrow{\delta_{\mathcal{G}}^{h}} 0$$
(3.2)

where

$$\mathcal{G}_h^0 = \boldsymbol{C}[\partial_{y_1}, \dots, \partial_{y_h}] \bullet \frac{1}{y_1 \cdots y_h},$$

$$\mathcal{G}_h^r = \left\{ \sum_{1 \le i_1 < \dots < i_r \le h} f_{i_1 \cdots i_r} \bullet \frac{1}{y_1 \cdots y_h} dy_{i_1} \land \dots \land dy_{i_r} \right\}, \quad r = 1, \dots, h,$$

 $f_{i_1\cdots i_r} \in C[\partial_{y_1}, \ldots, \partial_{y_h}]$, and the differential $\delta_{\mathcal{G}} : \mathcal{G}_h \to \mathcal{G}_h$ is the usual differential. Finally, the De Rham subcomplex on C^{n-h} :

$$\mathcal{H}_{h}^{*}: 0 \longrightarrow \mathcal{H}_{h}^{0} \xrightarrow{\delta_{\mathcal{H}}^{0}} \mathcal{H}_{h}^{1} \xrightarrow{\delta_{\mathcal{H}}^{1}} \mathcal{H}_{h}^{2} \longrightarrow \cdots \longrightarrow \mathcal{H}_{h}^{n-h-1} \xrightarrow{\delta_{\mathcal{H}}^{n-h-1}} \mathcal{H}_{h}^{n-h} \xrightarrow{\delta_{\mathcal{H}}^{n-h}} 0 \qquad (3.3)$$

where

$$\mathcal{H}_h^0 = \boldsymbol{C}[y_{h+1}, \dots, y_n],$$

$$\mathcal{H}_h^t = \left\{ \sum_{h+1 \le i_1 < \dots < i_t \le n} f_{i_1 \cdots i_t} dy_{i_1} \land \dots \land dy_{i_t} \right\}, \quad t = 1, \dots, n-h,$$

 $f_{i_1\cdots i_t} \in C[y_{h+1}, \ldots, y_n]$, and the differential $\delta_{\mathcal{H}} : \mathcal{H}_h \to \mathcal{H}_h$ is the usual differential.

LEMMA 3.1. The complex G_h has cohomology

$$H^*(\mathcal{G}_h) = \begin{cases} C \cdot \frac{1}{y_1 \cdots y_h} dy_1 \wedge \cdots \wedge dy_h & \text{in dimension } h \\ 0 & \text{elsewhere }. \end{cases}$$

PROOF. For r = 0: Let $\omega = f \bullet \frac{1}{y_1 \cdots y_h} \in \mathcal{G}_h^0$. If $\delta_{\mathcal{G}}^0 \omega = \sum_{i=1}^h (f \cdot \partial_{y_i}) \bullet \frac{1}{y_1 \cdots y_h} dy_i = 0$, then we have $\delta_{\mathcal{G}}^0 \omega \wedge (dy_1 \cdots \widehat{dy_i} \cdots dy_h) = (-1)^{i-1} (f \cdot \partial_{y_i}) \bullet \frac{1}{y_1 \cdots y_h} dy_1 \cdots dy_h = 0$ for all $1 \le i \le h$. It is possible if and only if $(f \cdot \partial_{y_i}) \bullet \frac{1}{y_1 \cdots y_h} = 0$. By Lemma 2.17 (b), we have f = 0. Thus, we have $\ker(\delta_{\mathcal{G}}^0) = \{0\}$ and $H^0(\mathcal{G}_h) = 0$.

For 0 < r < h: Let $\omega = \sum_{1 \le i_1 < \dots < i_r \le h} f_{i_1 \cdots i_r} \bullet \frac{1}{y_1 \cdots y_h} dy_{i_1} \cdots dy_{i_r}$ be an element in \mathcal{G}_h^r . If $\delta_{\mathcal{G}}^r \omega = \sum_{1 \le l_1 < \dots < l_r < l_{r+1} \le h} (\sum_{j=1}^{r+1} (-1)^{j-1} f_{l_1 \cdots \widehat{l_j} \cdots l_{r+1}} \cdot \partial_{y_j}) \bullet \frac{1}{y_1 \cdots y_h} dy_{l_1} \cdots dy_{l_{r+1}} = 0$, where $\{l_1, \dots, \widehat{l_j}, \dots, l_{r+1}\}$ is equal to some $\{i_1, \dots, i_r\}$, then, as for the case r = 0, we have $(\sum_{j=1}^{r+1} (-1)^{j-1} f_{l_1 \cdots \widehat{l_j} \cdots l_{r+1}} \cdot \partial_{y_j}) \bullet \frac{1}{y_1 \cdots y_h} = 0$ for all $1 \le l_1 < \dots < l_r < l_{r+1} \le h$.

\mathcal{D} -MODULES AND ARRANGEMENTS OF HYPERPLANES

By Lemma 2.17, this is possible if and only if $\sum_{j=1}^{r+1} (-1)^{j-1} f_{l_1 \dots \hat{l_j} \dots l_{r+1}} \cdot \partial_{y_j} = 0$. This last equality is true if and only if $f_{i_1\cdots i_r} = 0$ for all $1 \le i_1 < \cdots < i_r \le h$. Thus we have again that $\ker(\delta_{\mathcal{G}}^r) = \{0\}$ and $H^r(\mathcal{G}_h) = 0$ for 0 < r < h.

Finally, for r = h, $\delta^h_{\mathcal{C}}(\omega) = 0$ for all $\omega \in \mathcal{G}^h_h$. Thus ker $(\delta^h_{\mathcal{C}}) = \mathcal{G}^h_h$. Since

$$Im(\delta_{\mathcal{G}}^{h-1}) = \left\{ (f_1 \cdot \partial_{y_1} - f_2 \cdot \partial_{y_2} + \dots + (-1)^{h-1} f_h \cdot \partial_{y_h}) \bullet \frac{1}{y_1 \cdots y_h} dy_1 \cdots dy_h \right\},$$

we obtain $H^h(\mathcal{G}_h) = \mathbf{C} \cdot \frac{1}{y_1 \cdots y_h} dy_1 \cdots dy_h$.

LEMMA 3.2. The complex \mathcal{H}_h has cohomology

$$H^*(\mathcal{H}_h) = \begin{cases} C & \text{in dimension } 0, \\ 0 & \text{elsewhere }. \end{cases}$$

PROOF. This is a consequence of the fact that \mathcal{H}_h is a subcomplex of the De Rham complex $\Omega_{DR}(\mathbf{C}^{n-h})$ on \mathbf{C}^{n-h} .

PROPOSITION 3.3. There exists the following relation between the complexes \mathcal{L}_h , \mathcal{G}_h and \mathcal{H}_h :

$$\mathcal{L}_h = \mathcal{G}_h \otimes_C \mathcal{H}_h.$$

PROOF. We will prove, cf. [4], that:

(1) $\mathcal{L}_h^s = \bigoplus_{r+t=s} \mathcal{G}_h^r \otimes_C \mathcal{H}_h^t (= (\mathcal{G}_h \otimes_C \mathcal{H}_h)^s)$, and

(2) $\delta_{\mathcal{L}}^{s} = \delta_{\mathcal{G}\otimes\mathcal{H}}^{s} : (\mathcal{G}_{h}\otimes_{C}\mathcal{H}_{h})^{s} \to (\mathcal{G}_{h}\otimes_{C}\mathcal{H}_{h})^{s+1}.$ To prove (1), note that every monomial of $f_{i_{1}\cdots i_{s}}(y_{h+1},\ldots,y_{n},\partial_{y_{1}},\ldots,\partial_{y_{h}})$. $\frac{1}{y_1\cdots y_h}dy_{i_1}\cdots dy_{i_s} \in \mathcal{L}_h^s: c_{j_1\cdots j_n}y_{h+1}^{j_{h+1}}\cdots y_n^{j_n}\partial_{y_1}^{j_1}\cdots \partial_{y_h}^{j_h} \bullet \frac{1}{y_1\cdots y_h}dy_{i_1}\cdots dy_{i_r}dy_{i_{r+1}}\cdots$ $dy_{i_s}, c_{j_1\cdots j_n} \in C$, can be written as $\left(\partial_{y_1}^{j_1}\cdots\partial_{y_h}^{j_h} \bullet \frac{1}{y_1\cdots y_h}dy_{i_1}\cdots dy_{i_r}\right) \otimes_C$

 $(c_{j_1\cdots j_n}y_{h+1}^{j_{h+1}}\cdots y_n^{j_n}dy_{i_{r+1}}\cdots dy_{i_s})$, where the first factor belong to \mathcal{G}_h^r and the second to \mathcal{H}_h^{s-r} . So $\mathcal{L}_h^s \subseteq \bigoplus_{r+t=s} \mathcal{G}_h^r \otimes_C \mathcal{H}_h^t$. The second inclusion is obvious.

In order to show (2), we will show that if s = r + t for some $0 \le r \le h$ then $\delta^s_{\mathcal{G}\otimes\mathcal{H}}|_{\mathcal{G}^r\otimes\mathcal{H}^t} = \delta^s_{\mathcal{L}}|_{\mathcal{G}^r\otimes\mathcal{H}^t}$. It follows from the respective definition of $\delta_{\mathcal{G}\otimes\mathcal{H}}$, $\delta_{\mathcal{L}}$, $\delta_{\mathcal{G}}$ and $\delta_{\mathcal{H}}$.

COROLLARY 3.4. The complex $\mathcal{L}_h = \mathcal{L}_h(\{y_1, \ldots, y_h\})$ has cohomology

$$H^*(\mathcal{L}_h(\{y_1,\ldots,y_h\})) = \begin{cases} C \cdot \frac{1}{y_1 \cdots y_h} dy_1 \cdots dy_h & \text{in dimension } h, \\ 0 & \text{elsewhere.} \end{cases}$$

441

PROOF. Thanks to Proposition 3.3 and the algebraic Künneth formula for the cohomology of a tensor product of two complexes, we have that $H^{s}(\mathcal{L}_{h}) = \bigoplus_{r+t=s} H^{r}(\mathcal{G}_{h}) \otimes_{C} H^{t}(\mathcal{H}_{h})$. Hence, the result follows from Lemmas 3.1 and 3.2.

DEFINITION 3.5. For each subspace X in L_h , define the following complex:

$$\mathcal{L}_h(X) = \bigoplus_{\{\alpha_{j_1}, \dots, \alpha_{j_h}\} \in \mathcal{B}_{X^*}^{\text{nbc}}} \mathcal{L}_h(\{\alpha_{j_1}, \dots, \alpha_{j_h}\})$$

where $\mathcal{L}_h(\{\alpha_{j_1}, \ldots, \alpha_{j_h}\})$ is the same complex \mathcal{L}_h^* defined in (3.1) but for the set of generators $\{\alpha_{j_1}, \ldots, \alpha_{j_h}\}$ of X^* . Associated to the D_n -module $\mathcal{P}_h \cong \bigoplus_{X \in L_h} R_{X^*}$, define the complex

$$\mathcal{L}(\mathcal{P}_h) = \bigoplus_{X \in L_h} \mathcal{L}_h(X) \,.$$

Finally define the complex $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}(\mathcal{A})) = \bigoplus_{h=0}^{r} \mathcal{L}(\mathcal{P}_h)$ associated to the D_n -module \mathcal{P} , cf. Definition 2.22.

Notice that $\mathcal{L}(\mathcal{P})$ is the algebraic De Rham complex of $Y_{\mathcal{A}}$.

THEOREM 3.6. For $1 \le h \le r$, there exists an isomorphism between $H^h_{DR}(Y_A)$ and $H^h(\mathcal{L}(\mathcal{P}_h))$:

$$H^h_{DR}(Y_{\mathcal{A}}) \cong H^h(\mathcal{L}(\mathcal{P}_h)) = \bigoplus_{X \in L_h} \bigoplus_{\{\alpha_{j_1}, \dots, \alpha_{j_h}\} \in \mathcal{B}^{nbc}_{X^*}} C \cdot \frac{1}{\alpha_{j_1} \cdots \alpha_{j_h}} d\alpha_{j_1} \wedge \cdots \wedge d\alpha_{j_h}.$$

PROOF. Fix a subspace $X \in L_h(\mathcal{A})$. By Corollary 3.4, the associated complex $\mathcal{L}_h(X)$ has cohomology non-null only in dimension h. It is

$$H^{h}(\mathcal{L}_{h}(X)) = \bigoplus_{\{\alpha_{j_{1}},...,\alpha_{j_{h}}\}\in\mathcal{B}_{X^{*}}^{nbc}} C \cdot \frac{1}{\alpha_{j_{1}}\cdots\alpha_{j_{h}}} d\alpha_{j_{1}}\wedge\cdots\wedge d\alpha_{j_{h}}.$$

Therefore, the complex $\mathcal{L}(\mathcal{P}_h) = \bigoplus_{X \in L_h} \mathcal{L}_h(X)$ has nonzero cohomology only in dimension *h*. Since Y_A is a smooth affine variety it follows, by [6, Theorem 1], that $H^h_{DR}(Y_A) \cong H^h(\mathcal{L}(\mathcal{P}_h))$.

COROLLARY 3.7. Let $b_h(Y_A)$ be the Betti numbers of Y_A , $1 \le h \le r$. Then we have

$$b_h(Y_{\mathcal{A}}) = \sum_{X \in L_h} a(X^*) \,.$$

PROOF. It is a consequence of Theorem 3.6 that

$$rank H_{DR}^{h}(Y_{\mathcal{A}}) = rank H^{h}(\mathcal{L}(\mathcal{P}_{h})) = \sum_{X \in L_{h}} |\mathcal{B}_{X^{*}}^{\text{nbc}}| = \sum_{X \in L_{h}} |\mathcal{U}_{X^{*}}^{\text{nbc}}| = \sum_{X \in L_{h}} a(X^{*}),$$

where the last equality holds by Definition 2.22.

$\mathcal D\text{-}\mathsf{MODULES}$ and arrangements of hyperplanes

4. The Poincaré series of $P(\mathcal{A})$

In this last section we compute the Poincaré series of the D_n -module $P(\mathcal{A})$.

DEFINITION 4.1. If $M = \bigoplus_{i \ge 0} M_i$ is a graded vector space with dim $M_i < +\infty$ for all $i \ge 0$, we define the Poincaré series of M by

$$Poin(M, t) = \sum_{i=1}^{\infty} (\dim M_i) t^i$$
.

From Definition 2.13 and Lemma 2.16 and 2.14, we have the following Lemma.

LEMMA 4.2. Let A be an arrangement of hyperplanes. Define the finite dimensional graded C-vector space

$$V(\mathcal{A}) = \bigoplus_{h=0}^{\prime} \bigoplus_{X \in L_h} V_{X^*}.$$

Then the set

$$\{1\} \cup \bigcup_{h=1}^{r} \bigcup_{X \in L_{h}} \mathcal{U}_{X^{*}}^{\mathrm{nbc}}$$

is a basis of $V(\mathcal{A})$.

We must express the dimension of V_{X^*} (= $|\mathcal{U}_{X^*}^{\text{nbc}}|$) by using the Möbius function in one variable $\mu(X)$ defined in [9]. Recall that the Poincaré polynomial of \mathcal{A} is combinatorially defined by using μ : $Poin(\mathcal{A}, t) = \sum_{X \in L} (-1)^{r(X)} \mu(X) t^{r(X)}$.

THEOREM 4.3. (see [7], [5]) For $X \in L$, we have dim $V_{X^*} = (-1)^{r(X)}\mu(X)$, and the Poincaré series Poin $(V(\mathcal{A}), t)$ of the space $V(\mathcal{A})$ is equal to Poin (\mathcal{A}, t) .

By Theorem 2.19, the dimension of the graded D_n -module P(A) is infinite. Then its Poincaré series is a formal power series. The following theorem gives a combinatorial formula for it.

THEOREM 4.4. The Poincaré series Poin(P(A), t) of the graded D_n -module P(A) is equal to $(1 - t)^{-n}Poin(A, t)$.

PROOF. According to Theorem 2.19, we have

$$Poin(P(\mathcal{A}), t) = \sum_{X \in L} Poin(R_{X^*}, t) = \sum_{X \in L} Poin(M_{X^*}, t)Poin(V_{X^*}, t).$$

Since the *C*-algebra M_{X^*} is isomorphic to the polynomial algebra with *n* variables, we have $Poin(M_{X^*}, t) = (1 - t)^{-n}$. Moreover, by the definition of $Poin(V_{X^*}, t) = \dim V_{X^*}t^{r(X)}$ and

by Theorem 4.3, we have $Poin(V_{X^*}, t) = (-1)^{r(X)} \mu(X) t^{r(X)}$. Thus

$$Poin(P(A), t) = \sum_{X \in L} (1 - t)^{-n} (-1)^{r(X)} \mu(X) t^{r(X)}$$
$$= (1 - t)^{-n} Poin(A, t) .$$

By Theorem 2.20, we have the following Corollary.

COROLLARY 4.5. The Poincaré series $Poin(\mathcal{P}(\mathcal{A}), t)$ of $\mathcal{P}(\mathcal{A})$ is equal to $Poin(\mathcal{P}(\mathcal{A}), t)$.

ACKNOWLEDGMENTS. The author wishes to express his gratitude to his advisor, Professor Claudio Procesi, for valuable comments and helpful suggestions for this paper and [7]. Moreover, he would like to extend thanks to M. Vergne and H. Terao for their comments about [7], and to the referee for suggestions and remarks concerning the exposition.

References

- [1] BJÖRK, J. E., Rings of differential operators, North Holland Mathematics Library 21, Amsterdam (1979).
- [2] BRION, M., VERGNE, M., Arrangement of hyperplanes I. Rational functions and Jeffrey-Kirwan residue. Ann. Sceint. Éc. Norm. Sup. 32 (1999), 715–741.
- [3] COUTINHO, S. C., A Primer of Algebraic *D*-modules, London Math. Soc. Student Texts 33 (1995).
- [4] DOLD A., Lectures on Algebraic Topology, Classics in Mathematics, Springer-Verlag, Berlin (1980).
- [5] HORIUCHI, H., TERAO, H., The Poincaré series of the algebra of rational functions which are regular outside hyperplanes, J. Algebra 266 no. 1 (2003), 169–179.
- [6] GROTHENDIECK, A., On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103.
- [7] LEÓN TRUJILLO, F. J., PhD Thesis, University of Rome "La Sapienza" (2003).
- [8] ORLIK, P., SOLOMON, L., Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167–189.
- [9] ORLIK, P., TERAO, H., Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer-Verlag, Berlin (1992).
- [10] TERAO, H., Algebras generated by reciprocals of linear forms, J. Algebra 250 no. 2 (2002), 549–558.

Present Address: DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI ROMA "LA SAPIENZA", P.LE A. MORO, 5; 00185 ROMA, ITALY. *e-mail*: francisco.leon@uniroma1.it