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Abstract. Let (M", g) be a closed, connected, oriented, C°°, Riemannian, n-manifold with a transversely
oriented foliation F. We show that if {X, Y} are basic vector fields, the leaf component of [X, Y], V[X, Y], has
vanishing leaf divergence whenever k A xg isaclosed (possibly zero) de Rham cohomology (p + 1)-form. Herek is
the mean curvature one-form of thefoliation F and g isits characteristic form. In the codimension-2 case, k A xf is
closed if and only if « is horizontally closed. In certain restricted cases, we give necessary and sufficient conditions
for k A xg to be harmonic. As an application, we give a characterization of when certain closed 3-manifolds are
locally Riemannian products. We show that bundle-like foliations with totally umbilical leaves with leaf dimension
greater than or equal to two on a constant curvature manifold, with non-integrabl e transversal distribution, and with
Einstein-like transversal geometry are totally geodesic.

Introduction

Let (M, g) bean oriented, n-dimensional Riemannian manifold admitting atransversely
oriented foliation, F, of leaf dimension p and codimension ¢ so p + g = n. Generaly, we
will assume that both integers p and ¢ are positive. Let « denote the mean curvature one-form
associated with the foliation F and let g denote the characteristic form of the leaves of F.
Following Kamber and Tondeur, we consider the p + 1 form « A xg. Suppose X and Y are
local basic vector fields orthogonal to the leaves of F. If k A xg isaclosed form, then the |eaf
divergence of the leaf component of [ X, Y], divg V[X, Y], vanishesidentically.

In the special case of ¢ = 2, k A xp isclosed if and only if diveg V[X, Y] = 0 for any
local basic vector fields X and Y. This result, Theorem 1.2 below, is a genera result for a
foliation on an arbitrary Riemannian manifold. It illustrates once more the generd principle
that when a cohomology form arises, some pleasant geometric consequences often follow.

Now suppose that (M, ¢g) above is a closed manifold and that the foliation F is a Rie-
mannian foliation. Then a fundamental result of Dominguez asserts that there then exists a
metric ¢ on M so that the associated mean curvature one form « of F with respect to g isa
basic one-form. In this setting aresult of Kamber-Tondeur assertsthat « isa closed one-form.
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Supposenow g = 2. Thenitiseasy to seethat « A xg isaclosed form. Infact, we establishin
Theorem 1.4 that « A xr isco-closed if and only if divy T = O, where T isthe mean curvature
vector field dual to « and where the divergence is taken with respect to a basic orthonormal
frame orthogonal to F. The proof involves lengthy and not entirely routine calculations, using
three sets of arguments. The O’ Neill tensors 7 and A play acrucial role.

Applying Theorem 1.4 to a Riemannian flow on a closed 3-manifold, M2, we show
that with respect to a Dominguez metric, M3 decomposes as a local Riemannian product if
and only if Ric”(V, V) = 0, where V is the unit length vector field tangent to the flow,
and k A xf is harmonic (Corollary 1.5). The proof uses an important result of Ranjan as
developed in [T3]. Using computations from [ T3], we show additionally in Corollary 1.6 that
for a Riemannian flow on closed M" splits as a local Riemannian product with respect to
the Dominguez metric, if and only if Ric” (V, V) = 0 and divqy T = 0. Since the result of
Corollary 1.6 is general, the computation does not depend on Theorem 1.4.

Theorem 1.7 establishes a result similar to that of Theorem 1.4 in the less interesting
case g = 1, while Theorems 1.8, 1.9 and 1.11 wrap things up in the spirit of [T3].

In section 82 we obtain local properties for bundle-like foliations with totally umbilical
leaves on a constant curvature manifold. In Proposition 2.3 we obtain an equivalent condi-
tion for « to be horizontally closed for a bundle-like foliation with totally umbilical leaves.
Now we assume the n-dimensiona Riemannian manifold (M, ¢) has constant curvature c. In
Proposition 2.4 we show that « is a basic one-form. As a consequence of Theorems 1.4 and
1.7, weget that « A xg isharmonicif andonly if g(z, T) = — pgc provided that the transversal
distribution is integrable, the dimension of the leaves p is greater than one and the codimen-
sion g is either one or two. Assuming that the transversal distribution is non-integrable (at
any point), we obtain a sufficient condition for F to be totally geodesic. In an important pa-
per, Walschap showed that a bundle-like foliation with totally umbilical leaves and with leaf
dimension p > 1 onacomplete simply connected space of constant curvature ¢ > Qistotally
geodesic (see [Wa]). Using a different approach, Theorem 2.8 provides a similar result to
Theorem 3.1 in [Wa], under no global assumptions and under some additional local ones. A
remarkablefact isthat Propositions 2.3, 2.4, 2.5, Theorem 2.8 can be extended to the pseudo-
Riemannian case with definite induced metrics on leaves, and, additionally only for Theorem
2.8, with induced positive definite transversal metrics.

1. The(p+ 1 formx A xr

Throughout this paper all maps, functions and morphisms are assumed to be at least
of class C*°. On a closed connected oriented C*° Riemannian manifold (M", g), let F be
a transversely oriented foliation of leaf dimension p and codimensong = n — p. LetV
denote the distribution tangent to the foliation F, and H the distribution orthogonal to V in
T M determined by the metric g. If E isavector field on M, VE and HE will denote the
projections of E onto the distributions V and H respectively. Call the vector field E vertical
if VE = E. Cadl E horizontal if HE = E.
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In general a C* foliation of codimension-g on an rn-dimensional manifold M can be
defined isamaximal family of C*° submersions f, : Uy — f(Uy) C R? where {Uy }uca iS
an open cover of M and wherefor each o, 8 € A and each x € U, N Ug, there exists alocal
diffeomorphism qu;a of R? 0 fg = qu;ﬂ o fo in some neighborhood U, of x (see[L], 2,3).

A horizontal vector field Z defined on some open set U where U C U, is caled f,-
basic provided f,.Z is awell defined vector field on f, (U). As pointed out in [E1] (for
any metric g), if U C Ug, then Z isalso fg- basic, so one can speak of Z as alocal basic
vector field. We sometimes drop the word “local.” Let i(W) and 6(W) denote the interior
product and the Lie derivative with respect to avector field W. A differential form ¢ iscalled
basic provided i (W)¢ = 0 and 6(W)¢ = O for al vertical vector fields W ([T1], 118). We
follow the conventions of [AMR] for the formalism of differential forms and their exterior
derivatives.

D will denote the Levi-Civita connection on M and, following [EP], we introduce the
tensors T and A asfollows. For vector fields £ and F on M,

(. TeF =VDygHF + HDygVF, and

(1.2 ApF =VDygHF + HDygVF .

Then T and A aretensors of type (1, 2). These tensors satisfy the usual properties outlined in
[EP]. We notethat if X and Y are horizontal,

1.3 AxY # —AyX, ingenerd,

unlessthefoliation F is bundle — like with respect to the metric ¢ (see [JW], Lemma (1.2))
that is, if X is a basic vector field, Wg(X, X) = O for every vertica vector field W. If

{V1, V2, V3, --- V,} isalocal orthonormal frame tangent to the foliation, we define the mean
curvature one-form « asfollows:

p
(1.4) K(E) = g(E, Ty, Vi).
i=1

Call « horizontally closed if d k(Z1, Z2) = 0 for any horizontal vector fields Z1, Z». Using
the usual properties of the tensor 7', one sees easily that if X isbasic,

14
(15) K(X) =" g(X, Vil Vi) .

i=1
Following [T-1], page 6566, let xr denote the characteristic form for the foliation F. Then
with {V4, - - -, V,,} asabove and for vector fields {E1, - - -, E,} on M", we have:

This characteristic differential form (see [T3], page 37) is independent of the local orthonor-
mal frame {V1, - - - V,,}. If any one of the arguments E; is horizontal, then the left hand side
of (1.6) vanishes. Thisfact will be used repeatedly in the computations below.
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We say aF isaRiemannian foliation of leaf dimension p and codimension-¢, provided
that there is some Riemannian metric g on M" with respect to which F is bundle-like in the
sense above. If F isa Riemannian foliation on a compact manifold M", then a fundamental
result of Dominguez, [D], shows that there always existsametric g for which F is bundle-like
and for which the associated mean curvature one-form, «, is basic. We call this metric, a
Dominguez metric.

Part (a) of the following result is proven in the appendix of [EF].

LEMMA 1.1. (8 Let(M", g)beaconnected, oriented, C* Riemannian n-manifold
with a transversely oriented codimension-¢ foliation F, with ¢ > 2. Suppose X and Y are
basic vector fields. Then V[ X, Y] hasvanishing leaf divergenceif and only if « ishorizontally
closed.

(b) Let F be a transversely oriented Riemannian foliation on a closed, oriented Rie-
mannian manifold (M, g"). Then there exists a Dominguez metric ¢ on M so that if X and Y
are basic with respect to ¢, then dive V[ X, Y] = 0 and indeed divy, V[ X, Y] = 0.

PROOF. (a) This follows immediately from formula (3) of [EP] which can be ex-
pressed thisway:

(1.7) di (X, Y) = —dive V[X, Y],

wheretheright hand side denotesthe divergence of V[ X, Y] alongaleaf of F. A more succinct
proof of (1.7) appearsin [CE 1].

(b) Let g besuchametricfor M. Then F isbundle-like with respect to ¢ and the associated
mean curvature one form « is basic by Dominguez’s Theorem. Then « is closed by aresult of
Kamber-Tondeur [T3, p. 82], and so in particular, « is horizontally closed. Thus, by Lemma
1.1(a) and the appendix to [EF], dive V[X, Y] = divy V[X, Y] = 0.

The form « A xg arises in the important role in the work of Kamber and Tondeur on
foliations, especially Riemannian foliations ([T1], pages 121 and 152, [T3], page 82). It
turns out that when this form is closed, the following pleasant property obtains for arbitrary
foliations on Riemannian manifolds of codimension ¢ > 2 (actually ¢ > 1). The result
illustrates once more the tie between cohomology and geometry.

THEOREM 1.2. Let (M", g) be a closed, connected, oriented, C*>° Riemannian n-
manifold with a transversely oriented codimension-q foliation F. Suppose X and Y are basic
vector fields. Then V[X, Y] has vanishing leaf divergence (equivalently « is horizontally
closed) whenever « A xg isa closed (possibly zero) de Rham cohomology p + 1 form. Infact,
if the codimension of F, ¢ = 2, then « is horizontally closed if and only if « A xg is closed.
Finally, if H isalso integrable, then « A xf isalways closed.

PROOF. Note, if ¢ = 1, k A xg isan n-form and hence closed. If X and Y are basic
vector fields, then in the codimension-onecase, X = fZ and Y = hZ where f and h are
functions defined on an appropriate open set and Z is a unit length horizontal vector field on
that set. Then, V[X, Y] = 0 and the theorem always holdsin this trivial case.
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To establish thisfor ¢ > 2, we will usethelocal frame, {V1, Vo, V3, --- V,, X, Y} where
X and Y are basic and span a subspace of H at each x € U where X, and Y, are defined.
Note, we make no requirementsthat X and Y form a basic orthonormal frame for a subspace
of H, since we do not yet assume the metric g on M is bundle-like. A fundamental result of
Rummler [Ru], yields:

(18) dxe(Vi, -+, Vp, X) = (D7 e O xr(Va, -+, V)
At thispoint it is worth pointing out that for any (p + 2)-form y,
y(V1, Vo, V3, Vp, X, Y) = y(X,Y, V1, Vo, V3, --- V).
Using the formulasin [AMR] page 394 and the remarks above, we have,
(1.9 dik AN xp)(Ve, -, Vp, X, Y) = (d A xp)(V, -+, Vp, X, Y)
—wANdxp)(V1, -+, Vp, X, Y)
=(de Nxp)(X, Y, V1, -+, V)p)
— (ke ANdxp)(V1, -+, Vp, X, Y),
which becomes,
(1.10) =di(X, V)xr(V1, -+, Vp) = (=DPk(X)dxe(V1, -+, Vp, Y)
—(=DP e M)dxr(Ve, -+, Vp, X)
= dic(X, V) xr(Ve, -+, Vp) + (D7 e (Odxr(Va, -+, V), ¥)
HEDP PR xE(Va, -, Vp, X
which then becomes by (1.8),

(111)  de(X. V)xe(Ve, . V) + (D" e (X (=D P e (V) (Ve -, V)
H(=DP P2 (V) (=D (X xp(Ve, -+, V)

which becomes,

(1.12) de(X,Y),

since xg(Va, - -+, Vp) = 1. Thus,
(1.13) d@c A xp)(Va, -+, Vp, X, Y) =di(X,Y).

Hence, if « A xp isaclosed (p + 1)-form, then in particular, the left hand side of (1.13)
vanishes, so « ishorizontally closed and theresult followsby Lemmal.1. Inthe codimension-
2case, k A xg isclosed if and only if the left hand side of (1.13) vanishes.

That « A xr isclosed when H isintegrable follows from the above computations together
with the observation d(« A xp)(E1, E2, - - -, Ep42) vanishes identically if three or more of
the E; are basic. We omit the details.
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We offer the following improvement of aresult that appeared in [E2]. It should be noted
that in Theorem 1.3 below we do not require that the flow F is Riemannian in the sense above.

THEOREM 1.3. Let (M3, g) be a closed, connected, oriented C*° Riemannian man-
ifold of dimension 3 with a transversely oriented flow F. Suppose the following conditions
obtain.

(@ F admitsa basic transverse volume form .

(b) « A xrisaclosed 2-form.

(c) Let X and Y denote local basic vector fields so that (X, Y) = 1. Assume the
globally defined vector field, V[ X, Y] satisfies the following:

[Z,VIX, Y]]l = fzVIX, Y]

for any basic vector field Z and for some function f; depending on Z.

Then either:

i) V[X, Y] vanishesidentically on M, so H isintegrable and the leaves of H are mini-
mal surfacesin M, or,

i)  V[X, Y] never vanishesand so H is always a contact structure.

PrROOF. Condition (b) replaces the condition in [E2] that « is horizontally closed.
These are equivalent, sincewhenn = 3, p = 1 and so ¢ = 2. In this case the last part
of Theorem 1.2, (in particular (1.13)), applies so « is horizontally closed if and only if « A xg
is closed. Then the argument given in [E2] carries over and H is afoliation of M by minimal
surfaces, whenever V[ X, Y] vanishes at one point. The only other possibility isthat V[ X, Y]
never vanishes, and in this case, H is acontact structure.

Now assume that F is a Riemannian foliation of leaf dimension p and codimension ¢ =
2. Although far more restrictive, this assumption alows us to give a definitive answer to
the question: when is « A xg co-closed? To address this problem, we need the following
preparation. Because F is bundle-like with respect to ¢, the local submersions defining F are
Riemannian submersionsin the sense of [O’'N] (see[T1], [T2], [E] and [EF]), and so we can
choose alocal orthonormal frame. {X1, Xo, V1, Vo, - -+, V,,} s0 X1, X, arebasic vector fields,
andso {V1, Vo, - -+, V,,} isalocal orthonormal framefor V. Indeed, at afixed x € M, we can
choose X1, Xo S0 (HDx,; X j)x = 0for1 < i, j < 2. Because, F is bundle-like with respect
tog, Ax;X; =0,forl <i <2 Let{Vy, Vp,---, V,} bealocal orthonormal framefor V. At
agiven x € M, we can choose this frame so that (V Dy, V;), = 0. Note, for any vector field
E, Eg(V;, Vi) = 29(DgV;, Vi) = 0and 0 = Eg(V;, Vj) = g(DgV;, Vj) + g(Vi, DEV)).
We will exploit these well known facts extensively in the computations below. When the
orthonormal frame {X1, X2, V1, Vo, ---, V,,} enjoys these additional properties at x € M,
we'll call the frame a preferred orthonormal frame at x.

Sett = Zf’zl H Dy, V;. (Wefollow the conventionsin foliations and suppress the usual
constant.) Note, when ¢ is a Dominguez metric for F, t is basic, because it is dua to the
one-form « with respect to ¢ by (1.4). Set divy t = g(X1, Dx,7) + g(X2, Dx,7). Then, it
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iswell known ([P], page 151) that § (« A xp) = — div(k A xr). We have the following result.
Note, the operator § below ison M itself.

THEOREM 1.4. Let M" beaclosed, oriented, C°°, Riemannian manifold with a trans-
versely oriented codimension-2 Riemannian foliation F. Let g be a Dominguez metric (with
respect to which F is bundle-like and « is basic). Then, k A xr isclosed. Infact, k A xg is
harmonic if and only if divy = O, where t isthe mean curvature vector field dual to «.

PrROOF. Toshow k A xr isclosed, it sufficesto observe that in the case under consider-
ation, d(k A xg) isaclosed n-form. Evaluating, d(x A xg) on apreferred orthonormal frame
(X1, X2, V1, Vo, -+, V,,}, we see that (1.13) becomes

(1.19) d(k N xp)(V1, -+, V), X1, X2) = di (X1, X2) .

But, since « is basic, it is closed by a fundamental result of Kamber-Tondeur for bundle-
like foliations with « basic (see [T3], page 82). This means that the left hand side of (1.14)
vanishes and so ¥ A xf is closed, as claimed.

We now will show that under the stated hypotheses, ¥ A xg is co-closed on M. To
do this we will use exclusively the preferred orthonorma frame above. The result fol-
lows from lengthy computations of §(x A xg) on three sets of arguments. (Vy, Vo, ---, V),
(X1, Vq, -+, Vj, -+, Vp) and (X1, X2, V1---, V,_2). It should be mentioned (that up to
sign) it sufficesto use X1 in the second set of arguments.

In the first evaluation, the reader should keep in mind the following principles:
g(VDx,V;, Vi) = 0, mentioned before. Secondly, terms with repeated vertical vector fields
vanish, thirdly, the sum

Sk AXE)(Dy, Vi, V1, Vo, - -+, V) and theterms (e A xg) (Va, Dy, Vi, Vo, -+, V),
(k A xF)(V2, V1, Dy, V2, -, Vp), -+, (k A xF)(Vp, V1, -+, Dy, Vp) sum to zero. Also,
(k A xF) vanishesidentically on (Eq, E, E3, - - -, Ep41) if two or more of the arguments are
horizontal vector fields. Finally, xe(E1, - - -, Ep) will vanishidentically evenif al the E; are
vertica but linearly dependent. I1n the expansion below, we have rearranged some of the terms
in the expansion, but they are all there. We carry out each of these computationsat x € M
above.

(115) S(K A XF)(Vls V21 Y Vp)
2

p
==Y Dy e A X Vi, Vi, Vo, -, V) = > (Dx, (c A x0)(Xa, V1, V2, -+, V)
i=1 a=1

P P

== Vilk AxR)(Vi, Vi, Voo V) + D (ke A XDV, Vi, Vi Vo, - V)
i=1 i=1
P P

+ Y (e A XP)Vi, Dy Vi, Vo, -+, V) + ) (< A XE)(Vi, Vi, Dy, Va, -+, V)
i=1 i=1
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p
+...+Z(K/\XF)(Vi,Vlw'wDVpr)

i=1
2 2
=) Xalkc A xP)(Xas V1, Vo, -+, V) + ) (k A xP)(Dx, Xa, Vi, Vo, -+, V)
a=1 a=1
2 2
+ 3 "k A xE)(Xar Dx, Vi, Vo, . V) + D (k A xF)(Xa, Vi, Dx, Vo, -+ V)
a=1 a=1
2
+o Y (A XE)(Xa Vi, Vo, oo, Dx, V) .
a=1

Now (HDyx,X;)x = 0, and VDy,X; = 0 where defined, since the metric ¢ is assumed
bundle-like. Since « annihilates vertical vector fields, xg annihilates horizontal fields, the
above becomes,

(1.16) =—X1x(X1) — Xok(X2) = —X19(X1, 1) — X29(X2, 1)
=—g(X1. Dx,7) — g(X2, Dx,7) = —divyt.

In the next expansion, note that X1 is basic and that V; meansthat V; is omitted. We can
use X1 as our basic vector field essentially without loss of generality.

(1.17) S(k A XE)(X1, V1, Va, -+, Vi, -, V)

A

2
== (Dx,(k A xE)(Xar X1, V1, Vo, oo+ Vjoooo V)

a=1
P A
- Z (DV,(K/\XF))(‘/MX]J Vls Vls VZ,"',Vj,"',Vp)
i=Litj

—(Dy,; (k A ) (Vi, X1, Vi, Vo, oo Voo V).

Expanding (1.17), we have the following expression.

2
(1.18) - Zxa(K AXF)Xa, X1, Vi, Vo, -+, Vi oo, V)
a=1
2
+ > (A XF)(Dx, Xa, X1, V1, Vo, oo+, Vi oo V)
a=1
2

+Z(K A XF)(Xa, Dx, X1, Vi, Vo, -+, Vi, V)

a=1
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2
+ ) (A XP)(Xa. X1, Dx, Vi, Vo, -+ Vi V) o

a=1

2
+Z(K/\XF)(XLI7X17V17V255‘7]77DXan)
a=1

p A
— > Vilk AxE)(Vis X1, V1, Vo, oo Vi oo V)
i=1i#j

p A
+ D) (kA XDV Vi, X1,V Vo, oo Vi V)
i=1i#j

p
+ Y (A xE)(Vi, Dy X1, V1, Va, -+,
i=1,i#j

<>

i V)

\< >
<

P
+ Y (kA XP)(Vi. X1, Dy, Vi, Vo,
i=Lizj
P
+ Z (K/\XF)(‘/lvxlv VlvDV,‘V21”'1
i=Litj

\< >
D

p
ot D AXE) (Vi X1, V1L Vo, oo Vi Dy V)
i=1li#j

=Vilk A xp)(Vj, X1, V1, Vo, -+, ‘7; e, V)

+(k A XDy, Vi, X1, V1, Va, -+, Vi, oo V)
+(k A XE)(Vj, Dy, X1, Vi, Vo, o Vi oo V)
+(k A XE)(Vj, X1, Dy, Vi, Vo, o Vi V)
+(k A ) (Vi X1, V1, Dy, Va, -+, Vi, -+, V)

+oo (A XE) (Vi X1, V1, Vo, o, Voo Dy, V)

Most of the termsin (1.18) vanish for one of the following reasons: two of the arguments are
horizontal; two repeated arguments. Note, at X, Dy, Vi ispurely horizontal. The only non-zero
summandsin (1.18) are:

A~

(K A XF)(X27 DXZXls Vls V21 ) V]s ) Vp)
_V](K A XF)(Vjs le Vls V21 ) ‘7]1 ) Vp)
+(k A XP)(Vj, Dy, X1, V1, Vo, -+, Vi, -+, V).
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Since HDy; X1 = Ax,V;, this becomes:

(1.19) K(X2)XE(Ax, X1, Vi, Vo, -, Vi, -+, V)

+Vi(kc A XE)(X1, Vi, Vi, Va, -, Vi, oo, V)

— (K A XENAx, Vi, Vi Vi, Vo, oo, Vi oo V).
Recall, g(Ax, X1, V;))V; = g(X2, Ax,V;)V;. Now t is basic, because « is basic and g is
bundle-like. Hence t = a1X1 + a2X>. Then (1.19) becomes.
(1.20) K (X2)g(Ax, Vi X2 xe(Vj, Vi, Vo, oo Vi V)

Vi (X)) x(V1, Vo, -+, Vi, -, V))

—k(Ax, VO xE(Vi, Vi, Vo, -+, Vi, -2 V)
which becomes
(121)  a2g(Ax,Vj, X2)xr(V;, Vi, Vo, -+, Vi, oo+, V)

+dic(Vj, X1) — azg(Ax, Vi, X2)xe(Vj, Vi, Vo, -+, Vj, -, V) =0,

because « is closed for the Dominguez metric.

Our final computation will involve evaluating (x A xg) on (X1, X2, V1, -+, Vp_2).
Again, we can make this evaluation on our two basic fields and excluding V,_1 and V), as
arguments, essentially without loss of generality.

(1.22) Sk A xF) (X1, X2, V1, Vo, -+, Vp_2)
2
= - Z(DX,- (e A X (Xi, X1, X2, V1, -+, Vp2)
i=1
p
- Z(D\/,-((K A X)) (Vi, X1, X2, V1, V2, -+, Vp_2).
i=1

This expands to:

2
(1'23) - Z Xa (K A XF)(X(17 Xl7 X27 V17 ) Vp—Z)

a=1

2
+Y (kA XP)(Dx, Xa. X1, X2, V1, -+, V)p_2)
a=1
2
+Y (kA XP)(Xa, Dx, X1, X2, V1, -+, V)p_2)
a=1
2
+ Dk A xP)(Xa X1, Dx, X2, Vi, -+, Vp2)

a=1
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2
+ > (A XF)(Xar X1, X2, Dy, Vi, -+, Vp2)

a=1

2
+ .-+ Z(K A XF)(Xa, X17 X27 V17 ) DXa VP—Z)

a=1
p—2
=) Vil A xP)(Vi, X1, X2, V1, -+, Vpo2)
i=1
p—2
+ D (e AxE)(Dy, Vi, X1, X2, Vi, -+ Vp-2)
i=1
p—2
+ ) (¢ A xE)(Vi, Dy, X1, X2, V1, -+, V)p_2)
i=1
p—2
+ D (e Axe)(Vi, X1, Dy X2, Vi, -+ Vp-2)
i=1
p—2
+ D A X (Vi X1, X2, Dy Vi, -+, Vp2)
i=1
p—2
+ot Z(K A xF)(Vi, X1, X2, V1, -+, Dy, Vp-2)
i=1

—Vp—1(e A xp)(Vp—1, X1, X2, V1, V2, -+, V)_2)
+ A xF)(Dy, 1 Vp-1, X1, X2, V1, V2, .-+, Vp_2)
+( A xF)(Vp—1, Dy, 1 X1, X2, V1, V2, -+, Vp_2)
+( A xF)(Vp—1, X1, Dy, 1 X2, V1, V2, -+, Vp_2)
+( A xF)(Vp-1, X1, X2, Dy, ,V1, V2, .-+, Vp_2)
+- 4 (A xP)(Vp-1, X1, X2, V1, V2, -+, Dy, ,Vp—2)
Vo A xE)(Vp, X1, X2, V1, V2, -+, Vp_2)

+& A xp)(Dv,Vp, X1, X2, V1, V2, -+, Vp_2)

+& A xp)(Vp, Dy, X1, X2, V1, V2, -+, Vp_2)

+ A xp)(Vp, X1, Dy, X2, V1, V2, -+, Vp_2)

+ A xp)(Vp, X1, X2, Dy, V1, V2, -+, Vp_2)
+-+ (kA xE)(Vp, X1, X2, V1, V2, -+, Dy, V)—2).

All terms above with two horizontal vector field arguments vanish. Termsin

257
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Zf;lz(x A xe)(Vi, Dy, X1, X2, V1, - - -, V) vanish individually because the arguments V;
repeat when1 < i < p — 2. Accordingly, the only non-zero terms are:

(1.24) (k A xF)(Vp—1, Dy, 1 X1, X2, V1, V2, -+, Vp_2)
+(k A xF)(Vp—1, X1, Dy, 1 X2, V1, V2, .-+, V)_2)
+& A xp)(Vp, Dy, X1, X2, V1, Vo, -+, V)_2)
+(k A xF)(Vp, X1, Dy, X2, V1, V2, -+, V)2).

Only the vertical components of Dy, X ; matter in the above calculations because when
K A xp isevaluated on p + 1 arguments with two or more horizontal the result is zero. Recall,
VDy,; X; = Ty, X;. Hence, we have,

(1.25) (k A xXF)(Vp—1, Tv,_ X1, X2, V1, V2, -+, V)_2)
+k A xP)(Vp-1, X1, Tv, 1 X2, V1, V2,---, V)2)
+ A xp)(Vp, Ty, X1, X2, V1, V2, -+, Vp_2)
+w A xp)(Vp, X1, Tv, X2, V1, V2, -+, Vp_2).

A routine argument using the properties of the tensor 7' introduced in the beginning
showsthat g(Tv, , X, Vp) = g(Tv, X, Vp—1), where j = 1or j = 2. Thismeansif the V,,
-component of Tv, ;X1 is a, then the V;,_1-component of 7y, X1 isaso a. Likewise, if ¢ is
the V,-component of Tv, , X2, then c is also the V,,_;-component of Tv,X2. Hence, (1.25)
becomes:

(1.26) (k N xp)(Vp_1,aVp, X2, V1, Vo, -+, V) 2)
+K A xF)(Vpo1, X1, ¢V, V1, Vo, -+, Vp_2)
+e A XF)(Vp,aVp-1, X2, V1, Vo, -+, V)_2)
+K A xp)(Vp, X1,¢Vp_1, V1, Vo, -+, V,_2) =0.

The proof of Theorem 1.4 is now complete, provided we observe that in the very special
case that F isaflow on M3, the third computation is superfluous.

As an application of Theorem 1.4 we establish the following result which also uses a
result of Ranjan (see [Ra]). We will follow the exposition of Ranjan’s Theorem as given in
[T3], pages 76 and 77 (see also the Corollary on the top of page 89 in [Ra]). Essentially, our
result saysgives necessary and sufficient conditionsfor aclosed 3-manifold with aDominguez
metric to admit a non-trivial local de-Rham decomposition. Ric™ (E, E) denotes the Ricci
tensor with respect to the Levi-Civita connection on M evaluated on a vector field E.

COROLLARY 1.5. Let M3 bea closed, oriented, C°°, 3-manifold, with a transversely
oriented Riemannian flow, F. Suppose g is a Dominguez metric for the flow , F, and let V be
a unit length vector field tangent to this flow.
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If RicM (v, V) = 0on M3 and k A xg is harmonic, then H is integrable, F is totally
geodesic, k A xg = 0, and locally M2 isisometric to a product of the plagques of the leaves of
HandF.

Conversely, if H isintegrable and F is totally geodesic, then on M3, Ric¥ (V, V) = 0
andk A xg = 0. Inparticular, € A xg isharmonic.

PRoOOF. Inthe proof wewill let {X3, ---, X,} denote alocal basic orthonormal frame
for H, with ¢ = 2. We use this seemingly cumbersome notation because the same work will
yield another somewhat more general result essentially at no extra cost. First note, k A xg
is closed because of Theorem 1.4 and the theorem of Kamber-Tondeur ([ T3] page 82) which
applies in the case of a Dominguez metric. Note all the calculations are independent of the
local orthonormal frame for H. The idea is to exploit equations 6.22 and 6.21 of [T3] in
that order. Equation 6.22 of [T3] yields RicM (V, V) = divyy v + Z?zlg(Ax, V,Ax, V).
If Ric” (V, V) = 0 on M3, then integration yields [,, >"7_, g(Ax, V. Ax,V) = 0, s0 each
Ax,V =0s0A =0. Since AxY = (1/2)V[X, Y], we see H isintegrable. Since AxY =
VDyxY, H istotaly geodesic.

Using the fact that for our flow VDxV = 0 for any basic X, equation 6.21 of
[T3] yidlds Ric (V, V) = divat — 37 g(TvXi, Tv X)) + X1 9(Ax,V, Ax, V). Now
RicM(V, V) =0and A = 0and, when « A xg isharmonic, divy T = 0, when g = 2. Hence,
>7  9(TvX;, TvX;) = 0. Thismeans T = 0 or F is totally geodesic and so locally M3
isisometric to a product of the plaques of the foliations H and F. The proof of the converse
follows by observing that under the stated hypotheses, our version of 6.22 of [T3] yields that
RicM(V, V) = 0. Then our version of 6.21 of [T3] yields divqy t = 0 which wheng = 2
means, k A g isharmonic. If T =0,t =0andsok A xp = 0.

The second result using the proof above works for a Riemannian flow of arbitrary codi-
mension on aclosed, connected manifold.

COROLLARY 1.6. Let M beaclosed, oriented, C*°, n-manifold, with a transversely
oriented Riemannian flow, F. Suppose ¢ isa Dominguez metric for the flow , F, and let V be
a unit length vector field tangent to this flow.

If RicM(V, V) = 0on M and divy T = O, then H is integrable, F is totally geodesic,
7 = 0, and locally M isisometric to a product of the plaques of the leaves of H and F.

Conversely, if H isintegrable and F istotally geodesic, thenon M, RicM (V, V) = 0 and
divy r = 0. In particular, T = 0.

ProoF. Asnoted, the result follows from the proof of 1.5 with minor modifications.

Now suppose M" is a closed, connected, oriented, Riemannian manifold admitting a
codimension-one Riemannian foliation F. Let ¢ be a Dominguez metric for F. Then t =
Z::ll ‘HDy,V;. (As above, we follow the conventions in foliations and suppress the usual
constant.) And divy t = ¢(X, Dxt), where X isaunit length basic vector field. We have the
following result.



260 GABRIEL BADITOIU, RICHARD H. ESCOBALES, JR. AND STERE IANUS

REMARK. For agenera codimension-one, transversely oriented foliation on a closed,
oriented, Riemannian manifold, Kamber and Tondeur have shown that the leaves of the fo-
liation are minimal submanifolds with respect to the given metric if and only if dxg = 0 as
shown in Theorem 7.35 of [T1], page 92. But for foliations of codimension one, it isalso the
case (see [T1], page 80) that d xp = —« A xr. Hence, the leaves of the foliation are minimal
in this setting if and only if « A xg = 0O, or equivalently in this setting, « A xF isaharmonic
n-form, by the Hodge Theorem. The next result gives asufficient explicit condition for « A xg
to be harmonic in the very special case that the codimension-one foliation is bundle-like with
respect to a Dominguez metric. We include it because the key condition is essentialy the
same as that for the codimension ¢ = 2 casein Theorem 1.4,

THEOREM 1.7. Let M" be a closed, connected, C°°, oriented Riemannian manifold
admitting a transversely oriented, codimension-one, Riemannian foliation F. Let g be a
Dominguez metric for the foliation F (with respect to which F is bundle-like and « is ba-
sic). Then k A xr is harmonic (and hence by the above remark identically O in this case) if
and only if divy T = 0, where t isthe mean curvature one-formdual to «.

PROOF. « A xg isan n-form and hence is closed. Because the chosen metric, ¢, isa
Dominguez metric, the mean curvature one-form « is basic. Just as before, it is closed by the
Kamber-Tondeur Theorem. We will show under the stated hypotheses, §(k A xg) = 0. We
choose a preferred orthonormal frame at x € M. That is, we choosed { X, V1, Vo, - -+, V,,_1},
S0 X isbasic, with (HDxX), = 0and so (VDy,V;), = 0, where {Vy, Vo, ---, V,_1} isan
orthonormal framefor V. Thenat x € M, we have,

(1.27) S A xp)(Va, Vo, -+, V1)
n—1

= —(Dx(k A XED(X, V1, Vo, -+, Var1) = Y (Dy,(k A eV}, Vi, Vo, -+, Vyo1)
j=1

=Xk AN Yp)(X, V1, Vo, -, V1) + (k A xp)(Dx X, V1, Vo, -+, Vy_1)
+ A X)X, Dx V1, Vo, -+, Vi) + -+ (k A xp)(X, Vi, Vo, -+ -, Dx V—1)

n—1 n—1
=D Vil Axe) (Vi Vi Vo, Ve + )k A XE)(Dy, Vi, Vi, Va, oo, Vi)
j=1 j=1

+ A xp)(V1, Dy, Va, Vo, -+, V1) + (6 A xp)(Va, Vi, DyaVa, -+, Vi—1)

+o (A xRV, Vi, Vo, -+, Dy, V1) + (k A xp)(V2, Dyv2Vi, Va, -+, Vi—1)
+( A xp)(V2, V1, Dy2Va, -+, Vp_1)

+o+ WA xp)(V2, V1, Vo2, -+, Dy, V1)

+-+ (k A XF)(Va—1, Dy,_, V1, V2, -+, V1)

+-+ WA XF)(Va—1, V1, V2,---, Dy, V1) .
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Just as in the proof of Theorem 1.4, the expressions Z’;;}(K A xF)(Dy; Vj, V1,
Vo, o, Vue), (KA XE)(VL, Dy Ve, Vo, -+, Viem1), (K AxE) (V2, Vi, DyaVo, -+, V1), -+ -,
and, (k A xg)(Vu—1, V1, V2, ---, Dy,_, Vo—1) Sum to zero. Except for the first term, the re-
maining terms in (1.27) vanish because of repeated arguments, the fact that Dx V; has no
non-zero V; component and so these expressions are evaluated with two purely horizontal
arguments and hence vanish as well.

Then (1.27) becomes,

(1.28) —X(k A XE)(X, Vi, Va, -+, Vu_1) = —Xk(X) = —divy T,

which must vanish identically if ¥ A xg is co-closed. Our theorem will be proven if we can
show §(k A xp)(X, V1, Vo, - - -, Vi, -+, Vo_1) = 0. Essentially without loss of generdity, we
will show 8 (k A xg)(X, V1, Vo, - - -, V,,—2) = 0, since by renumbering the vertical vectors, up

to sign, the computation will always evaluate to zero.

(1.29) 8(k A xF)(X, V1, V2, -+, Vy2)
n—2
=—(Dx(ec A xp))(X, X, V1, Vo, -+, Vy_2) — Z(Dv,- (c AXEN(Vj, X, V1, Vo, -, Vy2)
j=1
—(Dy,_y (kK A xE) (Va—1, X, V1, V2, -+, Vy_2)
==X AN X)X, X, V1, Vo, .-+, Vy2) + (k A xp)(Dx X, X, V1, Vo, -+, Vyi_2)
+e A X)X, Dx X, Vi, Vo, -+, Vi) + (k A xE)(X, X, Dx V1, V2, -+, Va—2)
+ooo+ (kA XX, X, V1, Vo, o0, Dx Vy—2)

n—2 n—2
=Y Vilk AxE) (Vi X Ve Vo Vi) + Y (ke A XE)(D, Vi X, Ve Vo, Vo)
j=1 j=1
n—2
+Z(K A XF)(V]7 Dles Vlv ) V]s Y ‘/1172)
j=1
n—2 n—2
ot Y Ok AXE Vi X Dy Vi, Vi)
j=1i=1

—Vau—1(c A Xp)(Vi—1, X, V1, - -+, Viy_2) + (K A xp)(Dv,,_1 V-1, X, V1, -+, Vi—2)
+ AN xp)(Vy—1, Dy, X, V1,---, V;_2)

+ A xp)(Vu—1, X, Dy, V1, -+, Vy_2)

+-o+ kAP (Vi-1, X, V1, -+, Dy,_, Vy-2) .

Then (1.29) becomes,

(1.30) —Vioa(k A xp) (V1. X, V1, -+, Vi2) = £V (X) = £di (Vy-1, X) =0,
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because « isabasicformwhen g isaDominguez metric. Thiscompletesthe proof of Theorem
1.7.

Following [ T3], page 99, we define the following connection, D. For vector fields E and
FonM,weset:

(1.31) DgF = VDEVF + HDgHF,

where D is the Levi-Civita connection on M. Again following [T3] (page 102) or
[Mi-Ri-To], let @ be a basic r-form. Let {Eo,---, E,} be vector fields on M. Let
{Vi,---, Vp, X1, -+, X4} be an orthonormal frame for a bundle-like foliation of leaf dimen-
sion p and codimension ¢. Set,

(1.32)  bw(Ez,---,E)

p p
==Y Vi@(V), Ez,--,E)+ Y Dy, Vj, Ez, -+, Ey)
Jj=1 j=1

q

p r
+Y > oV, Ez, -, Dy,Ei, oo Ep) = Y Xp(@(Xx, E2, -+, Er))

j=1li=2 k=1
q B q r B

+Y oDx X, Bz, E)+ ) Y o(Xp, Ez, -+, DxyEi -+, Ey).
k=1 k=1i=2

Then by [T3], page 102, if w isabasic r-form, w isabasic (r — 1)-form. In particular,
if Fisatransversely oriented, Riemannian foliation on a closed, oriented Riemannian man-
ifold (M, g), where g is a Dominguez metric for F, a straightforward calculation yields the
following:

(1.33) Sk =—divy 7.

We have the following theorem which combines Theorems 1.4 and 1.7.

THEOREM 1.8. Let (M", g) bea closed, oriented, C*°, Riemannian manifold, with a
transversely oriented, codimension-g, Riemannian foliation F, withg = 1 or ¢ = 2. Suppose
g isa Dominguez metric for F. Then k A xg is harmonic on M if and only if §x = 0. Under
the stated hypotheseswheng = 1, k A xg = 0.

PrROOF. The proof follows immediately from Theorems 1.4 and 1.7 and the above re-
marks.

It might be useful to rephrase Theorem 1.8 in the following way. It should be noted
however, that thanks to the fundamental result of Dominguez, we always know there exists a
bundle-like metric ¢ for F so « isbasic, so in asense the reformulation is redundant.
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THEOREM 1.9. Let (M", g) bea closed, oriented, C*°, Riemannian manifold, with a
transversely oriented, codimension-g, foliation F, withg = 1 or ¢ = 2. Suppose F is bundle-
like with respect to ¢g. Then k A xg is harmonic on M if and only if « is basic and 5k = O.
Under the stated hypotheseswheng = 1, « A xg = 0.

PROOF. «k A xpisawaysclosedif ¢ = 1. If ¢ = 2, thenk A xg isclosed if and only
if « ishorizontally closed by (1.14). But if « isbasic, « is closed by the already mentioned

result of Kamber-Tondeur. 8(x A xg) = 0iff 5k = —divy t = 0.

REMARK. A straightforward calculation shows 6k = «(t) — divy 7. If additionally,
8k = 0, then « would be closed and co-closed and hence harmonic on M itself, a situation
not necessary to our work here. If weset A = d§ + 8d asin [T3], page 102, then dx = 0 and
Sk = 0implies Ak = 0. However, A is not self-adjoint.

Now let M" be any closed, oriented Riemannian manifold admitting a transversely ori-

ented foliation F of leaf dimension p and codimension ¢. Let t be the mean curvature vector
field of thefoliation F.

Then,
n—p p
(1.34) diviyr =Y g(Dx,T, Xa) + Y g(Dy,T, Vi) .
a=1 i=1

Using the standard properties of the tensor 7', this becomes

(1.35) divyy T+ g(r, 1) =divy 7.

Integrating we get,
(1.36) / g(r,7)dV = / divy tdV .
M M

We have the following lemma, which applies to an arbitrary transversely oriented folia-
tion on a closed oriented Riemannian manifold M", not just Riemannian foliations.

LEMMA 1.10. Let F be any transversely oriented foliation of leaf dimension p on a
closed, oriented, Riemannian manifold M".

(1) If [,,divy tdV =0, then t = 0 and theleaves of F are minimal.
(2) Conversely, if r = 0onsuchan M”", thendivy 7 = 00 f,, divy tdV = 0.

THEOREM 1.11. Let M" be a closed, oriented Riemannian manifold admitting a
transversely oriented Riemannian foliation F of codimension qwithg = 1 or 2. Thenx A xgis
harmonic with respect to a Dominguez metric for F if and only if the mean curvature one-form
x = 0 and so the leaves of F are minimal submanifolds of M".

PrROOF. For g = 2 or 1, Theorems 1.4 and 1.7 respectively guarantee k A g is har-
monic if and only if divy T = 0. The result now follows directly from Lemma 1.10.
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2. Bundle-like foliations with totally umbilical leaves

We begin by recalling some basic local properties of Riemannian submersions and of
bundle-like foliations. The convention for the Riemannian tensor on a Riemannian manifold
(M, g)is.

R(E, F)G = DgDrG — DpDgG — Dig. ;G and R(E, F,G,G') = —g(R(E, F)G,G).

If F isa p-dimensional leaf of foliation F then Ty V is the second fundamental form of
the leaf and the mean curvature vector field t is given by:

p
T=) TV,
i=1

where {V;}1<,<, isaloca orthonormal frame of vector fields tangent to leaves.

A p-dimensional submanifold F of a Riemannian manifold (M, g) is said to be totally
umbilical if the second fundamenta form T isgiven by, T (U, V) = (1/p)g(U, V)t for any
vectors U, V tangent to F.

The following equations, usualy called O’ Neill’s equations, characterize the geometry
of abundle-likefoliation F on (M, g) (see[T3] page 51, or the known results for Riemannian
submersion [O’N, Gr]).

PrROPOSITION 2.1. For every vertical vector fields U, V, W, W’ and for every hori-
zontal vector fields X, Y, Z, Z’, we have the following formulas:

i) RWU,V,W, W)= IQ(U, V., W, W) — g(TuyW, TyW’') + g(Ty W, Ty W),
i) RWU,V,W,X)=g((DvT)yW,X)—g((DuT)yW, X),
i) R(X,U,Y,V)=g((DxT)uV,Y)—g(TuX,TvY) + g(DyA)xY, V)
+ g(AxU, AyV),
iv) R(X,Y,Z,U)=qg(DzA)xY,U)+ g(AxY, Ty Z) — g(AyZ, Ty X)
—g9(AzX, TyY),
V) R(X,Y,Z,ZY=R*(X,Y,Z,Z")—29(AxY,AzZ')+ g(AyZ, AxZ')
—9(AxZ,AyZ"),
where we denote by R, R and R* the Riemannian tensors for the connections D of M, D of
F, and D* on the transversal distribution H, respectively.

Using O’ Neill’s equations, we get the following lemma.

LEMMA 2.2. If F is a bundlie-like foliation on (M, ¢g) with totally umbilical leaves
then:

a RWU.V.U,V)=R(U.V,UV)+I[gU,V)*=gU, U)g(V, V)]g(%, %);
b) R(X,U,X,U)=gU, U)[g(Dx%, X) —g(X, %)2] +9(AxU, AxU);

0 R(X,Y,X,Y)=R"(X,Y,X.,Y)—3g(AxY, AxY).
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PrROPOSITION 2.3. Let (M, g) bea Riemannian manifold with a bundle-like foliation
F. We assume that F hastotally umbilical leavesand X, Y are basic vector fields. Then AxY
isaKilling vector field along leavesif and only if ¢(Dxzt, Y) = g(Dyt, X).
PROOF. Using Proposition 2.1 from [EP] we have:
(2. g(Dy(AxY),V)+ g(Dyv(AxY),U) = gWU, V)dk(X,Y).
On the other hand,

di(X,Y)=Xg(tr,Y) — g(r, DxY) = Yg(z, X) + g(z, Dy X)
=g(Dxt,Y)— g(Dyt, X).

REMARK. (i) The affirmation of Proposition 2.3 holdsif r isparallel in the transver-
sal distribution along leaves.

(il) « ishorizontally closed if and only if g(Dxt, Y) = g(Dyt, X) for any horizontal
vector fields X, Y.

In the next proposition we establish under some certain conditions that « is abasic one-
form.

PrROPOSITION 2.4. Let (M, g) be a Riemannian manifold with constant curvature. If
F is a bund -like foliation with totally umbilical leaves and the dimension of the leaves is
p > 2then:
a) rtisparalel inthetransversal distribution along leaves. (i.e H Dyt = 0 for any vertical
vector field V).
b) 7 isbasic, whichimpliesthat « isbasic.
c A, =0.

PROOF. Let {V;}1<i<, bealoca orthonormal basis of vertical vector fields. Let V be
avertical vector field and X an horizontal one. By Proposition 2.1, we have:

P P P
(+) D RV, V, Vi, X) =Y g((DyT)v, Vi, X) = Y g(Dy; T)v Vi, X) .
i=1 i=1 i=1

Since (M, g) isof constant curvature we have: Zle R(V;, V,V;, X) = 0. We compute
thefirst term of the right hand side,

p p p 14
D 9Dy Ty Vi, X) =) g(Dv(Ty, Vi), X) =Y g(Toyv, Vi), X) =Y g(Tv,(Dy Vi), X)
i=1 i=1 i=1 i=1

p
=g(Dyt, X) —2(1/p) Y _ g(DvV;, Vi)g(, X)
i=1

p
=g(Dyvt, X) = (1/p) ) Vg(Vi, Vi)g(, X)
i=1
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=g(Dyr, X).

Then for the second term of the right hand side of () we get:

P P P P
> gDy, Ty Vi X) = g(Dv,TvVi. X) = Y g(Tp, vVi. X) = Y g(Ty Dy, Vi, X)
i=1 i=1 i=1 i=1

14
= (1/17)[2 g(Dy, (g(V, Vi)1), X) — g(7, X)9(Dv, V, Vi)
i=1

—g(t, X)g(V, Dy, Vi)]

p
= (1/p)[z Vilg(V, Vi)g(z, X)) — g(V, Vi) g(z, Dy, X))
i=1
—g(t, X)Vi(g(V, Vi)l
=1/p)g(Dyt, X).

Therefore,

1-@Q/p)gDyr,X)=0

for every vertical vector field V and for every horizontal vector field X, which impliesthat ¢
isparallel in the transversal distribution along leaves.

b) Itissufficient to show that, for any basic vector field X, g(t, X) is constant along
leaves(i.e. Vg(z, X) = Ofor any vertical vector field V).

First we shall establishthat g(AxY, AxY) is constant along leaves for any basic vector
fields X, Y. Since F is a bundle-like foliation we can consider a local model B in dis-
tinguished chart U on M. Then the restriction of the foliation F to U gives a Riemannian
submersion : F/U — B and we have:

RIX,Y,X,Y)=R*(nX,nY,nX,nY) — 3g(AxY, AxY).

Since (M, g) is of constant curvature we get g(Ax Y, AxY) is constant along leaves for any
basic vector fields X, Y. By polarization, it follows g(AxY, Ax Z) is constant along leaves
for any basic vector fields X, Y, Z. Therefore, Ax Ax Z isabasic vector field and then again
by polarization, AxAyZ + Ay Ax Z isabasic vector field for any basic vector fields X, Y, Z.
By O’ Neill equation iv) in Proposition 2.1 we get:
R(X,Y, X, AxY)=g((DxA)xY, AxY) +29(AxY, Tay,y X)
=g(DxAxY, AxY) — g(ApyxY, AxY)

—g(AxDxY, AxY) + 29(AxY, Ta,v X)

(2.2 =(1/2)X(g(AxY, AxY)) — g(AyHDx X, AyX) — g(AxHDxY, AxY)



A COHOMOLOGY (p+1) FORM ASSOCIATED WITH CODIMENSION-g FOLIATIONS 267

+29(AxY, TayvX) .

Since M has constant curvature and AxY is a vertical vector, we see that
R(X,Y, X, AxY) = 0. Thefirst three terms of (2.2) are constant along leaves and so should
be the last one, that means V (¢(AxY, Ta, vy X)) = 0. Since the leaves are totally umbilical, it
follows:

(2.3) V(g(X,1)g(AxY, AxY) =0.

Letx € M, let X, Y bebasic vector fieldssuchthat Y (x) = t(x). If (Axt)(x) # Othen,
by (2.3), V(¢g(X, 7)) = 0. Now we shall consider the case when (Axt)(x) = 0. Then:

Vg(t, X)x = (9(Dyt, X) + g(z, Dy X))x = g(r, AxV)x = —g(Ax7, V)x = 0.

In the second equality we have used @), Dyt = 0.

Therefore, T isabasic vector field.

¢) Thebasicity of r implies[V, t]isavertica vector field, s00 = H[V, 1] = HDyt—
‘HD.V. Therefore,

g(A<X, V) =g(D: X, V) = —g(X, D:V) = —g(X, Dy7) =0,

since HDyt = 0. It follows, A; X = 0 for any horizontal vector X. For a vertical vector V,
wehave, g(A;V, X) = —g(V, A; X) = OwhichimpliesA,V = 0.
Using part (b) of Lemma 2.2 we get the following proposition.

ProOPOSITION 2.5. Let (M, g) be an n-dimensional Riemannian manifold with con-
stant curvature c. Let F be a bundle-like foliation with totally umbilical leaves of dimension
p=n—gqgon(M,g). Then

. 1
(2.9 divyt = cpg + ;g(r, ) —p

q
Ax U, Ax U),
preii U);g( x, U, Ax,U)

for any non-zero vertical vector U and for any orthonormal frame {X,} of H.

ProoOF. By LemmaZ2.2 (b) we get

T T T
R(Xas U7 Xaa U) = g(U’ U)(g(DXa ;7 Xa) - g(Xa’ ;)Q(Xa’ ;)) + g(AXa Ua AXUU)

1 1
= ;9(U, U)(g(Dx,t. Xa) — ;g(f, 7)) + 9(Ax, U, Ax, U).

But, since M has constant curvature ¢, we have

q
Y R(X4, U, X4, U) = qeg(U, U),
a=1
which implies (2.4).
Now if we assume A = 0in Proposition 2.5 we obtain the following result.



268 GABRIEL BADITOIU, RICHARD H. ESCOBALES, JR. AND STERE IANUS

COROLLARY 2.6. Let (M, g) be an n-dimensional Riemannian manifold with con-
stant curvature ¢, and let F be a bundle-like foliation with totally umbilical leaves and with
horizontal integrable distribution of dimension p = n — g on (M, g). If divy = = O then

(i) ¢<0and

(i) g(z.7) = —pgqc.

Since Proposition 2.4 ensures us that « is a basic one-form, as a consequence of Theo-
rems 1.4 and 1.7, we get the following result from Corollary 2.6.

THEOREM 2.7. Let (M, g) beanoriented closed n-dimensional Riemannian manifold
with constant curvature ¢, with ¢ a bundle-like metric for a transversally oriented foliation F
of codimension ¢, with totally umbilical leaves of dimension p. If the horizontal distribution
isintegrableand p > 1andq € {1, 2} thenk A xg isharmonicif and onlyif g(z, ) = —pgc.

In Theorem 2.8, we shall consider the case when the horizontal distribution H is non-
integrable (i.e. A # 0 at every point).

THEOREM 2.8. Let (M, g) be a Riemannian manifold of constant curvature ¢ and let
F be a bundle-like foliation with totally umbilical leaves on M with the leaf dimension p > 2.
If the transversal distribution H is non-integrable and the transversal curvature operator R*
is Einstein-like, then F is totally geodesic.

PrRoOOF. From O’ Nelill equations we obtain:

q q
(25) Y ORMY, Xa, Y, Xo) = (g — Deg(Y, Y) +3) " g(AyXa, Ay Xa)
a=1 a=1

where {X,}1<a<4 IS alocal orthonormal frame of H = VL. By hypothesis, there exists a
basic function A on M such that:

q
(2.6) RiC*(Y,Y) = Z R*(Y, X4, Y, Xo) = hg(Y,Y)
a=1

and A # (g — 1)c since H is anon-integrable distribution, i.e. >7_; g(Ay X4, AyXa) > 0
for someY.
Now taking Y = 7 in (2.5), from Proposition 2.4, A; = 0, and from (2.5) and (2.6), we
get:
(A —(q@—Do)g(r,7) =0,

whichimpliest = 0.
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