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Abstract. We study some conditions that the Iwasawa λ-, µ-invariants of the the cyclotomic Z2-extension of

k = Q(
√

pq) with p ≡ 7 (mod 8), q ≡ 1 (mod 8), (
p
q ) = −1 are zero.

1. Introduction

Let k be a finite extension of the field Q of rational numbers, l any prime number, and
k∞ the cyclotomic Zl-extension of k, where Zl is the ring of l-adic integers. Then k∞ has the
unique subfield kn which is a cyclic extension of degree ln over k for any integer n ≥ 0. Let
en be the highest power of l dividing the class number of kn. The following theorem about en

is well-known as Iwasawa’s class number formula.

THEOREM 1 (Iwasawa) (cf. [4], [9]). There exist integersλl(k), µl(k) ≥ 0, νl(k), all
independent ofn, and an integern0 such that

en = λl(k)n + µl(k)ln + νl(k)

for all n ≥ n0.

λl(k), µl(k), and νl(k) are called Iwasawa λ-, µ-, and ν-invariants of k∞ , respectively.
Greenberg conjectured that if k is a totally real number field, then λl(k) = µl(k) = 0

for any prime number l (cf. [2]).Many authors have studied the conditions that Iwasawa λ-,
µ-invariants are zero. In this paper, we prove the following theorem related to the Iwasawa
λ-, µ-invariants of the cyclotomic Z2-extensions of certain real quadratic fields.

THEOREM 2. Letp, q be prime numbers such that

p ≡ 7 (mod 8) , q ≡ 1 (mod 8) ,

(
p

q

)
= −1 ,

where( ∗
∗) is Legendre’s symbol. Letk = Q(

√
pq) or Q(

√
2pq), and λ2(k), µ2(k), the

Iwasawaλ-, µ-invariants of the cyclotomicZ2-extensionk∞ of k, respectively.
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(1) If q ≡ 9 (mod 16), thenλ2(k) = µ2(k) = 0.

(2) If q ≡ 1 (mod 16), p ≡ 7 (mod 16), and 2
q−1

4 ≡ −1 (mod q), thenλ2(k) =
µ2(k) = 0.

2. Known results

There are many results about the Iwasawa invariants of the cyclotomic Z2-extensions of
real quadratic fields. We refer to some of them in this section.

Let n be a non-negative integer, an = 2 cos( 2π
2n+2 ) and Qn = Q(an).Then Qn ⊂ Qn+1

by an+1 = √
2 + an. Qn is a cyclic extension of Q of degree 2n and Q∞ = ∪∞

n=0Qn is the
unique Z2-extension of Q. Weber proved that λ2(Q) = µ2(Q) = ν2(Q) = 0 (cf. [3], Satz 6,
p.29).

Let m be a positive square-free integer, let k = Q(
√

m), and kn = kQn. Then the

cyclotomic Z2-extension k∞ of k is given by ∪∞
n=0kn = kQ∞. If m > 2, k1 = Q(

√
2,

√
m)

contains just three real quadratic subfields Q1, k, k′ = Q(
√

2m). Hence k and k′ have the
same cyclotomic Z2-extension, which means the Iwasawa invariants are also the same.

Iwasawa proved that for each prime number l, if a Galois l-extension K/k of number
fields has at most one (finite or infinite) ramified prime and the class number of k is not
divisible by l, then the class number of K is also not divisible by l (cf. [5]). This implies if a
real quadratic field k with odd class number has only one prime ideal above the prime number
2, then the class number of kn is also odd for each n ≥ 0, i.e., λ2(k) = µ2(k) = ν2(k) = 0.
Moreover, by genus theory and the theorem of Rédei and Reichardt (cf. [8]), we can determine
the real quadratic fields which have odd class number and only one prime ideal above the
prime number 2. Hence we obtain the following:

THEOREM 3. Letk = Q(
√

m) or Q(
√

2m) and letλ2(k), µ2(k), ν2(k) be the Iwasawa
λ-, µ-, andν-invariants of the cyclotomicZ2-extensionk∞ of k, respectively. Suppose thatm

is one of the following:
(1) m = 2,
(2) m = p p ≡ 5 (mod 8),
(3) m = q q ≡ 3 (mod 4),
(4) m = pq p ≡ 3, q ≡ 7 (mod 8),

wherep andq are prime numbers. Then we haveλ2(k) = µ2(k) = ν2(k) = 0.

These cases are often called trivial cases.
On the other hand, Ozaki and Taya, Fukuda and Komatsu proved the following theorems

which are non-trivial.

THEOREM 4 (Ozaki-Taya) (cf. [7]). Let k = Q(
√

m) or Q(
√

2m) and let λ2(k),
µ2(k) be the Iwasawaλ-, µ-invariants of the cyclotomicZ2-extensionk∞ of k, respectively.
Suppose thatm is one of the following:



IWASAWA INVARIANTS OF CERTAIN REAL QUADRATIC FIELDS 241

(1) m = p p ≡ 1 (mod 8) and 2
p−1

4 ≡/ (−1)
p−1

8 (mod p),
(2) m = pq p ≡ q ≡ 3 (mod 8),
(3) m = pq p ≡ 3, q ≡ 5 (mod 8),
(4) m = pq p ≡ 5, q ≡ 7 (mod 8),
(5) m = pq p ≡ q ≡ 5 (mod 8),

wherep andq are distinct prime numbers. Then we haveλ2(k) = µ2(k) = 0.

THEOREM 5 (Fukuda-Komatsu) (cf. [1]). Letk = Q(
√

m) or Q(
√

2m) and letλ2(k),
µ2(k) be the Iwasawaλ-, µ-invariants of the cyclotomicZ2-extensionk∞ of k, respectively.
Suppose that

m = pq p ≡ 3 , q ≡ 1 (mod 8) ,

(
p

q

)
= −1 and 2

q−1
4 ≡ −1 (mod q) ,

wherep and q are prime numbers and( ∗
∗) is Legendre’s symbol. Then we haveλ2(k) =

µ2(k) = 0.

Theorem 2 deals with non-trivial cases. We prove it according to the idea of Theorem 5.

3. Preparation

To prove Theorem 2 we need some preparation which were also used in the proof of
Theorem 5.

Let p and q be prime numbers such that p ≡ 7 (mod 8), q ≡ 1 (mod 8), (
p
q
) = −1,

and k = Q(
√

pq), kn = kQn, k∞ = ∪∞
n=0kn.

Since kn = k(an) = kn−1(
√

2 + an−1), we have Nkn/kn−1(2 − an) = (2 − an)(2 + an) =
2 − an−1, where Nkn/kn−1 is the norm. Thus Nkn/k(2 − an) = 2. Since an is an algebraic

integer of Qn, it means 2OQn = (2 − an)
2n

OQn = (2 + an)
2n

OQn , where OQn is the integer
ring of Qn. So the ideal (2 − an)OQn = (2 + an)OQn is the unique prime ideal of Qn lying
above 2. Therefore the square of the unique prime ideal Ln of kn lying above 2 is (2−an)Okn ,
where Okn is the integer ring of kn.
First, we show the following important proposition.

PROPOSITION 1. Let k be as above andλ2(k), µ2(k) the Iwasawaλ-, µ-invariants of
the cyclotomicZ2-extensionk∞ of k, respectively. If there exists a non-negative integern0

such thatLn0 is non-principal inkn0 , thenλ2(k) = µ2(k) = 0.

PROOF. Let An be the 2-Sylow subgroup of the ideal class group of kn, Bn the subgroup
of An consisting of ideal classes invariant under the action of Gal(kn/k) and B ′

n the subgroup
of Bn consisting of ideal classes containing ideals invariant under the action of Gal(kn/k).
Then by genus formula, we have

o(Bn) = 2-part of hk/(Ek : Ek ∩ Nkn/k(k
×
n )) ,

o(B ′
n) = 2-part of hk/(Ek : Nkn/k(Ekn)) ,
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where o(Bn) is the order of Bn, hk the class number of k, Ek the unit group of k, k×
n the

group of invertible elements of kn, (Ek : Ek ∩Nkn/k(k
×
n )) the index of Ek ∩Nkn/k(k

×
n ) in Ek ,

o(B ′
n) the order of B ′

n, Ekn the unit group of kn, (Ek : Nkn/k(Ekn)) the index of Nkn/k(Ekn)

in Ek. By genus fomula, we can also show that k(
√

q) is the 2-genus field of k/Q. Let G be

Gal(k/Q), σ a generator of G, AG
0 the subgroup of A0 consisting of ideal classes invariant

under the action of G. Then A0/A
1−σ
0

∼= Gal(k(
√

q)/k) by Artin map. Since (
p
q
) = −1,

we have A0 = AG
0 A1−σ

0 , which shows A0 = AG
0 . It follows that the 2-Hilbelt class field of k

is k(
√

q) and we obtain o(Bn) = 2/(Ek : Ek ∩ Nkn/k(k
×
n )), o(B ′

n) = 2/(Ek : Nkn/k(Ekn)).
Hence by the assumption, we have Bn = B ′

n = 〈cl(Ln)〉 ∼= Z/2Z for all n ≥ n0 , where
cl(Ln) is the ideal class of kn containing Ln, 〈cl(Ln)〉 the group generated by cl(Ln), and Z
the ring of rational integers. Since Nkn/kn0

(Ln) = Ln0 , the norm map Nkn/kn0
of Bn to Bn0 is

an isomorphism, which shows that the intersection of Bn and the kernel Cn of the norm map
An to An0 is trivial. It means Cn is also trivial. Therefore, since Nkn/kn0

(An) = An0 , An is

isomorphic to An0 , which implies λ2(k) = µ2(k) = 0. �

REMARK 1. Since the 2-Hilbelt class field of k is k(
√

q) and q ≡ 1 (mod 8), L0 is
principal in k.

Since q ≡ 1 (mod 8), q splits completely in Q1. Moreover, the class number of Q1 is 1 and

NQ1/Q(1 + √
2) = −1. Hence there exist positive integers r ,s such that q = (r + s

√
2)(r −

s
√

2). Let q1 = r + s
√

2, q2 = r − s
√

2 (Note that q1, q2 are totally positive.). Then there

exist integers a, b, c, d with q1 = a + b
√

2 + 4
√

2(c + d
√

2), 0 ≤ a ≤ 8, 0 ≤ b ≤ 3 and we
have q = q1q2 ≡ a2 − 2b2 (mod 16). Thus if q ≡ 1 (mod 16), then

qi ≡ ±1,±(1 + √
2)2 (mod 4

√
2) − (i)

and if q ≡ 9 (mod 16), then

qi ≡ ±3,±(1 + 2
√

2) (mod 4
√

2). − (ii)

On the other hand, since p ≡ 7 (mod 8), p also splits completely in Q1. So there exist

positive integers t ,u such that p = (t + u
√

2)(t − u
√

2). Let p1 = t + u
√

2, p2 = t − u
√

2
(Note that p1, p2 are also totally positive.). In the same way as above, we can show that if
p ≡ 7 (mod 16), then

pi ≡ 3 ± √
2,−3 ± √

2 (mod 4
√

2). − (iii)

By class field theory, we can show the following lemma.

LEMMA 1. (1) Suppose thatq ≡ 1 (mod 16).

If 2
q−1

4 ≡ −1 (mod q), then the ray class fieldQ1(modqi) of Q1 modqi does not contain

any quadratic extension ofQ1. If 2
q−1

4 ≡ 1 (mod q), thenQ1(modqi) contains a quadratic
extension ofQ1.
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(2) Suppose thatq ≡ 9 (mod 16).

If 2
q−1

4 ≡ −1 (mod q), thenQ1(modqi) contains a quadratic extension ofQ1. If 2
q−1

4 ≡ 1
(mod q), thenQ1(modqi) does not contain any quadratic extension ofQ1.

(3) Suppose thatp ≡ 7 (mod 8). Then the ray class fieldQ1(modpi) of Q1 modpi

does not contain any quadratic extension ofQ1.

PROOF. At first we show (1), (2). Note that

(2 + √
2)

q−1
2 = (

√
2(1 + √

2))
q−1

2 = 2
q−1

4 (1 + √
2)

q−1
2 .

If q ≡ 1 (mod 16), then q splits completely in Q2/Q1, which implies (2 + √
2)

q−1
2 ≡ 1

(mod q). Hence if 2
q−1

4 ≡ −1 (mod q), then (1 + √
2)

q−1
2 ≡ −1 (mod q), and if 2

q−1
4 ≡ 1

(mod q), then (1 + √
2)

q−1
2 ≡ 1 (mod q).

If q ≡ 9 (mod 16), then (2 + √
2)

q−1
2 ≡ −1 (mod q). Hence if 2

q−1
4 ≡ −1 (mod q),

then (1+√
2)

q−1
2 ≡ 1 (mod q), and if 2

q−1
4 ≡ 1 (mod q), then (1+√

2)
q−1

2 ≡ −1 (mod q).
Let J

qi

Q1
= {a : ideal of Q1 | a is relatively prime to qi}, and

P
qi

Q1
= {(α) : principal ideal of Q1 | α ≡ 1 (mod qi)}. Then we have J

qi

Q1
/P

qi

Q1
∼=

Gal(Q1(modqi)/Q1) by class field theory. There is a surjection such that

(Z[√2]/qiZ[√2])× → J
qi

Q1
/P

qi

Q1

α mod qi �→ (α) mod P
qi

Q1
,

Since the kernel of this morphism is 〈−1 mod qi, 1 + √
2 mod qi〉 and −1 is a quadratic

residue mod qi , we obtain (1) and (2).
Similarly, let J

pi

Q1
= {a : ideal of Q1 | a is relatively prime to pi},

P
pi

Q1
= {(α) : principal ideal of Q1 | α ≡ 1 (mod pi)}. Then we also have J

pi

Q1
/P

pi

Q1
∼=

Gal(Q1(modpi)/Q1) and 〈−1 mod pi, 1 + √
2 mod pi〉 is the kernel of the surjection

(Z[√2]/piZ[√2])× → J
pi

Q1
/P

pi

Q1

α mod pi �→ (α) mod P
pi

Q1
,

Since p ≡ 7 (mod 8), 2 | p − 1 and 22 � p − 1. Furthermore, the order of −1 mod pi is 2,
which implies the order of the kernel is even. Hence we have (3). �

4. Proof of Theorem 2

We use the following well-known fact to prove Theorem 2.

LEMMA 2 (cf. [9], p. 183). Leta be an element ofQ1 which is prime to2. Then,
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(1) there exists an elementα of Q1 such thatα2 ≡ a (mod 4) if and only if
Q1(

√
a)/Q1 is unramified at all primes ofQ1 above2.

(2) there exists an elementα of Q1 such thatα2 ≡ a (mod 4
√

2) if and only if all
primes ofQ1 above2 split in Q1(

√
a)/Q1.

PROOF OF THEOREM 2. Note that for any element α in OQ1 which is prime to 2, we
have

α2 ≡ 1, 3 + 2
√

2 (mod 4
√

2). − (iv)

(1) Suppose that 2
q−1

4 ≡ −1 (mod q). If q ≡ 9 (mod 16), Q1(modqi)/Q1 has a
quadratic subextension by Lemma 1 (2). First we show the quadratic extension of Q1 must
be Q1(

√
qi)/Q1. Let Q1(

√
m)/Q1 be the quadratic subextension, where m ∈ OQ1 . Since

Q1(
√

m)/Q1 is unramified at the infinite primes, we have m > 0. Note that we can assume
v�(m) = 0 or 1 for any prime p of Q1, where v� is the p-adic additive valuation. If v�(m) = 1,

then X2−m is an Eisenstein polynomial with regard to p, which implies p is totally ramified in
Q1(

√
m)/Q1. Furthermore, since the relative discriminant of Q1(

√
m)/Q1 divides 4mOQ1 ,

any prime p with p � 4mOQ1 is unramified in Q1(
√

m)/Q1. Hence m must be qi or qiε, where

ε = 1 + √
2. By (ii), (iv) and Lemma 2 (1), Q1(

√
qiε)/Q1 is ramified at a prime of Q1 above

2. Therefore Q1(
√

m) must be Q1(
√

qi) as desired.
It follows that all primes of Q1 above 2 are unramified in Q1(

√
qi)/Q1. Hence we

have qi ≡ 1 , 3 + 2
√

2 (mod 4) by Lemma 2 and (iv), which shows qi ≡ −3,−1 + 2
√

2

(mod 4
√

2) by (ii). On the other hand, k1(
√

qi) is an unramified extension of k1. Since
L1 does not split in k1(

√
qi) by Lemma 2, L1 is non-principal in k1. Therefore we have

λ2(k) = µ2(k) = 0 by Proposition 1.

Secondly, suppose that 2
q−1

4 ≡ 1 (mod q). If q ≡ 9 (mod 16), then Q1(
√

qi) is not

contained in Q1(modqi) by Lemma 1 (2), which shows qi ≡ 3 , 1 + 2
√

2 (mod 4
√

2) by

Lemma 2 and (ii), (iv). Hence we have pqi ≡ −3, −1 + 2
√

2 (mod 4
√

2). Since L1 does not
split in an unramified extension k1(

√
pqi)/k1, L1 is non-principal in k1. Therefore we also

have λ2(k) = µ2(k) = 0 by Proposition 1.
This completes the proof of Theorem 2 (1).

(2) Suppose that q ≡ 1 (mod 16), p ≡ 7 (mod 16), and 2
q−1

4 ≡ −1 (mod q). By

Lemma 1 (1), Lemma 2, (i) and (iv), we have qi ≡ −1, −3 + 2
√

2 (mod 4
√

2). By (iii) we

have piε ≡ ±3,±1 + 2
√

2 (mod 4
√

2). Lemma 1 (3) implies that all primes of Q1 above

2 are ramified in Q1(
√

piε)/Q1, which shows piε ≡ 3, 1 + 2
√

2 (mod 4
√

2) by Lemma 2

and (iv). Hence we have piqj ε ≡ −3,−1 + 2
√

2 (mod 4
√

2). Since L1 does not split in
an unramified extension k1(

√
piqjε)/k1, L1 is non-principal. Therefore we have λ2(k) =

µ2(k) = 0 by Proposition 1.
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REMARK 2. Suppose that q ≡ 1 (mod 16), p ≡ −1 (mod 16), and 2
q−1

4 ≡ −1
(mod q). Then we can show that L1 splits in an unramified extension k1(

√
piqj ε)/k1.

But Kuroda’s class number formula (cf. [6]) shows that the 2-Hilbelt class field of k1 is
k1(

√
p1q1ε,

√
p1q2ε). Hence L1 is principal in k1, i.e., we can not decide λ2(k) = µ2(k) = 0

by using Proposition 1.
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