On the Iwasawa Invariants of the Cyclotomic \mathbf{Z}_{2}-Extensions of Certain Real Quadratic Fields

Yoshinori NISHINO
Waseda University
(Communicated by Y. Yamada)

Abstract

We study some conditions that the Iwasawa λ-, μ-invariants of the the cyclotomic \mathbf{Z}_{2}-extension of $k=\mathbf{Q}(\sqrt{p q})$ with $p \equiv 7(\bmod 8), q \equiv 1(\bmod 8),\left(\frac{p}{q}\right)=-1$ are zero.

1. Introduction

Let k be a finite extension of the field \mathbf{Q} of rational numbers, l any prime number, and k_{∞} the cyclotomic \mathbf{Z}_{l}-extension of k, where \mathbf{Z}_{l} is the ring of l-adic integers. Then k_{∞} has the unique subfield k_{n} which is a cyclic extension of degree l^{n} over k for any integer $n \geq 0$. Let e_{n} be the highest power of l dividing the class number of k_{n}. The following theorem about e_{n} is well-known as Iwasawa's class number formula.

ThEOREM 1 (Iwasawa) (cf. [4], [9]). There exist integers $\lambda_{l}(k), \mu_{l}(k) \geq 0, v_{l}(k)$, all independent of n, and an integer n_{0} such that

$$
e_{n}=\lambda_{l}(k) n+\mu_{l}(k) l^{n}+v_{l}(k)
$$

for all $n \geq n_{0}$.
$\lambda_{l}(k), \mu_{l}(k)$, and $\nu_{l}(k)$ are called Iwasawa λ-, μ-, and ν-invariants of k_{∞}, respectively.
Greenberg conjectured that if k is a totally real number field, then $\lambda_{l}(k)=\mu_{l}(k)=0$ for any prime number l (cf. [2]).Many authors have studied the conditions that Iwasawa λ-, μ-invariants are zero. In this paper, we prove the following theorem related to the Iwasawa λ-, μ-invariants of the cyclotomic \mathbf{Z}_{2}-extensions of certain real quadratic fields.

ThEOREM 2. Let p, q be prime numbers such that

$$
p \equiv 7(\bmod 8), \quad q \equiv 1(\bmod 8), \quad\left(\frac{p}{q}\right)=-1
$$

where $\left(\frac{*}{*}\right)$ is Legendre's symbol. Let $k=\mathbf{Q}(\sqrt{p q})$ or $\mathbf{Q}(\sqrt{2 p q})$, and $\lambda_{2}(k), \mu_{2}(k)$, the Iwasawa λ-, μ-invariants of the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k, respectively.
(1) If $q \equiv 9(\bmod 16)$, then $\lambda_{2}(k)=\mu_{2}(k)=0$.
(2) If $q \equiv 1(\bmod 16), p \equiv 7(\bmod 16)$, and $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$, then $\lambda_{2}(k)=$ $\mu_{2}(k)=0$.

2. Known results

There are many results about the Iwasawa invariants of the cyclotomic \mathbf{Z}_{2}-extensions of real quadratic fields. We refer to some of them in this section.

Let n be a non-negative integer, $a_{n}=2 \cos \left(\frac{2 \pi}{2^{n+2}}\right)$ and $\mathbf{Q}_{n}=\mathbf{Q}\left(a_{n}\right)$.Then $\mathbf{Q}_{n} \subset \mathbf{Q}_{n+1}$ by $a_{n+1}=\sqrt{2+a_{n}} . \mathbf{Q}_{n}$ is a cyclic extension of \mathbf{Q} of degree 2^{n} and $\mathbf{Q}_{\infty}=\cup_{n=0}^{\infty} \mathbf{Q}_{n}$ is the unique \mathbf{Z}_{2}-extension of \mathbf{Q}. Weber proved that $\lambda_{2}(\mathbf{Q})=\mu_{2}(\mathbf{Q})=\nu_{2}(\mathbf{Q})=0$ (cf. [3], Satz 6, p.29).

Let m be a positive square-free integer, let $k=\mathbf{Q}(\sqrt{m})$, and $k_{n}=k \mathbf{Q}_{n}$. Then the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k is given by $\cup_{n=0}^{\infty} k_{n}=k \mathbf{Q}_{\infty}$. If $m>2, k_{1}=\mathbf{Q}(\sqrt{2}, \sqrt{m})$ contains just three real quadratic subfields $\mathbf{Q}_{1}, k, k^{\prime}=\mathbf{Q}(\sqrt{2 m})$. Hence k and k^{\prime} have the same cyclotomic \mathbf{Z}_{2}-extension, which means the Iwasawa invariants are also the same.

Iwasawa proved that for each prime number l, if a Galois l-extension K / k of number fields has at most one (finite or infinite) ramified prime and the class number of k is not divisible by l, then the class number of K is also not divisible by l (cf. [5]). This implies if a real quadratic field k with odd class number has only one prime ideal above the prime number 2 , then the class number of k_{n} is also odd for each $n \geq 0$, i.e., $\lambda_{2}(k)=\mu_{2}(k)=\nu_{2}(k)=0$. Moreover, by genus theory and the theorem of Rédei and Reichardt (cf. [8]), we can determine the real quadratic fields which have odd class number and only one prime ideal above the prime number 2. Hence we obtain the following:

THEOREM 3. Let $k=\mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2 m})$ and let $\lambda_{2}(k), \mu_{2}(k), \nu_{2}(k)$ be the Iwasawa λ-, μ-, and ν-invariants of the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k, respectively. Suppose that m is one of the following:
(1) $m=2$,
(2) $m=p \quad p \equiv 5(\bmod 8)$,
(3) $m=q \quad q \equiv 3(\bmod 4)$,
(4) $m=p q \quad p \equiv 3, q \equiv 7(\bmod 8)$,
where p and q are prime numbers. Then we have $\lambda_{2}(k)=\mu_{2}(k)=\nu_{2}(k)=0$.
These cases are often called trivial cases.
On the other hand, Ozaki and Taya, Fukuda and Komatsu proved the following theorems which are non-trivial.

THEOREM 4 (Ozaki-Taya) (cf. [7]). Let $k=\mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2 m})$ and let $\lambda_{2}(k)$, $\mu_{2}(k)$ be the Iwasawa λ-, μ-invariants of the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k, respectively. Suppose that m is one of the following:
(1) $m=p \quad p \equiv 1(\bmod 8)$ and $\quad 2^{\frac{p-1}{4}} \equiv(-1)^{\frac{p-1}{8}}(\bmod p)$,
(2) $m=p q \quad p \equiv q \equiv 3(\bmod 8)$,
(3) $m=p q \quad p \equiv 3, q \equiv 5(\bmod 8)$,
(4) $m=p q \quad p \equiv 5, q \equiv 7(\bmod 8)$,
(5) $m=p q \quad p \equiv q \equiv 5(\bmod 8)$,
where p and q are distinct prime numbers. Then we have $\lambda_{2}(k)=\mu_{2}(k)=0$.
THEOREM 5 (Fukuda-Komatsu) (cf. [1]). Let $k=\mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2 m})$ and let $\lambda_{2}(k)$, $\mu_{2}(k)$ be the Iwasawa λ-, μ-invariants of the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k, respectively. Suppose that

$$
m=p q \quad p \equiv 3, \quad q \equiv 1(\bmod 8), \quad\left(\frac{p}{q}\right)=-1 \quad \text { and } \quad 2^{\frac{q-1}{4}} \equiv-1(\bmod q)
$$

where p and q are prime numbers and $\left(\frac{*}{*}\right)$ is Legendre's symbol. Then we have $\lambda_{2}(k)=$ $\mu_{2}(k)=0$.

Theorem 2 deals with non-trivial cases. We prove it according to the idea of Theorem 5.

3. Preparation

To prove Theorem 2 we need some preparation which were also used in the proof of Theorem 5.

Let p and q be prime numbers such that $p \equiv 7(\bmod 8), q \equiv 1(\bmod 8),\left(\frac{p}{q}\right)=-1$, and $k=\mathbf{Q}(\sqrt{p q}), k_{n}=k \mathbf{Q}_{n}, k_{\infty}=\cup_{n=0}^{\infty} k_{n}$.
Since $k_{n}=k\left(a_{n}\right)=k_{n-1}\left(\sqrt{2+a_{n-1}}\right)$, we have $N_{k_{n} / k_{n-1}}\left(2-a_{n}\right)=\left(2-a_{n}\right)\left(2+a_{n}\right)=$ $2-a_{n-1}$, where $N_{k_{n} / k_{n-1}}$ is the norm. Thus $N_{k_{n} / k}\left(2-a_{n}\right)=2$. Since a_{n} is an algebraic integer of \mathbf{Q}_{n}, it means $2 \mathfrak{O}_{\mathbf{Q}_{n}}=\left(2-a_{n}\right)^{2^{n}} \mathfrak{O}_{\mathbf{Q}_{n}}=\left(2+a_{n}\right)^{2^{n}} \mathfrak{O}_{\mathbf{Q}_{n}}$, where $\mathfrak{O}_{\mathbf{Q}_{n}}$ is the integer ring of \mathbf{Q}_{n}. So the ideal $\left(2-a_{n}\right) \mathfrak{O}_{\mathbf{Q}_{n}}=\left(2+a_{n}\right) \mathfrak{O}_{\mathbf{Q}_{n}}$ is the unique prime ideal of \mathbf{Q}_{n} lying above 2 . Therefore the square of the unique prime ideal \mathfrak{L}_{n} of k_{n} lying above 2 is $\left(2-a_{n}\right) \mathfrak{O}_{k_{n}}$, where $\mathfrak{O}_{k_{n}}$ is the integer ring of k_{n}.
First, we show the following important proposition.
PRoposition 1. Let k be as above and $\lambda_{2}(k), \mu_{2}(k)$ the Iwasawa λ-, μ-invariants of the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k, respectively. If there exists a non-negative integer n_{0} such that $\mathfrak{L}_{n_{0}}$ is non-principal in $k_{n_{0}}$, then $\lambda_{2}(k)=\mu_{2}(k)=0$.

PROOF. Let A_{n} be the 2-Sylow subgroup of the ideal class group of k_{n}, B_{n} the subgroup of A_{n} consisting of ideal classes invariant under the action of $G a l\left(k_{n} / k\right)$ and B_{n}^{\prime} the subgroup of B_{n} consisting of ideal classes containing ideals invariant under the action of $\operatorname{Gal}\left(k_{n} / k\right)$. Then by genus formula, we have

$$
\begin{gathered}
o\left(B_{n}\right)=2 \text {-part of } h_{k} /\left(E_{k}: E_{k} \cap N_{k_{n} / k}\left(k_{n}^{\times}\right)\right), \\
o\left(B_{n}^{\prime}\right)=2 \text {-part of } h_{k} /\left(E_{k}: N_{k_{n} / k}\left(E_{k_{n}}\right)\right)
\end{gathered}
$$

where $o\left(B_{n}\right)$ is the order of B_{n}, h_{k} the class number of k, E_{k} the unit group of k, k_{n}^{\times}the group of invertible elements of $k_{n},\left(E_{k}: E_{k} \cap N_{k_{n} / k}\left(k_{n}^{\times}\right)\right)$the index of $E_{k} \cap N_{k_{n} / k}\left(k_{n}^{\times}\right)$in E_{k}, $o\left(B_{n}^{\prime}\right)$ the order of $B_{n}^{\prime}, E_{k_{n}}$ the unit group of $k_{n},\left(E_{k}: N_{k_{n} / k}\left(E_{k_{n}}\right)\right)$ the index of $N_{k_{n} / k}\left(E_{k_{n}}\right)$ in E_{k}. By genus fomula, we can also show that $k(\sqrt{q})$ is the 2-genus field of k / \mathbf{Q}. Let G be $\operatorname{Gal}(k / \mathbf{Q}), \sigma$ a generator of G, A_{0}^{G} the subgroup of A_{0} consisting of ideal classes invariant under the action of G. Then $A_{0} / A_{0}^{1-\sigma} \cong \operatorname{Gal}(k(\sqrt{q}) / k)$ by Artin map. Since $\left(\frac{p}{q}\right)=-1$, we have $A_{0}=A_{0}^{G} A_{0}^{1-\sigma}$, which shows $A_{0}=A_{0}^{G}$. It follows that the 2-Hilbelt class field of k is $k(\sqrt{q})$ and we obtain $o\left(B_{n}\right)=2 /\left(E_{k}: E_{k} \cap N_{k_{n} / k}\left(k_{n}^{\times}\right)\right), o\left(B_{n}^{\prime}\right)=2 /\left(E_{k}: N_{k_{n} / k}\left(E_{k_{n}}\right)\right)$. Hence by the assumption, we have $B_{n}=B_{n}^{\prime}=\left\langle\operatorname{cl}\left(\mathfrak{L}_{n}\right)\right\rangle \cong \mathbf{Z} / 2 \mathbf{Z}$ for all $n \geq n_{0}$, where $\operatorname{cl}\left(\mathfrak{L}_{n}\right)$ is the ideal class of k_{n} containing $\mathfrak{L}_{n},\left\langle\operatorname{cl}\left(\mathfrak{L}_{n}\right)\right\rangle$ the group generated by $\operatorname{cl}\left(\mathfrak{L}_{n}\right)$, and \mathbf{Z} the ring of rational integers. Since $N_{k_{n} / k_{n_{0}}}\left(\mathfrak{L}_{n}\right)=\mathfrak{L}_{n_{0}}$, the norm map $N_{k_{n} / k_{n_{0}}}$ of B_{n} to $B_{n_{0}}$ is an isomorphism, which shows that the intersection of B_{n} and the kernel C_{n} of the norm map A_{n} to $A_{n_{0}}$ is trivial. It means C_{n} is also trivial. Therefore, since $N_{k_{n} / k_{n_{0}}}\left(A_{n}\right)=A_{n_{0}}, A_{n}$ is isomorphic to $A_{n_{0}}$, which implies $\lambda_{2}(k)=\mu_{2}(k)=0$.

REMARK 1. Since the 2-Hilbelt class field of k is $k(\sqrt{q})$ and $q \equiv 1(\bmod 8), \mathfrak{L}_{0}$ is principal in k.
Since $q \equiv 1(\bmod 8), q$ splits completely in \mathbf{Q}_{1}. Moreover, the class number of \mathbf{Q}_{1} is 1 and $N_{\mathbf{Q}_{1} / \mathbf{Q}}(1+\sqrt{2})=-1$. Hence there exist positive integers r, s such that $q=(r+s \sqrt{2})(r-$ $s \sqrt{2}$). Let $q_{1}=r+s \sqrt{2}, q_{2}=r-s \sqrt{2}$ (Note that q_{1}, q_{2} are totally positive.). Then there exist integers a, b, c, d with $q_{1}=a+b \sqrt{2}+4 \sqrt{2}(c+d \sqrt{2}), 0 \leq a \leq 8,0 \leq b \leq 3$ and we have $q=q_{1} q_{2} \equiv a^{2}-2 b^{2}(\bmod 16)$. Thus if $q \equiv 1(\bmod 16)$, then

$$
q_{i} \equiv \pm 1, \pm(1+\sqrt{2})^{2} \quad(\bmod 4 \sqrt{2}) \quad-(\mathrm{i})
$$

and if $q \equiv 9(\bmod 16)$, then

$$
q_{i} \equiv \pm 3, \pm(1+2 \sqrt{2}) \quad(\bmod 4 \sqrt{2}) . \quad-(\text { ii })
$$

On the other hand, since $p \equiv 7(\bmod 8), p$ also splits completely in \mathbf{Q}_{1}. So there exist positive integers t, u such that $p=(t+u \sqrt{2})(t-u \sqrt{2})$. Let $p_{1}=t+u \sqrt{2}, p_{2}=t-u \sqrt{2}$ (Note that p_{1}, p_{2} are also totally positive.). In the same way as above, we can show that if $p \equiv 7(\bmod 16)$, then

$$
p_{i} \equiv 3 \pm \sqrt{2},-3 \pm \sqrt{2} \quad(\bmod 4 \sqrt{2}) . \quad-(\text { iiii })
$$

By class field theory, we can show the following lemma.
Lemma 1. (1) Suppose that $q \equiv 1(\bmod 16)$.
If $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$, then the ray class field $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ of $\mathbf{Q}_{1} \bmod q_{i}$ does not contain any quadratic extension of \mathbf{Q}_{1}. If $2^{\frac{q-1}{4}} \equiv 1(\bmod q)$, then $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ contains a quadratic extension of \mathbf{Q}_{1}.
(2) Suppose that $q \equiv 9(\bmod 16)$.

If $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$, then $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ contains a quadratic extension of \mathbf{Q}_{1}. If $2^{\frac{q-1}{4}} \equiv 1$ $(\bmod q)$, then $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ does not contain any quadratic extension of \mathbf{Q}_{1}.
(3) Suppose that $p \equiv 7(\bmod 8)$. Then the ray class field $\mathbf{Q}_{1}\left(\bmod p_{i}\right)$ of $\mathbf{Q}_{1} \bmod p_{i}$ does not contain any quadratic extension of \mathbf{Q}_{1}.

Proof. At first we show (1), (2). Note that

$$
(2+\sqrt{2})^{\frac{q-1}{2}}=(\sqrt{2}(1+\sqrt{2}))^{\frac{q-1}{2}}=2^{\frac{q-1}{4}}(1+\sqrt{2})^{\frac{q-1}{2}}
$$

If $q \equiv 1(\bmod 16)$, then q splits completely in $\mathbf{Q}_{2} / \mathbf{Q}_{1}$, which implies $(2+\sqrt{2})^{\frac{q-1}{2}} \equiv 1$ $(\bmod q)$. Hence if $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$, then $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv-1(\bmod q)$, and if $2^{\frac{q-1}{4}} \equiv 1$ $(\bmod q)$, then $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv 1(\bmod q)$.

If $q \equiv 9(\bmod 16)$, then $(2+\sqrt{2})^{\frac{q-1}{2}} \equiv-1(\bmod q)$. Hence if $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$, then $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv 1(\bmod q)$, and if $2^{\frac{q-1}{4}} \equiv 1(\bmod q)$, then $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv-1(\bmod q)$. Let $J_{\mathbf{Q}_{1}}^{q_{i}}=\left\{\mathfrak{a}\right.$:ideal of $\mathbf{Q}_{1} \mid \mathfrak{a}$ is relatively prime to $\left.q_{i}\right\}$, and $P_{\mathbf{Q}_{1}}^{q_{i}}=\left\{(\alpha)\right.$: principal ideal of $\left.\mathbf{Q}_{1} \mid \alpha \equiv 1\left(\bmod q_{i}\right)\right\}$. Then we have $J_{\mathbf{Q}_{1}}^{q_{i}} / P_{\mathbf{Q}_{1}}^{q_{i}} \cong$ $\operatorname{Gal}\left(\mathbf{Q}_{1}\left(\bmod q_{i}\right) / \mathbf{Q}_{1}\right)$ by class field theory. There is a surjection such that

$$
\begin{aligned}
& \left(\mathbf{Z}[\sqrt{2}] / q_{i} \mathbf{Z}[\sqrt{2}]\right)^{\times} \rightarrow J_{\mathbf{Q}_{1}}^{q_{i}} / P_{\mathbf{Q}_{1}}^{q_{i}} \\
& \alpha \bmod q_{i} \mapsto(\alpha) \quad \bmod P_{\mathbf{Q}_{1}}^{q_{i}}
\end{aligned}
$$

Since the kernel of this morphism is $\left\langle-1 \bmod q_{i}, 1+\sqrt{2} \bmod q_{i}\right\rangle$ and -1 is a quadratic residue $\bmod q_{i}$, we obtain (1) and (2).

Similarly, let $J_{\mathbf{Q}_{1}}^{p_{i}}=\left\{\mathfrak{a}\right.$: ideal of $\mathbf{Q}_{1} \mid \mathfrak{a}$ is relatively prime to $\left.p_{i}\right\}$, $P_{\mathbf{Q}_{1}}^{p_{i}}=\left\{(\alpha)\right.$: principal ideal of $\left.\mathbf{Q}_{1} \mid \alpha \equiv 1\left(\bmod p_{i}\right)\right\}$. Then we also have $J_{\mathbf{Q}_{1}}^{p_{i}} / P_{\mathbf{Q}_{1}}^{p_{i}} \cong$ $\operatorname{Gal}\left(\mathbf{Q}_{1}\left(\bmod p_{i}\right) / \mathbf{Q}_{1}\right)$ and $\left\langle-1 \bmod p_{i}, 1+\sqrt{2} \bmod p_{i}\right\rangle$ is the kernel of the surjection

$$
\left(\mathbf{Z}[\sqrt{2}] / p_{i} \mathbf{Z}[\sqrt{2}]\right)^{\times} \rightarrow J_{\mathbf{Q}_{1}}^{p_{i}} / P_{\mathbf{Q}_{1}}^{p_{i}}
$$

$\alpha \bmod p_{i} \mapsto(\alpha) \quad \bmod P_{\mathbf{Q}_{1}}^{p_{i}}$,
Since $p \equiv 7(\bmod 8), 2 \mid p-1$ and $2^{2} \nmid p-1$. Furthermore, the order of $-1 \bmod p_{i}$ is 2 , which implies the order of the kernel is even. Hence we have (3).

4. Proof of Theorem 2

We use the following well-known fact to prove Theorem 2.
LEMMA 2 (cf. [9], p. 183). Let a be an element of \mathbf{Q}_{1} which is prime to 2. Then,
(1) there exists an element α of \mathbf{Q}_{1} such that $\alpha^{2} \equiv a(\bmod 4)$ if and only if $\mathbf{Q}_{1}(\sqrt{a}) / \mathbf{Q}_{1}$ is unramified at all primes of \mathbf{Q}_{1} above 2.
(2) there exists an element α of \mathbf{Q}_{1} such that $\alpha^{2} \equiv a(\bmod 4 \sqrt{2})$ if and only if all primes of \mathbf{Q}_{1} above 2 split in $\mathbf{Q}_{1}(\sqrt{a}) / \mathbf{Q}_{1}$.

Proof of Theorem 2. Note that for any element α in $\mathfrak{O}_{\mathbf{Q}_{1}}$ which is prime to 2 , we have

$$
\alpha^{2} \equiv 1,3+2 \sqrt{2} \quad(\bmod 4 \sqrt{2}) . \quad-(i v)
$$

(1) Suppose that $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$. If $q \equiv 9(\bmod 16), \mathbf{Q}_{1}\left(\bmod q_{i}\right) / \mathbf{Q}_{1}$ has a quadratic subextension by Lemma 1 (2). First we show the quadratic extension of \mathbf{Q}_{1} must be $\mathbf{Q}_{1}\left(\sqrt{q_{i}}\right) / \mathbf{Q}_{1}$. Let $\mathbf{Q}_{1}(\sqrt{m}) / \mathbf{Q}_{1}$ be the quadratic subextension, where $m \in \mathfrak{O}_{\mathbf{Q}_{1}}$. Since $\mathbf{Q}_{1}(\sqrt{m}) / \mathbf{Q}_{1}$ is unramified at the infinite primes, we have $m>0$. Note that we can assume $v_{\mathfrak{p}}(m)=0$ or 1 for any prime \mathfrak{p} of \mathbf{Q}_{1}, where $v_{\mathfrak{p}}$ is the \mathfrak{p}-adic additive valuation. If $v_{\mathfrak{p}}(m)=1$, then $X^{2}-m$ is an Eisenstein polynomial with regard to \mathfrak{p}, which implies \mathfrak{p} is totally ramified in $\mathbf{Q}_{1}(\sqrt{m}) / \mathbf{Q}_{1}$. Furthermore, since the relative discriminant of $\mathbf{Q}_{1}(\sqrt{m}) / \mathbf{Q}_{1}$ divides $4 m \mathfrak{O}_{\mathbf{Q}_{1}}$, any prime \mathfrak{p} with $\mathfrak{p} \nmid 4 m \mathfrak{O}_{\mathbf{Q}_{1}}$ is unramified in $\mathbf{Q}_{1}(\sqrt{m}) / \mathbf{Q}_{1}$. Hence m must be q_{i} or $q_{i} \varepsilon$, where $\varepsilon=1+\sqrt{2}$. By (ii), (iv) and Lemma $2(1), \mathbf{Q}_{1}\left(\sqrt{q_{i} \varepsilon}\right) / \mathbf{Q}_{1}$ is ramified at a prime of \mathbf{Q}_{1} above 2. Therefore $\mathbf{Q}_{1}(\sqrt{m})$ must be $\mathbf{Q}_{1}\left(\sqrt{q_{i}}\right)$ as desired.

It follows that all primes of \mathbf{Q}_{1} above 2 are unramified in $\mathbf{Q}_{1}\left(\sqrt{q_{i}}\right) / \mathbf{Q}_{1}$. Hence we have $q_{i} \equiv 1,3+2 \sqrt{2}(\bmod 4)$ by Lemma 2 and (iv), which shows $q_{i} \equiv-3,-1+2 \sqrt{2}$ $(\bmod 4 \sqrt{2})$ by (ii). On the other hand, $k_{1}\left(\sqrt{q_{i}}\right)$ is an unramified extension of k_{1}. Since \mathfrak{L}_{1} does not split in $k_{1}\left(\sqrt{q_{i}}\right)$ by Lemma $2, \mathfrak{L}_{1}$ is non-principal in k_{1}. Therefore we have $\lambda_{2}(k)=\mu_{2}(k)=0$ by Proposition 1 .

Secondly, suppose that $2^{\frac{q-1}{4}} \equiv 1(\bmod q)$. If $q \equiv 9(\bmod 16)$, then $\mathbf{Q}_{1}\left(\sqrt{q_{i}}\right)$ is not contained in $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ by Lemma 1 (2), which shows $q_{i} \equiv 3,1+2 \sqrt{2}(\bmod 4 \sqrt{2})$ by Lemma 2 and (ii), (iv). Hence we have $p q_{i} \equiv-3,-1+2 \sqrt{2}(\bmod 4 \sqrt{2})$. Since \mathfrak{L}_{1} does not split in an unramified extension $k_{1}\left(\sqrt{p q_{i}}\right) / k_{1}, \mathfrak{L}_{1}$ is non-principal in k_{1}. Therefore we also have $\lambda_{2}(k)=\mu_{2}(k)=0$ by Proposition 1 .
This completes the proof of Theorem 2 (1).
(2) Suppose that $q \equiv 1(\bmod 16), p \equiv 7(\bmod 16)$, and $2^{\frac{q-1}{4}} \equiv-1(\bmod q)$. By Lemma 1 (1), Lemma 2, (i) and (iv), we have $q_{i} \equiv-1,-3+2 \sqrt{2}(\bmod 4 \sqrt{2})$. By (iii) we have $p_{i} \varepsilon \equiv \pm 3, \pm 1+2 \sqrt{2}(\bmod 4 \sqrt{2})$. Lemma 1 (3) implies that all primes of \mathbf{Q}_{1} above 2 are ramified in $\mathbf{Q}_{1}\left(\sqrt{p_{i}} \varepsilon\right) / \mathbf{Q}_{1}$, which shows $p_{i} \varepsilon \equiv 3,1+2 \sqrt{2}(\bmod 4 \sqrt{2})$ by Lemma 2 and (iv). Hence we have $p_{i} q_{j} \varepsilon \equiv-3,-1+2 \sqrt{2}(\bmod 4 \sqrt{2})$. Since \mathfrak{L}_{1} does not split in an unramified extension $k_{1}\left(\sqrt{p_{i} q_{j} \varepsilon}\right) / k_{1}, \mathfrak{L}_{1}$ is non-principal. Therefore we have $\lambda_{2}(k)=$ $\mu_{2}(k)=0$ by Proposition 1 .

REMARK 2. Suppose that $q \equiv 1(\bmod 16), p \equiv-1(\bmod 16)$, and $2^{\frac{q-1}{4}} \equiv-1$ $(\bmod q)$. Then we can show that \mathfrak{L}_{1} splits in an unramified extension $k_{1}\left(\sqrt{p_{i} q_{j} \varepsilon}\right) / k_{1}$. But Kuroda's class number formula (cf. [6]) shows that the 2-Hilbelt class field of k_{1} is $k_{1}\left(\sqrt{p_{1} q_{1} \varepsilon}, \sqrt{p_{1} q_{2} \varepsilon}\right)$. Hence \mathfrak{L}_{1} is principal in k_{1}, i.e., we can not decide $\lambda_{2}(k)=\mu_{2}(k)=0$ by using Proposition 1 .

Acknowledgement. The author expresses his appreciation to Professor Takashi Fukuda and Professor Keiichi Komatsu for many valuable advice.

References

[1] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic \mathbf{Z}_{2}-extension of a real quadratic field, to appear in Tokyo J. Math.
[2] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976) 263-284.
[3] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag (1952).
[4] K. Iwasawa, On Γ-extension of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
[5] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[6] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sec. I. 4 (1943), 383-406.
[7] M. OZAKI and H. TAYA, On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), 437-444.
[8] L. RÉdei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine. Angew. Math. 170 (1933), 69-74.
[9] L. C. WAShington, Introduction to Cyclotomic Fields (2nd. Edition), GTM 83, Springer (1997).

