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Abstract. Let G be a C∞-mapping from a connected Riemann surface M into the complex quadric Qn−1 in
the n-dimensional complex projective space. We give a condition for the existence of a surface in the n-dimensional
Euclidean unit sphere Sn such that the Gauss map is G. Under this condition, if M is a torus, there exists a surface in
Sn such that the Gauss map is G. We also show that for a connected Riemann surface M there exists an immersion
X : M → RPn such that a neighborhood of each point ofX(M) is covered by a surface in Sn with prescribed Gauss
map G where RPn is the n-dimensional real projective space.

1. Introduction

In this paper by a surface S in an n-dimensional (n ≥ 3) Riemannian manifold M̂ we

mean a triple (M, M̂,X) consisting of a connected Riemann surface M , the ambient space

M̂ and a C∞-conformal immersion X : M → M̂ . Let S = (M, Sn,X) be a surface in the
n-dimensional Euclidean unit sphere Sn. We regard it as a surface in the (n+ 1)-dimensional

Euclidean space Rn+1 and consider the (generalized) Gauss map G : M → Qn−1 where
Qn−1 is the complex quadric in the n-dimensional complex projective space ([1]). It is im-
portant to study the property of the Gauss map of surfaces. For a simply-connected Riemann
surface M and a C∞-mapping G : M → Qn−1 with certain conditions, Hoffman and Osser-
man showed that there exists a surface S = (M,Rn+1,X) such that the Gauss map is G and
X can be expressed by an integration of C∞-mappings induced from G ([2]). In this paper
we consider the existence of surfaces in Sn with prescribed Gauss map. Since, in case of Sn,
the existence of such a surface cannot be showed directly by using the results in [2], we need
other method. By using this method, a local existence theorem will be given in Theorem 3.2
of this paper.

Let M be a connected Riemann surface and G : M → Qn−1 a C∞-mapping. We
assume that G satisfies the conditions (1) and (2) in Theorem 3.2 at each point of M . We

show in Theorem 5.2 that ifM is a torus T 2, there exist a covering space (T̂ 2, T 2, π̂) over T 2

and a surface S = (T̂ 2, Sn,X) such that the Gauss map is G ◦ π̂ . We also show in Section 6
that there exists a surface S = (M,RPn,X) in the n-dimensional real projective space RPn
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with the property that a neighborhood of each point of X(M) is covered by a surface in Sn

such that the Gauss map is G.

2. The Gauss map of surfaces in Sn

We assume in this paper that manifolds and apparatus on them are of class C∞ and that
manifolds satisfy the second countability axiom, unless otherwise stated.

LetM be a connected Riemann surface and (U, z = u1 +√−1u2) a complex coordinate

system of M . For a C∞-mapping A : M → Rk , we put

Az = ∂A

∂z
= 1

2

(
∂A

∂u1
− √−1

∂A

∂u2

)
, Az̄ = ∂A

∂z̄
= 1

2

(
∂A

∂u1
+ √−1

∂A

∂u2

)
.

Let M be a connected Riemann surface and S = (M, Sn,X) a surface in Sn(n ≥ 3). We
define the Gauss map of surfaces in Rn+1 following Hoffman and Osserman ([1]). We regard

S as a surface in Rn+1. X : M → Sn is said to be conformal if for any complex coordinate

system (U, z = u1 + √−1u2) of M it satisfies∣∣∣∣ ∂X∂u1

∣∣∣∣ =
∣∣∣∣ ∂X∂u2

∣∣∣∣ �= 0 ,
∂X

∂u1
· ∂X
∂u2

= 0

where |A| denotes the length of a vector A in Rn+1 and A · B denotes the Euclidean inner

product of vectors A and B in Rn+1. The conformality condition of X is equivalent to〈
∂X

∂z
,
∂X

∂z̄

〉
= 0

where 〈 , 〉 denotes the canonical Hermitian product on Cn+1.
Let Qn−1 be the complex quadric in the n-dimensional projective space CPn defined as

Qn−1 = {[w] ∈ CPn|w1
2 + · · · + wn+1

2 = 0} .
Qn−1 is diffeomorphic to the oriented Grassmaniann manifold

G̃(2, n+ 1) = SO(n+ 1)/SO(2)× SO(n− 1) .

For each u ∈ U we identify the tangent vectors

dXu

((
∂

∂u1

)
u

)
, dXu

((
∂

∂u2

)
u

)

with

∂X

∂u1
(u),

∂X

∂u2
(u)
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by parallel translations in Rn+1 respectively. Then each tangent plane of X(M) corresponds
to a unique element of Qn−1. Thus the generalized Gauss map of S can be defined as

G : M → Qn−1

(
u 
→

[
∂X

∂z̄
(u)

])

(see [1]). For simplicity, the generalized Gauss map will be called the Gauss map in this
paper.

Let M (s, t) be the set of all s × t real matrices. For K ∈ M (s, t), let tK stand for the

transposed matrix of K . For each u ∈ M we denote by Ĝ(u) the element of G̃(2, n + 1)

corresponding to G(u). For u ∈ M , we express Rn+1 as the direct sum

Rn+1 = Ĝ(u)⊕ Ĝ⊥(u)

where Ĝ⊥(u) denotes the orthogonal complement to Ĝ(u) in Rn+1. We set

P(M,G) =
⋃
u∈M

Ĝ(u) .

We denote by V the smallest linear subspace in Rn+1 containing P(M,G). Let V ⊥ be the

orthogonal complement of V in Rn+1. In the following we put k = dim V . Then we have
2 ≤ k ≤ n+ 1.

Let St (n + 1,m) denote the Stiefel manifold of m-dimensional frames in Rn+1. Let
E = (ET ,EN) : U → SO(n+ 1) be a C∞-mapping such that

ET = (E1, E2) : U → St (n+ 1, 2), EN = (E3, · · · , En+1) : U → St (n+ 1, n− 1)

are C∞-mappings and such that ET (u) = (E1(u),E2(u)) is an orthonormal frame in Ĝ(u)

and gives the orientation of Ĝ(u). We also regard ET and EN as C∞-mappings ET : U →
M (n + 1, 2) and EN : U → M (n + 1, n − 1) respectively. Since X is conformal, we can
put

∂X

∂z
= ET Ψ (2.1)

where

Ψ : U → C2 \ {0} (u 
→ t (ψ(u),−√−1ψ(u))) .

We have on U 〈
∂X

∂z
,X

〉
= 0 .

Then on U we can put

X =
n+1∑
j=3

ajEj = ENA (2.2)
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where

A : U → Rn−1 \ {0} (u 
→ t (a3(u), · · · , an+1(u))) .

By using (2.1) and (2.2) we have

∂X

∂z
= ∂EN

∂z
A+ EN

∂A

∂z
= ET Ψ . (2.3)

Since tENET = 0 and tENEN = In−1, by using (2.3), we get

∂A

∂z
= −tEN

∂EN

∂z
A . (2.4)

Here In−1 is the unit matrix of degree (n− 1).
By the Frobenius theorem ([3]), we have the following.

LEMMA 2.1. Under the notations stated above, a necessary and sufficient condition
for the existence of non-zero solutions of the partial differential equation (2.4) can be ex-
pressed as

Im

{
∂ tEN

∂z̄

∂EN

∂z
+ tEN

∂EN

∂z

∂ tEN

∂z̄
EN

}
= 0 . (2.5)

3. Existence theorem

Let M be a connected Riemann surface and G : M → Qn−1 (n ≥ 3) a C∞-mapping.

For each u ∈ M , let Ĝ(u) be as in Section 2. We take a point m0 ∈ M and a complex

coordinate system (U, z = u1 + √−1u2) about m0 where U is connected. If we take U
sufficiently small, there exist C∞-mappings

Ei : U → Rn+1 \ {0} (i = 1, 2)

such that for each u ∈ U ET (u) := (E1(u),E2(u)) is an orthonormal frame in Ĝ(u) and gives

the orientation of Ĝ(u). We denote by EN(u) := (E3(u), · · · , En+1(u)) the orthonormal

complement of ET (u) in Rn+1. In the following let I denote the unit matrix of degree (n+1)
and put

B := ∂ tEN

∂z
(I − ENtEN)

∂EN

∂z
. (3.1)

For such EN we consider the following four conditions:

(I) Im

{
∂ tEN

∂z̄

∂EN

∂z
+ tEN

∂EN

∂z

∂ tEN

∂z̄
EN

}
= 0 , (3.2)
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(II) (I − ENtEN)
∂EN

∂uj
�= 0 (j = 1, 2) , (3.3)

(III) there exists ξ ∈ Rn−1 \ {0} such that

t ξB(m0)ξ = 0 , (3.4)

(IV)
∂ tEN

∂z
ENB + BtEN

∂EN

∂z
− ∂B

∂z
= 0 . (3.5)

We note that (3.2) is equivalent to

∂ tEN

∂u2

∂EN

∂u1
− ∂ tEN

∂u1

∂EN

∂u2
+ tEN

(
∂EN

∂u1

∂ tEN

∂u2
− ∂EN

∂u2

∂ tEN

∂u1

)
EN = 0 . (3.6)

We note that the condition (I) is a necessary and sufficient condition for the existence of a
solution of the partial differential equation (2.4). The condition (II) demands that a mapping
X : M → Sn defining a surface S = (M, Sn,X) is an immersion. Moreover the conditions
(III) and (IV) ensure that X is conformal. These conditions (I)–(IV) are independent of the
choice of complex coordinate systems of M . Moreover we have the following.

LEMMA 3.1. Under the notations above, the conditions (I)–(IV) are independent of

the choice of orthonormal frames in Rn+1.

PROOF. Let SO(m) denote the set of all special orthogonal m×m-matrices. Let E =
(ET ,EN) : U → SO(n + 1) and F = (F T , FN) : U → SO(n + 1) be different C∞-

mappings such that for each u ∈ U ET (u) and FT (u) are orthonormal frames of Ĝ(u) and

give the same orientation of Ĝ(u). Then there exists a C∞-mapping

Ω : U → SO(n+ 1)

such that

F = EΩ = E

(
Ω1 0
0 Ω2

)

whereΩ1(u) ∈ SO(2) and Ω2(u) ∈ SO(n− 1) (u ∈ U). Hence we have

EN = FN tΩ2 . (3.7)

We assume that EN satisfies the conditions (I)–(IV). From (3.7), we have

∂EN

∂z
= ∂FN

∂z

tΩ2 + FN
∂ tΩ2

∂z
,

∂ tEN

∂z
= ∂Ω2

∂z

tFN +Ω2
∂ tFN

∂z
. (3.8)

By using (3.2), (3.7) and (3.8), we get

Im{Ω2
∂ tFN

∂z̄

∂FN

∂z

tΩ2 +Ω2
tFN

∂FN

∂z

∂ tFN

∂z̄
FN tΩ2 + ∂Ω2

∂z̄

tFN
∂FN

∂z

tΩ2
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+ ∂Ω2

∂z

tFN
∂FN

∂z̄

tΩ2 − ∂Ω2

∂z̄

tΩ2
∂Ω2

∂z

tΩ2 − ∂Ω2

∂z

tΩ2
∂Ω2

∂z̄

tΩ2

+Ω2
tFN

∂FN

∂z̄

tΩ2
∂Ω2

∂z

tΩ2 +Ω2
tFN

∂FN

∂z

tΩ2
∂Ω2

∂z̄

tΩ2} = 0

where we used

∂ tΩ2

∂z
= −tΩ2

∂Ω2

∂z

tΩ2 .

Hence we have

Im

{
Ω2

(
∂ tFN

∂z̄

∂FN

∂z
+ tFN

∂FN

∂z

∂ tFN

∂z̄
FN

)
tΩ2

}
= 0 .

Since Ω2 is real, this shows that FN satisfies the condition (I).
By using (3.8), we have

(I − ENtEN)
∂EN

∂uj
= (I − FN tFN)

∂FN

∂uj

tΩ2 + (FN − FN tFNFN)
∂ tΩ2

∂uj

= (I − FN tFN)
∂FN

∂uj

tΩ2 ,

where we used tFNFN = In−1. Hence the assumption of EN implies

(I − FN tFN)
∂FN

∂uj
�= 0

showing that FN satisfies the condition (II).
From (3.8), we compute that

B =
(
∂Ω2

∂z

tFN +Ω2
∂ tFN

∂z

)
(I − FN tFN)

(
∂FN

∂z

tΩ2 + FN
∂ tΩ2

∂z

)

= ∂Ω2

∂z

tFN(I − FN tFN)
∂FN

∂z

tΩ2 + ∂Ω2

∂z

tFN(I − FN tFN)FN
∂ tΩ2

∂z

+Ω2
∂ tFN

∂z
(I − FN tFN)

∂FN

∂z

tΩ2 +Ω2
∂ tFN

∂z
(I − FN tFN)FN

∂ tΩ2

∂z

= Ω2
∂ tFN

∂z
(I − FN tFN)

∂FN

∂z

tΩ2

= Ω2B̃
tΩ2 ,

hence we have

B = Ω2B̃
tΩ2 . (3.9)
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It follows from (3.4) that

t ξB(m0)ξ = t ξΩ2B̃(m0)
tΩ2ξ = 0 .

Since tΩ2ξ ∈ Rn−1 \ {0}, FN satisfies the condition (III).
From (3.8) and (3.9) we have

∂ tEN

∂z
ENB + BtEN

∂EN

∂z
− ∂B

∂z
= Ω2

(
∂ tFN

∂z
FNB̃ + B̃tFN

∂FN

∂z
− ∂B̃

∂z

)
tΩ2 .

This shows that FN satisfies the condition (IV). We complete the proof.

We note that the Gauss map of the Clifford torus in S3 and the one of a sphere embedded

totally umbilically in S3 satisfy the conditions (I)–(IV). The other example will be given in
Section 6.

For a C∞-mapping G : M → Qn−1 satisfying the conditions (I)–(IV), we will show
the existence of a surface in Sn whose Gauss map is G. Hoffman and Osserman showed that,
under certain conditions (Theorem 2.3 in [2]), there exists a surface in Rn such that the Gauss
map is G. However our result does not follow directly from their results.

THEOREM 3.2. Let M be a connected Riemann surface andG : M → Qn−1 (n ≥ 3)

a C∞-mapping. Let (U, z = u1 + √−1u2) be a complex coordinate system about m0 ∈ M .
Assume that there exists a C∞-mapping

E = (ET ,EN) : U → SO(n+ 1) ,

where

ET = (E1, E2) : U → St (n+ 1, 2), EN = (E3, · · · , En+1) : U → St (n+ 1, n− 1) ,

with the following properties:
(1) ET (u) is an orthonormal frame in Ĝ(u) and gives the orientation of Ĝ(u) for any

u ∈ U ;
(2) EN satisfies the conditions (I)–(IV).

Then there exists a surface S = (U0, S
n,X) such that the Gauss map of S is G|U0 where U0

is a simply connected open neighborhood of m0.

PROOF. Let U0 be a simply connected open neighborhood of m0 such that U0 ⊂ U .

By (3.4), we take ξ ∈ Rn−1 \ {0} such that

t ξB(m0)ξ = 0 .

From Lemma 2.1 and (3.2), by taking U0 sufficiently small, the partial differential equation

∂A

∂z
= −tEN

∂EN

∂z
A (3.10)

has a unique C∞ solution

A : U0 → Rn−1 \ {0} (z 
→ t (a3(z), · · · , an+1(z)))
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with the initial value A(m0) = ξ . We now define a C∞-mapping Y : U → Rn+1 as

Y =
n+1∑
j=3

ajEj = ENA . (3.11)

It follows from (3.3), (3.10) and (3.11) that

∂Y

∂z
= ∂EN

∂z
A+ EN

∂A

∂z
= (I − ENtEN)

∂EN

∂z
A �= 0 . (3.12)

We have 〈
∂Y

∂z
,
∂Y

∂z̄

〉
= tA

∂ tEN

∂z
(I − ENtEN)

∂EN

∂z
A = tABA . (3.13)

Then (3.5) and the initial condition of (3.10) imply tABA = 0. Hence (3.13) shows that Y is
conformal. From (3.12), we have

tEN
∂Y

∂z
= (tEN − tENEN tEN)

∂EN

∂z
A = 0

which shows that G|U0 is the Gauss map of the surface SY = (U0, R
n+1, Y ). It follows from

(3.11) and (3.12) that〈
Y,
∂Y

∂z̄

〉
=

〈
ENA, (I − ENtEN)

∂EN

∂z̄
A

〉
= ∂ tEN

∂z
(I − ENtEN)ENA = 0 .

Hence the length of Y is constant on U0 since U0 is connected. We now define a C∞- confor-
mal immersion X : U0 → Sn as

X = 1

|Y |Y .

Since SY and S = (U0, S
n,X) have the same Gauss map, G|U0 is the Gauss map of S. This

completes the proof.

4. Surfaces in Sn with the same Gauss map

Hoffman and Osserman showed in [2] the following:

Let S1 = (M,Rn+1,X) and S2 = (M,Rn+1, Y ) be distinct surfaces in Rn+1 with the same
Gauss map G. If their mean curvature vectors are different from zero at some point, then
Y = cX + X0 where c is a non-zero constant and X0 is a constant vector (Theorem 2.5 in
[2]).

By using this result, we investigate relations between surfaces in Sn with the same Gauss
map.

For r1 > 0 andX0 ∈ Rn+1 \ {0}, let Sn−1
r1

(X0) denote the (n−1)-dimensional Euclidean

sphere with radius r1 and center X0 such that it is the intersection of Sn and the hyperplane in

Rn+1 which is orthogonal to X0 and passes through it.
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Under the notations stated above, we shall show the following.

THEOREM 4.1. Let M be a connected Riemann surface and G : M → Qn−1 a C∞-
mapping. Suppose that S1 = (M, Sn,X) and S2 = (M, Sn, Y ) are distinct surfaces in Sn

with the same Gauss map G. Then we have the following:
(1) X ·X0 and Y ·X0 are constant in M where X0 is a constant vector such that

Y = cX + X0 .

Here c is a non-zero constant such that

c = −X ·X0 + ε
√
(X ·X0)2 + 1 − |X0|2 , ε = ±1 .

(2) If X0 = 0, then Y = −X.
(3) If X0 �= 0, then

X(M) ⊂ Sn−1
r1

(
α

|X0|2X0

)
, Y (M) ⊂ Sn−1

r2

(
β

|X0|2X0

)

and

|c|r1 = r2

where

α = X ·X0 , β = Y ·X0 , r1 =
√

1 −
(
α

|X0|
)2

, r2 =
√

1 −
(
β

|X0|
)2

.

PROOF. If we regard S1 = (M, Sn,X) and S2 = (M, Sn, Y ) as surfaces in Rn+1, their

mean curvature vector fields in Rn+1 nowhere vanish. Then, by a theorem due to Hoffman
and Osserman (Theorem 2.5 in [2]), X and Y satisfy Y = cX + X0 where c is a constant

(c �= 0) and X0 is a constant vector in Rn+1. In the case where X0 = 0, (1) is evident. To
show (1) we may assume X0 �= 0. We have

|Y |2 = |cX +X0|2 = c2 + 2cX ·X0 + |X0|2
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where we used |X| = 1. Since |Y | = 1, we have

c2 + 2cX ·X0 + |X0|2 − 1 = 0 . (4.1)

Since c is real，we have

D := (X ·X0)
2 − |X0|2 + 1 ≥ 0 (4.2)

and get

c = −X ·X0 + ε
√
D (4.3)

where ε = ±1. If |X0| = 1, we have

X ·X0 = − c
2

on M .
From now on we assume that |X0| �= 1. If the equality holds in (4.2), then we have

X ·X0 = −c. We now set

M0 = {m ∈ M |X(m) ·X0 �= −c } , M1 = {m ∈ M |X(m) ·X0 = −c } .
We shall show that either M = M0 or M = M1 holds. Assume M0 �= ∅. Then M0 is
open in M . Let m0 ∈ M0. Let (U, z) be a complex coordinate system about m0 such that
U is connected and U ⊂ M0. Because of D > 0 in M0, by taking U sufficiently small if
necessary, we may assume that

√
D + ε(X ·X0) �= 0

holds in U . By differentiating the both sides of the equation (4.3), we get

0 = −(Xz ·X0)

{
1 − |X0|2√

D(
√
D + ε(X ·X0))

}
.

Since |X0| �= 1, we have Xz · X0 = 0. Hence X · X0 is constant in U . Thus the function
f := X ·X0 on M is locally constant in M0. Take m1 ∈ M0 and let f (m1) = α. We set

M2 = {m ∈ M0 | f (m) = α} .
Since f is locally constant in M0, we can show that M2 is closed and open in M . By the
connectedness of M it must be M = M2, which impliesM = M0. Then we have X ·X0 = α

on M where α is constant. Next, we suppose M1 �= ∅. Since f is constant in M1, we can
show that M1 is closed and open in M . By the connectedness of M , it must be M = M1.
Hence we have X · X0 = −c on M . Then both cases imply that X · X0 is constant on M .
Similarly, Y ·X0 is constant onM . This proves (1).

If X0 = 0, we have Y = εX, which proves Y = −X, by X �= Y , showing (2).
To show (3), we set

r1 =
√

1 − cos2 θ1 , r2 =
√

1 − cos2 θ2 , (4.4)
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where θ1 is the angle formed byX andX0 and θ2 is the one formed by Y andX0 respectively.
It follows from (1) that X(M) and Y (M) are contained in certain (n−1)-dimensional spheres
in Sn respectively. We get

Y ·X0 = (cX +X0) ·X0 = cX ·X0 + |X0|2 .
This is equivalent to

|Y ||X0| cos θ2 = c|X||X0| cos θ1 + |X0|2 (4.5)

which yields

cos θ2 = c cos θ1 + |X0| . (4.6)

From (4.4) and (4.6), we get

1 − r2
2 = c2(1 − r1

2)+ 2c|X0| cos θ1 + |X0|2 .
By (4.1), we obtain c2r1

2 = r2
2. It follows from (1) that

cos θ1 = α

|X0|
where α = X · X0 is constant. Hence the center of the (n − 1)-dimensional sphere in Sn

containing X(M) is given by

cos θ1
X0

|X0| = α

|X0|2X0 .

Similarly the center of the (n− 1)-dimensional sphere in Sn containing Y (M) is given by

cos θ2
X0

|X0| = β

|X0|2X0

where β = Y ·X0 is constant. Then we see that

X(M) ⊂ Sn−1
r1

(
α

|X0|2X0

)
, Y (M) ⊂ Sn−1

r2

(
β

|X0|2X0

)
,

where

r1 =
√

1 −
(
α

|X0|
)2

, r2 =
√

1 −
(
β

|X0|
)2

.

This completes the proof.

Let M be a connected Riemann surface and G : M → Qn−1 (n ≥ 3) a C∞- mapping.

For G, let Ĝ,P(M,G), V ,V ⊥ and k be as defined in Section 2. For p ∈ V⊥ \ {0}, let V np be

the hyperplane containing the origin in Rn+1 which is orthogonal to p.
Under the notations stated above, we shall show the following.
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LEMMA 4.2. Let p ∈ Sn. Assume that tET p = 0 onM . Then we have p ∈ V ⊥ ∩ Sn.

PROOF. We set p = p1 + p2 where p1 ∈ V and p2 ∈ V⊥. Suppose p1 �= 0 for

contradiction. Since tET p2 = 0, we have tET p1 = 0. If we express V as the direct sum

V = V1 ⊕ {ap1 | a ∈ R} ,
then we have P(M,G) ⊂ V1. This contradicts the definition of V . Hence it must be p1 = 0,
which implies p ∈ V⊥ ∩ Sn.

From now on, let (M, Sn,X) be a surface in Sn with the Gauss mapG. For c, t ∈ R and
p ∈ Sn, we define a C∞-conformal immersion Yt : M → Rn+1 by

Yt = cX + tp .

Under this notation, we shall show the following lemmas.

LEMMA 4.3. Let 3 ≤ k ≤ n. For any p ∈ V ⊥ ∩ Sn the following holds:
(1) X · p = α

where α is constant.
(2) For a constant c such that

c = −αt + ε
√
(αt)2 + 1 − t2 , |t| < 1 , ε = ±1 ,

we have Yt (M) ⊂ Sn.
(3) For a constant c = −2αt (|t| = 1) we have Yt (M) ⊂ Sn.

PROOF. Let U be a complex coordinate neighborhood with a coordinate function z =
u1 + √−1u2. We have, by (2.3),

∂X

∂z
= ET Ψ

where

Ψ : U → C2 \ {0} (u 
→ t (ψ(u),−√−1ψ(u))) .

Since p ∈ V ⊥ ∩ Sn, we get

∂

∂z
(X · p) = ∂X

∂z
· p = tΨ tET p = 0

which implies that X · p is constant on U . By the connectedness of M , (1) holds.
Let

c = −αt + ε
√
(αt)2 + 1 − t2

where α = X · p and |t| < 1. Then we have Yt (M) ⊂ Sn, showing (2).

When |t| = 1 and c = −2αt , we get |Yt |2 = 1, which shows (3). We complete the
proof.
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REMARK. We note that the converses of (2), (3) in Lemma 4.3 also hold.

Let p ∈ V ⊥∩Sn. We will denote by Sn−1
p the great sphere in Sn which is the intersection

of Sn and V np . A C∞-conformal immersion Yt : M → Sn in (2) of Lemma 4.3 gives a surface

St = (M, Sn, Yt ) whose Gauss map coincides with the one of S = (M, Sn,X). We can

choose t0 (|t0| < 1) such that St0 is contained in Sn−1
p . In the following we denote by X̂

instead of Yt0 .

LEMMA 4.4. If 3 ≤ k ≤ n, we have

X̂(M) ⊂
( ⋂
q∈V⊥∩Sn

V nq

)
∩ Sn .

PROOF. Let q ∈ V ⊥ ∩ Sn. We put

Ŷt = cX̂ + tq

where

|t| < 1, c = −t (X̂ · q)+ ε

√
t2(X̂ · q)2 + 1 − t2 , ε = ±1 .

By Theorem 4.1 and Lemma 4.3 each surface Ŝt = (M, Sn, Ŷt ) (t �= 0) is contained in some

hyperplane in Rn+1 which is orthogonal to q . Therefore, we have Ŷ0(M) ⊂ V nq ∩ Sn, hence

X̂(M) ⊂ V nq ∩ Sn. Since q is an arbitrary point in V ⊥ ∩ Sn, we complete the proof.

LEMMA 4.5. If 3 ≤ k ≤ n, then the following holds:
(1) V =

⋂
q∈V⊥∩Sn

V nq .

(2) X̂(M) ⊂ V ∩ Sn .
PROOF. Let v ∈ V and q ∈ V ⊥ ∩ Sn. Since v · q = 0, we have v ∈ V nq . This implies

V ⊂
⋂

q∈V⊥∩Sn
V nq .

The other hand let v ∈
⋂

q∈V⊥∩Sn
V nq . For each q ∈ V ⊥ ∩ Sn, we have v · q = 0, which implies

v ∈ V . This shows (1). (2) follows from Lemma 4.4 and the above. This completes the
proof.

Let (M, Sn,X) be a surface whose Gauss map isG. The position of surfaces (M, Sn, Y )
with the same Gauss mapG depends on k, becauseX(M), Y (M) ⊂ Sn. By using the lemmas
showed above, in case of 3 ≤ k ≤ n, we will show that there exist many surfaces in Sn with the
same Gauss map. Such surfaces are contained in the intersection of Sn and a k-dimensional

plane in Rn+1 which is orthogonal to a vector.
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THEOREM 4.6. Let M be a connected Riemann surface and G : M → Qn−1 a C∞-

mapping. Let V and V ⊥ be as defined above. Let S = (M, Sn,X) be a surface in Sn such
that the Gauss map is G. If 3 ≤ k ≤ n, then the following holds:

(1) There exists a surface Ŝ = (M, Sn, X̂) in Sn such that the Gauss map coincides
with G and

X̂(M) ⊂ V ∩ Sn .
(2) If the Gauss map of a surface SY = (M, Sn, Y ) in Sn isG, then Y can be expressed

as

Y = cX̂ + tq

where c and t are constants such that

c = ε
√

1 − t2 , ε = ±1 , |t| < 1 ,

and q ∈ V ⊥ ∩ Sn.

PROOF. (1) follows from Lemmas 4.3 and 4.4. By (1) and the result of Hoffman and

Osserman (Theorem 2.5 in [2]), Y can be expressed as Y = cX̂ + X0 (c �= 0) where X0 ∈
Rn+1 and c is a constant such that

c = −α + ε

√
α2 + 1 − |X0|2 , α = X̂ ·X0 , ε = ±1 . (4.7)

Here we note that α is a constant by (1) of Theorem 4.1. If X0 = 0, then Y = εX̂. In the case
where X0 �= 0, we set

X0 = tq , q ∈ Sn , t ∈ R \ {0} .
Since X̂ is conformal, we have

∂X̂

∂z
= ET Ψ̂

where

Ψ̂ : U → C2 \ {0} (u 
→ (ψ̂(u),−√−1ψ̂(u))) .

We get

0 = ∂X̂

∂z
·X0 = t Ψ̂ tET X0 = t t Ψ̂ tET q ,

because X̂ · X0 is constant. This implies that tET q = 0. From Lemma 4.2 we have q ∈
V ⊥ ∩ Sn. Since α = 0 and c �= 0 in (4.7), we have c = ε

√
1 − t2, |t| < 1. This completes

the proof.

In case of k = n+ 1, we shall show in the following that there exist at most two surfaces
in Sn with the same Gauss map.
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THEOREM 4.7. Let M,G and S = (M, Sn,X) be as in Theorem 4.6. Let SY =
(M, Sn, Y ) be a surface in Sn such that the Gauss map is G. If k = n+ 1, then Y = ±X.

PROOF. By Theorem 2.5 in [2], Y is expressed as Y = cX + X0 where c is a constant

and X0 is a constant vector in Rn+1. If X0 �= 0, then (3) of Theorem 4.1 holds. This shows
k ≤ n, which contradicts the assumption that k = n+ 1. Then we get Y = ±X.

5. Global existence theorem

The purpose of this section is to show the existence of a surface with prescribed Gauss
map. Let M be a connected Riemann surface and G : M → Qn−1 (n ≥ 3) a C∞-mapping.

ForG, let Ĝ,P(M,G),V ,V ⊥ and k be as defined in Section 2. IfM is the Gaussian plane C
or the Riemann sphere S2, by using the monodromy theorem, we can show the following.

PROPOSITION 5.1. Let M be the Gaussian plane C or the Riemann sphere S2. Let
G : M → Qn−1 (n ≥ 3) be a C∞-mapping such that k ≥ 3. Under the notations stated
above, assume that for each z0 ∈ M there exist a connected open neighborhood U of z0 and
a C∞-mapping

E = (ET ,EN) : U → SO(n+ 1) ,

where

ET = (E1, E2) : U → St (n+ 1, 2) , EN = (E3, · · · , En+1) : U → St (n+ 1, n− 1) ,

with the following properties:
(1) ET (u) is an orthonormal frame in Ĝ(u) and gives the orientation of Ĝ(u) for any

u ∈ U ;
(2) EN satisfies the conditions (I)–(IV).
Then there exists a surface S = (M, Sn,X) such that the Gauss map is G.

We consider the case whereM is a torus T 2. From now on we denote byN and Z the set
of all natural numbers and integers respectively. Let a1, a2 > 0. Let Γ be the transformation
group on C generated by translations

ϕ1(z) = u1 + a1 + √−1u2, ϕ2(z) = u1 + √−1(u2 + a2) (z = u1 + √−1u2 ∈ C) .
In the following we consider the torus T 2 = C/Γ . For k1, k2 ∈ N , let Γ (k1a1, k2a2) denote
the subgroup of Γ generating by ϕ1

k1 and ϕ2
k2 where

ϕ1
k1(z) = u1 + k1a1 + √−1u2 , ϕ2

k2(z) = u1 + √−1(u2 + k2a2) .

Here Γ = Γ (a1, a2). We denote by T 2(k1a1, k2a2) the torus C/Γ (k1a1, k2a2). For each
z ∈ C, there exist l1, l2 ∈ Z such that

z = (t1 + l1)k1a1 + √−1(t2 + l2)k2a2
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where 0 ≤ t1, t2 < 1. We note that T 2 = T 2(a1, a2). Then we have the projection πk1k2 :
C → T 2(k1a1, k2a2) such that

πk1k2(z) = πk1k2((t1 + l1)k1a1 + √−1(t2 + l2)k2a2) = πk1k2(t1k1a1 + √−1t2k2a2) .

Put [z] = πk1k2(z) (z ∈ C).
THEOREM 5.2. Let G : T 2 → Qn−1 be a C∞-mapping such that k ≥ 3. Assume that

for each z0 ∈ T 2 there exist a complex coordinate system (U, z) about z0 and a C∞-mapping

E = (ET ,EN) : U → SO(n+ 1) ,

where

ET = (E1, E2) : U → St (n+ 1, 2) , EN = (E3, · · · , En+1) : U → St (n+ 1, n− 1) ,

with the following properties:
(1) ET (u) is an orthonormal frame in Ĝ(u) and gives the orientation of Ĝ(u) for any

u ∈ U ;
(2) EN satisfies the conditions (I)–(IV).

Then there exist a covering space (T̂ 2, T 2, π̂) over T 2 and a surface S = (T̂ 2, Sn,X)

such that the Gauss map of S is G ◦ π̂ .

To prove Theorem 5.2, we shall show some lemmas.

Let G : T 2 → Qn−1 be a C∞-mapping. For k1, k2 ∈ N , we define C∞-mappings

π̃k1k2 : T 2(k1a1, k2a2) → T 2, Gk1k2 : T 2(k1a1, k2a2) → Qn−1

as

π̃k1k2([z]) = π11(z) (z ∈ C) , Gk1k2 = G ◦ π̃k1k2

respectively. Let G̃ : C → Qn−1 be the C∞-mapping defined by G ◦ π11. This mapping is

Γ -invariant. G̃ satisfies the conditions in Proposition 5.1, since π̃k1k2 is holomorphic. Then

there exists a surface S̃1 = (C, Sn, X̃1) such that the Gauss map is G̃. We define conformal

immersions X̃j : C → Sn (j = 2, 3) by X̃2 = X̃1 ◦ ϕ1 and X̃3 = X̃1 ◦ ϕ2 and let S̃j =
(C, Sn, X̃j ) be surfaces such that the Gauss map is G̃.

We first consider the case where k = n + 1. Since S̃1, S̃2 and S̃3 have the same Gauss

map G̃, by Theorem 4.6 we have

X̃1 = ±X̃1 ◦ ϕ1 = ±X̃1 ◦ ϕ2 .

Then the following four cases are possible:

(1) X̃1 = X̃1 ◦ ϕ1 = X̃1 ◦ ϕ2, (2) X̃1 = −X̃1 ◦ ϕ1 = X̃1 ◦ ϕ2, (3) X̃1 = X̃1 ◦ ϕ1 =
−X̃1 ◦ ϕ2, (4) X̃1 = −X̃1 ◦ ϕ1 = −X̃1 ◦ ϕ2.

For each case we show that Theorem 5.2 holds.
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LEMMA 5.3. If k = n + 1 and the case (1) holds, then there exists a surface S =
(T 2, Sn,X) such that the Gauss map is G.

PROOF. For any ϕ ∈ Γ , we have X̃1 = X̃1 ◦ ϕ, so define a C∞-conformal immersion
X : T 2 → Sn as

X([z]) = X̃1(z) (z ∈ C) .
Then we obtain a surface S = (T 2, Sn,X) such that the Gauss map is G. We complete the
proof.

LEMMA 5.4. If k = n + 1 and the case (2) holds, then there exist a covering space

(T̂ 2, T 2, π̂) over T 2 and a surface S = (T̂ 2, Sn,X) with the Gauss map G ◦ π̂ where T̂ 2 is

T 2(2a1, a2).

PROOF. We define a C∞-conformal immersion X̃4 : C → Sn by X̃4 = X̃1 ◦ϕ1
2. Since

surfaces S̃1 and S̃4 = (C, Sn, X̃4) have the same Gauss map G̃, by Theorem 4.6 we have

X̃1 = ±X̃1 ◦ ϕ1
2. Then we have the two cases: (i) X̃1 = X̃1 ◦ ϕ1

2, (ii) X̃1 = −X̃1 ◦ ϕ1
2.

Case (i). We have a C∞-conformal immersion X21 : T 2(2a1, a2) → Sn such that

X21([z]) = X̃1(z) (z ∈ C) .
Then there exists a surface S21 = (T 2(2a1, a2), S

n,X21) with the Gauss mapG21.

Case (ii). Since −X̃1 ◦ ϕ1
2 = −X̃1 ◦ ϕ1, we have X̃1 = X̃1 ◦ ϕ1. This contradicts the

assumption. Then Case (ii) does not occur. We complete the proof.

By using the same argument as in the proof of Lemma 5.4, we have the following lem-
mas.

LEMMA 5.5. If k = n + 1 and the case (3) holds, then there exist a covering space

(T̂ 2, T 2, π̂) over T 2 and a surface S = (T̂ 2, Sn,X) with the Gauss map G ◦ π̂ where T̂ 2 is

T 2(a1, 2a2).

LEMMA 5.6. If k = n + 1 and the case (4) holds, then there exist a covering space

(T̂ 2, T 2, π̂) over T 2 and a surface S = (T̂ 2, Sn,X) with the Gauss map G ◦ π̂ where T̂ 2 is

T 2(2a1, 2a2).

LEMMA 5.7. Under the assumption of Theorem 5.2, if 3 ≤ k ≤ n, then there exist a

covering space (T̂ 2, T 2, π̂) over T 2 and a surface S = (T̂ 2, V ∩ Sn,X) such that the Gauss
map is G ◦ π̂ .

PROOF. For each z0 ∈ T 2 it follows from Theorem 3.2 that there exists a surface S0 =
(U0, S

n, Ψ0) with the Gauss map G|U0 where U0 is a simply connected open neighborhood
of z0.

Let z0 ∈ T 2 and let S1 = (U1, S
n, Ψ1) be a surface as stated above. By the assumption

that 3 ≤ k ≤ n and by (1) of Theorem 4.6, there exists a surface Ŝ1 = (U1, S
n, Ψ̂1) with the
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Gauss mapG|U1 and

Ψ̂1(U1) ⊂ V ∩ Sn .
Since dim V = k, we can apply Lemmas 5.3, 5.4, 5.5 and 5.6 to the (k − 1)-dimensional

unit sphere V ∩ Sn. Hence there exist a covering space (T̂ 2, T 2, π̂ ) over T 2 and a surface

S = (T̂ 2, V ∩ Sn,X) such that the Gauss map is G ◦ π̂ . We complete the proof.

By a similar way as in the proof of Theorem 5.2, we have the following.

THEOREM 5.8. Let M be a cylinder S1 × R and G : M → Qn−1 a C∞-mapping
such that k ≥ 3. Assume that for each z0 ∈ M there exist a complex coordinate system (U, z)

about z0 and a C∞-mapping

E = (ET ,EN) : U → SO(n+ 1) ,

where

ET = (E1, E2) : U → St (n+ 1, 2) , EN = (E3, · · · , En+1) : U → St (n+ 1, n− 1) ,

with the following properties

(1) ET (u) is an orthonormal frame in Ĝ(u) and gives the orientation of Ĝ(u) for any
u ∈ U ;

(2) EN satisfies the conditions (I)–(IV).

Then there exist a covering space (M̂,M, π̂) over M and a surface S = (M̂, Sn,X)

such that the Gauss map is G ◦ π̂ .

6. Surfaces in the real projective space

In the following, let V and k be as in Section 5. We denote by π the natural projection
from Sn to the n-dimensional real projective space RPn.

THEOREM 6.1. Let M be a connected Riemann surface and G : M → Qn−1 a C∞-
mapping such that k ≥ 3. Assume that for each m0 ∈ M there exist a complex coordinate
system (U, z) about m0 and a C∞-mapping

E = (ET ,EN) : U → SO(n+ 1) ,

where

ET = (E1, E2) : U → St (n+ 1, 2) , EN = (E3, · · · , En+1) : U → St (n+ 1, n− 1) ,

with the following properties:
(1) ET (u) is an orthonormal frame in Ĝ(u) and gives the orientation of Ĝ(u) for any

u ∈ U ;
(2) EN satisfies the conditions (I)–(IV).
Then there exists a surface S = (M,RPn,X) with the property that a neighborhood of

each point of X(M) is covered by a surface in Sn with the Gauss map G.
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This theorem follows from the lemmas below.

LEMMA 6.2. Under the assumption of Theorem 6.1, if k = n + 1, then there exists a
surface S = (M,RPn,X) with the property that a neighborhood of each point of X(M) is
covered by a surface in Sn with the Gauss map G.

PROOF. By Theorem 3.2, for each m0 ∈ M there exists a surface Ŝ0 = (U0, S
n, Ψ̂0)

with the Gauss map G|U0 where U0 is a simply connected open neighborhood of m0. We put

S0 = (U0, RP
n,Ψ0) where Ψ0 = π ◦ Ψ̂0. Then S0 has the property as stated in the lemma.

Let Ŝ1 = (U1, S
n, Ψ̂1) and Ŝ2 = (U2, S

n, Ψ̂2) be such surfaces. Then we have surfaces S1 =
(U1, RP

n,Ψ1) and S2 = (U2, RP
n,Ψ2) such that Ψ1 = π ◦ Ψ̂1 and Ψ2 = π ◦ Ψ̂2. We shall

show that if W = U1 ∩ U2 �= ∅, there exists a surface S3 = (U3, RP
n,Ψ3), U3 = U1 ∪ U2,

with the property as stated in the lemma and

Ψ3|Uj = Ψj (j = 1, 2) .

Let U3 = U1 ∪U2 andW = U1 ∩U2 �= ∅. From Theorem 4.7, on each connected component
W0 of W , we have

Ψ̂1|W0 = ±Ψ̂2|W0 .

Then we can define a C∞-conformal immersion Ψ3 : U3 → RPn as

Ψ3|Uj = Ψj (j = 1, 2) .

Then S3 = (U3, RP
n,Ψ3) is a desired surface.

We now suppose that M is compact. Let {Uλ}λ∈Λ be an open covering of M such that
for each λ ∈ Λ Uλ is simply connected and there exists a surface (Uλ,RPn,Ψλ) with the
property stated above. Since M is compact, we can choose a finitely many of open sets from
{Uλ}λ∈Λ so that it is covered by these open sets. By using the argument showed above, we
can get a surface S = (M,RPn,X) with the property stated in the lemma.

In the case where M is non-compact, we choose a sequence {Kj } of connected open

subsets of M such that K̄j is compact and

M =
∞⋃
j=1

Kj , K̄j ⊂ Kj+1 .

From what we have shown above, for each j there exists a surface Sj = (K̄j , RP
n,Ψj ) with

the property stated above and

Ψj+1|Kj = Ψj (j = 1, 2, · · · ) .
Hence we have a desired surface S = (M,RPn,X) where

X|Kj = Ψj (j = 1, 2 · · · ) .
We complete the proof.
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By using the same argument as in the proof of Lemma 5.5, Lemma 6.2 implies the
following.

LEMMA 6.3. Under the assumption of Theorem 6.1, if 3 ≤ k ≤ n, then there exists a
surface S = (M,RPn,X) with the property that a neighborhood of each point of X(M) is
covered by a surface in V ∩ Sn with the Gauss mapG.

EXAMPLE 6.4. We will show an example of a surface such that its Gauss map satis-
fies the conditions in Theorem 6.1. Let Γ be the transformation group on C generated by
translations

ϕ1(z) = u1 + 2π + √−1u2 , ϕ2(z) = u1 + √−1(u2 + 2π)

where z = u1 + √−1u2 ∈ C. We define a torus T 2 as C/Γ and a C∞-conformal immersion
X : T 2 → S7 as

X(z) = 1

2
t (cosu1, sin u1, cosu2, sinu2, cosu1, sin u1, cosu2, sin u2) .

The Gauss map of the surface S = (T 2, S7,X) satisfies the conditions in Theorem 6.1.
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