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Antisymmetrically Deformed Quantum Homogeneous Spaces

Shingo KAMIMURA

Keio University

Abstract. We construct dual objects for quantum complex projective spaces as quantum homogeneous spaces
of quantum unitary groups, in which the deformation parameters are antisymmetric matrices. We prove the splitting
formula and the nondegeneracy of the Hochschild dimensions for the quantum complex projective spaces.

1. Introduction

Homogeneous spaces, as quotient spaces of classical Lie groups, are one of the important
geometric objects. From the noncommuative geometrical point of view, it would be interest-
ing also as the quantum notion corresponding to the classical homegeneous spaces.

In this paper, we exhibit a noncommutative or quantum generalization of certain homo-
geneous spaces in the framework of quantum groups. This is a non-formal deformation and
called θ -deformation, where θ is a deformation parameter of the quantization of a given clas-
sical homogeneous space taken from the parameter set A(n; R). Here A(n; R) is the set of
antisymmetric matrices of size n.

In the sense mentioned above θ -deformed quantum tori are the most fundamental objects
in the θ -deformation. As it will be seen in the splitting theorem stated in the section 5, one can
also expect that θ -deformed quantum spaces will be constructed form θ -deformed quantum
tori. The typical 2n-dimensional θ -deformed quantum torus can be made from the Heisenberg
canonical commutation relations and in this case the antisymmetric matrix θ is nothing but
the noncommutativity in the Heisenberg canonical commutation relations or the canonical
symplectic form on R2n.

We construct quantum complex projective spaces as quantum homogeneous spaces of the
quantum unitary groups after defining restriction maps and coactions between the quantum
unitary groups. A remarkable feature which distinguishes the θ -deformation from the other
deformations is the non-degeneracy of the Hochschild dimension. Namely, the Hochschild
dimension of the corresponding coordinate ring of the θ -deformed quantum space remains
constant during the deformation. Similar properties have been already proven for certain
quantum groups but have not been proven for quantum homogeneous spaces by Connes and
Dubois-Viorette [C-DV].
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The first main result of this paper is the splitting formula for th θ -deformed quantum
homogeneous spaces (see Theorem 5.1.5). It is proved that the coordinate rings of the θ -
deformed quantum homogeneous spaces split into the tensor product of the ordinary coordi-
nate rings of the classical homogeneous spaces and the coordinate rings of the θ -deformed
quantum tori with some torus action. This formula gives us another and much simpler defini-
tion of the θ -deformed quantum homogeneous spaces.

The second main result is concerned with the nondegeneracy of the Hochschild dimen-
sion of the θ -deformed quantum homogeneous spaces (see Theoem 5.2.1). The Hochschild
dimension is the homology dimension of the Hochschild homology of algebras, and it coin-
cides with the ordinary dimension in the case of the coordinate rings of the classical spaces.
It is proved that the Hochschild dimensions of the θ -deformed quantum homogeneous spaces
are equal to the classical dimension. Nondegeneracy of the Hochschild dimension plays an es-
sential role when we naturally extend the classical calculus from classical spaces to quantum
spaces.

2. Hochschild homology

First, let us recall the Hochschild homology of C-algebras.

DEFINITION 2.0.1 (Hochschild homology). For a C-algebra A, the Hochschild chain
groups are

CHk(A) := A⊗(k+1)

and its boundary operators

∂k : CHk(A) → CHk−1(A)

are given by

∂k(a0⊗· · ·⊗ak) :=
k−1∑
i=1

(−1)ia0⊗· · ·⊗aiai+1⊗· · ·⊗ak + (−1)kaka0⊗a1⊗· · ·⊗ak−1 .

We denote by HHk(A) the Hochschild homology of degree k for the C-algebra A.
The Hochschild dimension of the given C-algebra A is the homological dimension of the
Hochschild homology of this algebra and is denoted by dimH(A).

We note that

EXAMPLE 2.0.2. 1. For an n-dimensional real vector space V ,

HHk(S(V )) = S(V ) ⊗ Ak(V ) .

where S(V ) and Ak(V ) are the symmetric algebra and the k-th differential forms of V .
2. For a differentiable manifold M ,

HHk(C
∞(M)) = Ωk(M) .
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The above examples gives a geometrical meaning of the Hochschild homology. Namely,
we have

PROPOSITION 2.0.3. Let V be an n dimensional real vector space and M a differen-
tial manifold. Then, we have

dimH(S(V )) = dim(V ) , dimH (C∞(M)) = dim(M) .

By the above proposition, the Hochschild dimesnion is viewed as a reasonable concept of
dimensions for the given C-algebras A even if it is non-commutative. On the other hand, we
know the following:

PROPOSITION 2.0.4. Under the identification SU(2) ∼= S3,

dimH (Calg(SUq(2))) < dim(SU(2)) ([M-N-W1, M-N-W2])
dimH (Calg(S3

θ )) = dim(S3) ([C-DV])

Here Calg and θ stands for coordinate ring functor of the quantum groups and an antisym-
metric matrix of some size, respectively.

The shadows of Calg(SUq(2))’s are degenerate, but those of Calg (S3
θ )’s are nondegen-

erate. These degeneracy phenomena in q-deformation must have some singularities, but in
many cases they are not so clear and the explanations of such phenomena have not been so
successful. Anyway, the above results suggest to us that the θ -deformation seems to be more
natural quantum object than q-deformation, and this is the reason we adopted θ -deformation
in defining quantum homogeneous spaces in this paper.

3. Quantum matrix algebras via θ -deformation

In this section, we construct several quantum objects based on the quantum tori by us-
ing the antisymmetric deformation. Most of this section is quoted from [C-DV] with small
rearrangements and some remarks.

3.1. Quantum tori. The most important example of θ -deformation is quantum torus,
which is usually called noncommutative torus. There are several ways to define quantum
torus. We now construct a cannoical quantum tori from the Heisenberg’s cannonical commu-
tation relations, which seems the most natural physical context.

DEFINITION 3.1.1. For 2n selfadjoint elements (q1, · · ·, qn, p1, · · ·, pn), the Heisen-
berg CCR is given by

[qi, pi] = √−1�δij 1 , [qi, qj ] = [pi, pj ] = 0

Since selfadjoint elements in such rlations will be represented as unbounded operators,
this causes a functional-analytical difficulty. For this reason, based on Stone’s theorem, we
choose the following description:
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DEFINITION 3.1.2. The Weyl’s CCR is given by

vj (t)ui(t) = exp(
√−1st�δij )ui(s)vi(t) ,

where

ui(s) := exp(
√−1sqi) , vj (t) := exp(

√−1tpj ) , r, s ∈ R

are one-parameter unitary groups.

We can consider the discrete version of the Weyl’s CCR:

DEFINITION 3.1.3. We set

vj (n)ui(m) = exp(
√−1mn�δij )ui(m)vi(n) , m, n ∈ Z .

In particular,

vjui = exp(
√−1�δij )uivj ,

where we set

ui := ui(1) , vj := vj (1) .

We note that the second relation in Definition 3.1.3 gives nothing but a quantum torus.

3.2. Quantum Euclidian spaces. We review the general definition of quantum tori,
T n

θ with θ ∈ A(n,R).

DEFINITION 3.2.1. Let Calg(T n
θ ) be the unital ∗-algebra generated by n unitary ele-

ments

ūiui = uiūi = 1 (1≤i≤n)

with commutation relations

uiuj = λij ujui , ui ūj = λ̄ij ūj ui

ūiuj = λ̄ij uj ūi , ūi ūj = λij ūj ūi .

Here

λij = exp(
√−1θ ij ) , θ = (θ ij ) ∈ A(n; R) = o(n) = Lie(O(n)) ,

and we use ¯ instead of ∗-operation.

If we take θ to be

ω0 :=
(

0n (δij )

(−δij ) 0n

)
∈ A(2n; R) , (δij ) ∈ A(n; R)

the resulting quantum torus is the canonical quantum torus which appeared in Definition 3.1.3.
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REMARK 3.2.2. The canonical quantum tori are defined for even unitary elements.
However Calg (T n

θ ) can be defined for not only for even but also for odd unitary elements.

Replacement of the above unitary conditions in Definition 3.2.1 to the corresponding

normal conditions leads us to a natural definition of the unital ∗-algebra Calg(R2n
θ ). That is,

DEFINITION 3.2.3. Calg(R2n
θ ) is generated by n normal elements

z̄izi = zi z̄i (1≤i≤n)

with the same commutation relations as above,

zizj = λij zj zi , zi z̄j = λ̄ij z̄j zi

z̄izj = λ̄ij zj z̄i , z̄i z̄j = λij z̄j z̄i .

Here also

λij = exp(
√−1θ ij ) , θ = (θ ij ) ∈ A(n; R) .

In order to check the correspondence between the the above quantum formulation and
the following classical formulation,

T n ⊂ R2n ∼= Cn

ui
cl = exp(

√−1t icl) = cos t icl + √−1sin t icl

zi
cl = xi

cl + √−1yi
cl ,

it is helpful to take the Descartes decompositions of the unitary and normal generators,

ui = vi + √−1wi = ui + ūi

2
+ √−1

ui − ūi

2
√−1

zi = xi + √−1yi = zi + z̄i

2
+ √−1

zi − z̄i

2
√−1

.

We can easily verify

v̄i = vi , w̄i = wi , [vi, wi ] = 0 , (vi)2 + (wi)2 = 1

x̄i = xi , ȳi = yi , [xi, yi] = 0 ,

and recover Calg(T n
θ ) from Calg(R2n

θ ) as follows:

PROPOSITION 3.2.4.

Calg(T n
θ ) ∼= Calg(R2n

θ )/(z1z̄1 − 1, · · ·, znz̄n − 1) .
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3.3. Quantum matrix algebras. We recall the notion of quantum matrix algebras,
the unital ∗-algebra Mθ(2n; R) which has been proposed by [C-DV]. We represent it here
briefly. The elementary isomorphisms

M(2n; R)∼=R4n2

and

M(2n; R) ∼= End(R2n) ∼= (R2n)∗⊗R2n ∼= R2n⊗(R2n)∗

would justify the following inclusion

ι : Calg(Mθ(2n; R)) ∼= Calg (R4n2

Θ ) ↪→ Calg(R2n
θ )⊗Calg (R2n−θ ) .

Here

Θ ∈ A(2n2; R)

is determined by

θ ∈ A(n; R)

as follows.

Θ =




θ

·
·

·
θ

−θ

·
·

·
−θ




The following is the alternative definition of the quantum matrix algebra Mθ(2n; R) to
the original one given by [C-DV] (see p. 561):

DEFINITION 3.3.1. Mθ(2n; R) is the unital associative C-algebra generated by 2n2

normal elements

ai
j , bi

j (1≤i, j≤n)

such that

ι(ai
j ) = zi⊗zj , ι(bi

j ) = zi⊗z̄j ,

zi ∈ Calg (R2n
θ ) , zj ∈ Calg(R2n−θ ) , zi := zi
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with commutation relations

ai
ja

k
l = λikλjla

k
l ai

j , ai
j ā

k
l = λikλjl ā

k
l a

i
j ,

ai
jb

k
l = λikλjlb

k
l a

i
j , ai

j b̄
k
l = λikλjl b̄

k
l a

i
j ,

bi
jb

k
l = λikλjlb

k
l b

i
j , bi

j b̄
k
l = λikλjl b̄

k
l b

i
j ,

plus th relation obtained by hermitian conjugation, where we have used the notation λij for

λij to indicate that there is no summation in the above fomulas, and we also set λik := λik .
Since M(2n; R) fails to have a group structure with respect to the ordinary multiplica-

tion of matrices, we cannot expect Calg (Mθ(2n; R)) to have the corresponding Hopf algebra
structure. But the essential obstruction is nothing but the antipode map. That is, we have no
obstructions to define the corresponding bialgebra structure on it.

∆ : Calg(Mθ (2n; R)) −→ (Mθ(2n; R)) ⊗ (Mθ(2n; R))

ai
j 
−→ ai

k ⊗ ak
j + bi

k ⊗ b̄k
j

bi
j 
−→ ai

k ⊗ bk
j + bi

k ⊗ āk
j

ε : Calg(Mθ (2n; R)) −→ C

ai
j 
−→ δi

j

bi
j 
−→ 0

M(2n; R) has a natural action on R2n. It is not so hard to define the corresponding

coaction of Calg(Mθ(2n; R)) on Calg(R2n
θ ).

α : M(2n; R) × R2n −→ R2n

β : Calg(R2n
θ ) −→ Calg(Mθ (2n; R)) ⊗ Calg(R2n

θ )

zi 
−→ ai
j ⊗ zj + bi

j ⊗ z̄j

3.4. Quantum orthogonal groups and unitary groups. The dual objects of quan-
tum linear Lie groups is defined as the quotient algebras of Calg(Mθ(2n; R)) by appropriate
sided ideal:

Calg(Gθ) := Calg(Mθ(2n; R))/I
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We recall that O(2n) is defined as a quotient of M(2n; R) such that each of its elements
preserves the quadratic form

∑n
i=1 zi z̄i . Thus it is quite natural to characterize Calg(Oθ(2n))

by the following proposition, which is given by [C-DV].

PROPOSITION 3.4.1. Let I be the two-sided ideal of Calg(Mθ(2n; R)) generated by

n∑
i=1

(āi
j a

i
k + bi

j b̄
i
k) − δjk

n∑
i=1

(āi
jb

i
k + bi

j ā
i
k) ,

n∑
i=1

(b̄i
j a

i
k + ai

j b̄
i
k) .

Then, we have

π : Calg(Mθ (2n; R)) −→ Calg (Oθ(2n)) := Calg(Mθ(2n; R))/ ∃I

with the coaction

β ′ : Calg(R2n
θ ) −→ Calg(Oθ(2n)) ⊗ Calg(R2n

θ )

n∑
i=1

zi z̄i 
−→ 1 ⊗
n∑

i=1

zi z̄i

Recalling the unitary group U(n) is defined as

U(n) = {g ∈ O(2n) | J g = gJ } ,

we can translate this into the following dual formulation.

Calg(Uθ (n)) := Calg(Oθ(2n))/(π(bi
j ) , π(b̄i

j ))

4. Quantum complex projective spaces

In this section we will construct quantum complex projective spaces as quantum homo-
geneous spaces of the quantum unitary groups which appeared in previous section.

4.1. Restrictions and coactions of quantum unitary groups. Recall that the quo-
tient space of the action

α : U(n)×(U(1)×U(n − 1)) → U(n)

is the complex projective space

Pn−1(C) = U(n)/(U(1)×U(n − 1)) .
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It is natural to consider the dual object for quantum complex projective space as invariant
subalgebra of such a coaction as

β : Calg(Uθn(n)) → Calg(Uθn(n)) ⊗ (Calg(Uθ1(1)) ⊗ Calg(Uθn−1(n − 1))) .

Calg(P n−1
θn

(C)) := Calg(Uθn(n))
(Calg (Uθ1 (1)) ⊗ Calg (Uθn−1 (n−1)))

θn ∈ A(n; R) , θ1 = 0 ∈ A(1; R)

First we have to construct such a restriction as

ρ : Calg(Uθk (k)) → Calg(Uθk−1(k − 1))

for the standard inclusion

ι : U(k − 1) → U(k) .

LEMMA 4.1.1. For the normal generators

ai
j , b

i
j ∈ Calg(Mθk (2k; R)) ,

let I and J to be ideals generated by

a1
1 − 1 , b1

1 , a1
j , ai

1 , b1
j , bi

1 for 2 ≤ i , j ≤ k

and

ak
k − 1 , bk

k , ak
j , ai

k , bk
j , bi

k for 1 ≤ i, j ≤ k − 1 ,

respectively. Then the images of quotient maps

ρk : Calg(Mθk (2k; R)) → Calg(Mθk (2k; R))/I

and

ρ′
k : Calg(Mθk (2k; R)) → Calg(Mθk (2k; R))/J

coinside with

Calg(Mθk−1(2(k − 1); R)) and Calg(Mθ ′
k−1

(2(k − 1); R)) ,

respectively. Here, there exists for a given antisymmetric martix θk of size k,

∃θk−1 , θ ′
k−1 ∈ A(k − 1; R)

such that

θk =
(

θ ′
k−1 ∗
∗ 0

)
,

(
0 ∗
∗ θk−1

)
∈ A(k; R) .
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Moreover, the induced restrictions on Calg of quantum unitary groups, denoted by the
same notations above,

ρk : Calg (Uθk (k)) → Calg(Uθk−1(k − 1))

and

ρ′
k : Calg (Uθk (k)) → Calg(Uθk−1(k − 1))

are Hopf algebra homomorphisms.

Using these restrictions, we can get the restrictions corresponding to the standard inclu-
sion

U(1)×U(n − 1) ↪→ U(n) .

PROPOSITION 4.1.2. Let ρn,1 be

ρn,1 := ((ρ2◦· · ·◦ρn)⊗ρ′
n) ◦ ∆ .

Then

ρn,1 : Calg(Uθn(n)) → (Calg (Uθ1(1)) ⊗ Calg(Uθn−1(n − 1))

is a surjective ∗-Hopf algebra morphism, and

(id⊗ρn,1) ◦ ∆ : Calg (Uθn(n)) → Calg(Uθn(n)) ⊗ (Calg(Uθ1(1)) ⊗ Calg(Uθn−1(n − 1))

is a right coaction.

We now define the following:

DEFINITION 4.1.3. As the right comodule algebra Calg(Uθn(n)) is over

(Calg (Uθ1(1))⊗Calg(Uθn−1(n − 1))) ,

we define Calg(P n−1
θn

(C)) to be the invariant subalgebra of its right coaction.

Calg(P n−1
θn

(C)) := Calg(Uθn(n))
(Calg (Uθ1 (1))⊗Calg (Uθn−1 (n−1)))

:= {f ∈Calg(Uθn(n)) | ((id⊗ρn,1)◦∆)(f ) = f ⊗1}
The algebra Calg(P n−1

θn
(C)) is called quantum complex projective space.

REMARK 4.1.4. By a routine procedure as above construction, we can easily define

Calg(Gr
n,k
θ (C)) , Calg(F

n,k1,...,kd

θ (C)) and Calg(St
n,k
θ (C)) ,

which are dual of quantum complex Grassmannian manifold, complex flag manifold and com-
plex Stiefel manifold, respectively. The real versions corresponding to these homogeneous
spaces can also be obtained along this idea.
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REMARK 4.1.5. We can also define odd dimensional quantum spheres as quantum
homogeneous spaces of quantum unitary groups.

(id ⊗ ρn) ◦ ∆ : Calg(Uθn(n)) → Calg(Uθn(n)) ⊗ Calg (Uθn−1(n − 1))

Calg(S2n−1
θn

) := {f ∈Calg(Uθn(n)) | ((id ⊗ ρn) ◦ ∆)(f ) = f⊗1}
On the other hand, we can find another definition of them in [C-DV], which has the

following expression:

Calg(S2n−1
θn

) := Calg(R2n
θn

)

/( n∑
i=1

zi z̄i − id

)

Since S3∼=SU(2) classically, it is expected that Calg(S3
θ2

)∼=Calg(SUθ2(2)). But we cannot

quantize SU(n) in the context of θ -deformation ([C-DV]). In spite of this it is still interesting

to consider the Hopf algebra structure on Calg(S3
θ2

) with respect to the above two expressions.

5. Main theorems

In this section, we show two remarkable properties for the quantum complex projective
spaces: the splitting formula and the nondegeneracy of the Hochschild dimension. These
type of theorems have already been shown for the case of some quantum groups in [C-DV].
However, the restrictions and coactions defined in this paper require a little longer proofs than
those shown in [C-DV].

The first is a splitting formura, which justifies the importance of the quantum tori in
θ -deformation.

5.1. Splitting formula. We first show the splitting formura, which justifies the impor-
tance of the quantum tori in θ -deformation. We define the splitting homomorphisms mapping

the coordinate rings on the quantum 2n-Euclidian spaces R2n
θ into the coordinate rings on the

product of the classical Euclidian spaces R2n with the quantum n-torus T n
θ .

We first consider two natural actions σ and τ of T n on Calg(R2n
θ ) and Calg(T n

θ ), respec-
tively.

DEFINITION 5.1.1.

σ : T n −→ Aut(Calg(R2n
θ ))

s 
−→ σs

σs : Calg(R2n
θ ) −→ Calg(R2n

θ )

zi 
−→ exp(2π
√−1si)z

i
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DEFINITION 5.1.2.

τ : T n −→ Aut(Calg(T n
θ ))

t 
−→ τt

τt : Calg(T n
θ ) −→ Calg(T n

θ )

: ui 
−→ exp(2π
√−1ti )u

i

This yields two actions σ and τ of T n on R2n × T n
θ given by the group-homomorphisms

s 
→ σs ⊗ I and s 
→ I ⊗ τs of T n into Aut(Calg(R2n) ⊗ Calg(T n
θ )) with obvious notations.

The noncommutative space R2n ×T n
θ is here defined by duality by writing Calg (R2n ×T n

θ ) =
Calg(R2n) ⊗ Calg(T n

θ ). We shall use the actions σ and the diagonal action σ × τ−1 of T n on

R2n×T n
θ , where σ ×τ−1 is defined by s 
→ σs ⊗τ−s = (σ ×τ−1)s (as group homomorphism

of T n into Aut(Calg(R2n × T n
θ ))).

In the following statement, zi
(0) denotes the classical coordinates of Cn corresponding to

zµ for θ = 0.

PROPOSITION 5.1.3. a) There is a unique homomorphism of unital ∗-algebra

st : Calg(R2n
θ ) → Calg(R2n) ⊗ Calg(T n

θ )

such that st (zi) = zi
(0) ⊗ ui for i = 1, · · · , n.

b) The homomorphism st induces an isomorphism of Calg(R2n
θ ) onto the subalgebra

Calg(R2n × T n
θ )σ×τ−1

of Calg(R2n × T n
θ ) of fixed points of the diagonal action of T n.

It is obvious that the st (zi) are invariant by the diagonal action of T n. Thus the only
non-trivial parts of the statement, which are not difficult to show, are the injectivity of st and

the fact that Calg(R2n × T n
θ )σ×τ−1

is generated by the zi as unital ∗-algebra.
Let us consider the homomorphism

r23 ◦ (st ⊗ st) : Calg (R2n
θ ) ⊗ Calg(R2n−θ )

→ Calg(R2n) ⊗ Calg (R2n) ⊗ Calg(T n
θ ) ⊗ Calg(T n−θ )

where r23 is the transposition of the second and the third factors in the tensor product, (i.e.

Calg(T n
θ ) ⊗ Calg(R2n) is replaced by Calg(R2n) ⊗ Calg(T n

θ ) there). This ∗-homomorphism
restricts to give a homomorphism, again denoted by st

st : Mθ(2n, R) → M(2n, R) ⊗ Calg(T n
θ ) ⊗ Calg (T n−θ )

which is again a homomorphism of unital ∗-algebras and will be also refered to as splitting
homomorphism. It is the unique unital ∗-homomorphism such that

st (ai
j ) = ãi

j ⊗ ui ⊗ uj (1)
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st (bi
j ) = b̃i

j ⊗ ui ⊗ u∗
j (2)

for i, j = 1, · · · , n where ãi
j and b̃i

j are the classical coordinates corresponding to ai
j and bi

j

for θ = 0. The counterpart of b) in Proposition 5.1.3 is that st induces here an isomorphism

of Mθ(2n, R) onto the subalgebra of elements x of M(2n, R)⊗Calg(T n
θ )⊗Calg (T n−θ ) which

are invariant by the diagonal action (σ ⊗ σ) × (τ ⊗ τ )−1 of T n × T n i.e. which satisfy
(σs ⊗ σt )(τ−s ⊗ τ−t )(x) = x, ∀(s, t) ∈ T n × T n. Here,

DEFINITION 5.1.4.

σ × σ : T n × T n −→ Aut(Calg(Mθ(2n; R)))

(s, t) 
−→ σs ⊗ σt

σs ⊗ σt : Calg(Mθ(2n; R)) −→ Calg (Mθ(2n; R))

ai
j 
−→ exp(2π

√−1(si + tj )) ai
j

bi
j 
−→ exp(2π

√−1(si − tj )) bi
j

One has

st ◦ (σs ⊗ σt ) = ((σs ⊗ σt ) ⊗ I ⊗ I) ◦ st

which implies that st induces an isomorphism of Mθ(2n, R)σ⊗σ onto M(2n, R)σ⊗σ ⊗ 1 ⊗ 1
where Mθ(2n, R)σ⊗σ denotes the subalgebra of elements which are invariant by the action of
T n × T n, (the same for θ = 0 on the right-hand side).

The above homomorphism passes to the quotient to define homomorphisms

st : Calg(Gθ) → Calg(G) ⊗ Calg (T n
θ ) ⊗ Calg(T n−θ )

where G is O(2n) and U(n). These homomorphisms st which will still be refered to as the
splitting homomorphisms, have the property that they induce isomorphisms of Calg(Gθ) onto

(Calg(G) ⊗ Calg(T n
θ ) ⊗ Calg(T n−θ ))

(σ⊗σ)×(τ⊗τ )−1
for these groups G.

By the above discussion and the definition of coaction ρn,1, we obtain the following
theorem.

THEOREM 5.1.5. The noncommutativity between the generators of Calg(P n−1
θn

(C)) is

absorbed in quantum tori. That is:
Calg(P n−1

θn
(C)) = (Calg(P n−1(C)) ⊗ Calg(T n

θ ) ⊗ Calg(T n−θ ))
(σ⊗σ) × (τ⊗τ )−1

.

5.2. Nondegeneracy of the Hochschild dimensions. We show the nondegeneracy
of dimension of quantum projective spaces, which also implies the reasonableness of the θ -
deformation. Namely, we have
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THEOREM 5.2.1.

dimH(Calg(P n−1
θn

(C))) = dim(P n−1(C))

Here, dimH denotes the Hochschild dimension of algebras, which is the last degree of non-
trivial Hochschild homology of algebras.

Recalling that the Hochschild homology of the coordinate ring of a given manifold is
nothing but the de Rham algebra of the manifold, we are led to the natural direction of the
proof of the above theorem. That is we should consider the differential graded algebras asso-
ciated to the θ -deformation of classical spaces, especially quantum tori.

We first give the definition of C∞(T n
θ ). The locally convex ∗-algebra C∞(T n

θ ) of smooth

functions on the quantum torus T n
θ is defined as follows. It is the completion of Calg(T n

θ )

equipped with the locally convex topology generated by the seminorms

|u|r = sup
r1+···+rn≤r

‖Xr1
1 · · · Xrn

n (u)‖

where ‖ · ‖ is the C∗-norm (which is the sup of the C∗-seminorms) and where the Xi are the
infinitesimal generators of the action s 
→ τs of T n on T n

θ . They are the unique derivations of

Calg(T n
θ ) satisfying

Xi(u
j ) = 2πiδ

j
i uj (3)

for i, j = 1, · · · , n.
The above definition with the splitting formula for quantum tori leads us the following

proposition.

PROPOSITION 5.2.2.

C∞(T n
θ ) = (C∞(T n) ⊗̂ C∞(T n

θ ))σ×τ−1

Let Ω(T n
θ ) be the graded-involutive subalgebra (Ω(T n) ⊗̂C∞(T n

θ ))σ×τ−1
of

Ω(T n) ⊗̂ C∞(T n
θ ) consisting of elements which are invariant by the diagonal action σ × τ−1

of T n. This subalgebra is stable by d ⊗ I so Ω(T n
θ ) is a locally convex graded-involutive

differential algebra which is a deformation of Ω(T n) with Ω0(T n
θ ) = C∞(T n

θ ) and which
will be referred to as the algebra of smooth differential forms on T n

θ . The action s 
→ σs of

T n on Ω(T n) induces s 
→ σs ⊗ I on Ω(T n)⊗̂C∞(T n
θ ) which gives by restriction a group-

homomorphism, again denoted s 
→ σs , of T n into the group Aut(Ω(T n
θ )) of automorphisms

of the graded-involutive differential algebra Ω(T n
θ ).

PROPOSITION 5.2.3. The graded-involutive differential subalgebra Ω(T n
θ )σ of σ -

invariant elements of Ω(T n
θ ) is in the graded center of Ω(T n

θ ) and identified canonically with
the graded-involutive differential subalgebra Ω(T n)σ of σ -invariant elements of Ω(T n).

In other words the subalgebra of σ -invariant elements of Ω(T n
θ ) is not deformed (i.e.

independent of θ ). In fact one has Ω(T n
θ )σ = Ω(T n)σ ⊗ 1 (⊂ Ω(T n)⊗̂C∞(T n

θ )).
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Now we compute the Hochschild dimension of T n
θ . We first construct a continuous

projective resolution of the left module C∞(T n
θ ) over C∞(T n

θ ) ⊗̂C∞(T n
θ )opp .

LEMMA 5.2.4. There are continuous homomorphisms of left modules

ip : Ωp(T n
θ ) ⊗̂C∞(T n

θ ) → Ωp−1(T n
θ ) ⊗̂C∞(T n

θ )

over C∞(T n
θ ) ⊗̂C∞(T n

θ )opp for p ∈ {1, · · · ,m} such that the sequence

0 → Ωm(T n
θ ) ⊗̂C∞(T n

θ )
im→ · · · i1→ C∞(T n

θ ) ⊗̂C∞(T n
θ )

µ→ C∞(T n
θ ) → 0

is exact, where µ is induced by the product of C∞(T n
θ ).

In fact one has continuous projective resolutions of C∞(T n) and of C∞(T n
θ ) of the form

0 → Ωm(T n) ⊗̂C∞(T n)
i0
m→ · · · i0

1→ C∞(T n) ⊗̂C∞(T n)
µ→ C∞(T n) → 0

0 → Ωn(T n
θ ) ⊗̂C∞(T n

θ )
jn→ · · · j1→ C∞(T n

θ ) ⊗̂C∞(T n
θ )

µ→ C∞(T n
θ ) → 0

which combine to give a continuous projective resolution of

C∞(T n) ⊗̂C∞(T n
θ ) = C∞(M × T n

θ )

of the form

0 → Ωm+n(T n × T n
θ ) ⊗̂C∞(T n × T n

θ )
ĩm+n−→ · · ·

ı̃1→ C∞(T n × T n
θ ) ⊗̂ C∞(T n × T n

θ )
µ→ C∞(T n × T n

θ ) → 0

where Ωp(T n × T n
θ ) = ⊕

p≥k≥0 Ωk(T n) ⊗̂Ωp−k(T n
θ ) and where

ı̃p =
∑

k

(i0
k ⊗ I + (−I)k ⊗ jp−k) .

There is some freedom in the choice of the i0
k , j� and one can choose them equivariantly

(by choosing a σ -invariant metric on M , etc.) in such a way that the ı̃p restrict as continuous
homomorphisms

ip : Ωp(T n
θ ) ⊗̂C∞(T n

θ ) → Ωp−1(T n
θ ) ⊗̂C∞(T n

θ )

of C∞(T n
θ ) ⊗̂C∞(T n

θ )opp-modules which gives the desired resolution of C∞(T n
θ ).

This shows that the Hochschild dimension nθ of T n
θ is ≤ n.

Let w ∈ Ωn(T n) be a non-zero σ -invariant form of degree n on T n (obtained by a
straightforward local averaging). In view of Proposition 5.2.3, w ⊗ 1 = wθ is a σ -invariant
element of Ωn(T n

θ ), i.e. wθ ∈ Ωn(T n
θ )σ which defines canonically a non-trivial invariant

cycle vθ in Zn(C
∞(T n

θ ), C∞(T n
θ )). Thus one has nθ ≥ n and therefore the following result.
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PROPOSITION 5.2.5.

dimH (T n
θ ) = dim(M) .

That is the Hochschild dimension nθ of C∞(T n
θ ) coincides with the dimension n of T n.

Combing Proposition 5.2.2 with this proposition, we finally conclude proof of Theorem
5.2.1.
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