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dently not meant to be taken completely seriously, but
I think he goes too far when he accuses Gauss of
circular reasoning. I find no foundation for that in
what Gauss actually wrote. From the assumption that
the arithmetic mean of repeated observations of a
single quantity is the maximum likelihood estimate,
he derives the normal distribution, and from that the
more general principle of least squares for getting
maximum likelihood estimates from observations on
a number of related quantities. He asserts that the
latter principle should be considered to be just as valid
as the principle of the arithmetic mean; he does not
close the circle by claiming that this in turn justifies
the principle of the arithmetic mean. (My use of the
term “maximum likelihood” is anachronistic; I am not
claiming that Gauss had an exact equivalent of the
modern notion clearly in mind.)

Gauss argument involves some tacit assumptions,
and one can debate the extent to which he was aware
of them; the argument is loose by modern standards,
but it is not absurd. The extent to which he claimed
to be giving a rigorous proof is not clear to me.
(Neither Gauss (1809) nor his later extensive exposi-
tion of the method of least squares, which appeared
in 1821 and 1823 with a supplement in 1826 (Volume
4 of his collected works, pp. 1-93) is at all a treatise
in pure mathematics.) He clearly considered the

Comment

J. L. Doob

Le Cam’s interesting account can be described with
only slight exaggeration as a history of (nonrigorous)
early research in probability, of probability texts writ-
ten by mathematicians ignorant of the subject, and
finally of frequently clumsy research published before
the writers had digested their own work or consulted
that of others. Is such the history of all probability
research? Of all mathematical research? Should trade

* secrets be disclosed? ’

The following quotations are relevant. Lévy, who
plays an important role in Le Cam’s account, once
remarked to me that reading other mathematicians’
research gave him actual physical pain. A well known
nonprobabilist mathematician remarked to me that
the first time a mathematician publishes a research
result the treatment is likely to be both wrong and
unreadable; the second time the treatment will be
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method of least squares to be of great practical value.
He was also interested in justifying it philosophically,
but he explicitly stated that it cannot be singled out
as the only reasonable method on purely theoretical
grounds (see Section 186 of Gauss (1809) and Section
6 of the work on least squares mentioned above.)

Professor Le Cam’s dissatisfaction with the per-
formance of the hypothetical referee of Gauss (1809)
brings to mind one more conversation with Feller,
when he expressed some preference for the old days
before the present refereeing system. An author who
submitted inferior work for publication then ran this
risk of damage to his reputation if it appeared. Of
course the old system only worked well when the
research community was smaller, the volume of pub-
lication was much less, and many papers actually got
read by at least a few experts, not just counted by
deans evaluating candidates for promotion. Gauss’
reputation does not seem to have suffered from either
the original publication in 1809 or its reprinting over
a century and a half later.

I also wonder whether the influence of Gauss’ work
among nonmathematicians (astronomers, physicists,
surveyors) may have played some role (along with the
law of eponymy) in attaching his name to the distri-
bution that bears it.

correct but obscure; finally, a third treatment may be
both correct and clear.

As a partial explanation of the second remark, and
of the sometimes unseemly haste to publish, it must
be acknowledged that no matter how much a mathe-
matician admires his own work, the writing of it may
finally make it so loathesome to his sight that he
hastens to send it off for premature publication.

Influential on the nature and speed of probability
research is the fact that probabilists, until about the
last 30 years, have labored under the psychological
disadvantage that their field was not considered a
mathematical discipline by their colleagues, who for
one thing did not understand why standard mathe-
matical nomenclature was insufficient, why old con-
cepts had to be rechristened “random variables” and
“expectations.” Moreover, probability books were full
of nonmathematical concepts: dice, gambling houses,
Peter, and Paul.

Even as late as the 1930s it was not quite obvious
to some probabilists, and it was certainly a matter of
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doubt to most nonprobabilists, that probability could
be treated as a rigorous mathematical discipline. In
fact it is clear from their publications that many
probabilists were uneasy in their research until their
problems were rephrased in what was then nonprob-
abilistic language. For example, difference and differ-
ential equations for transition probabilities were sug-
gested by sketchily described probability contexts,
contexts then avoided as much as possible in the
treatment and discussion of the equations. This uneas-
iness explains why it seemed more natural to Feller in
1935 than it does to Le Cam in 1985 to discuss con-
volutions of distribution functions rather than the
corresponding sums of independent random variables.

Comment

David Pollard

Professor Le Cam deserves our thanks for a fine
piece of scholarship. I hope that others will be inspired
by his example to share with us their understanding
of important ideas in probability and statistics.

I was particularly pleased to read the high praise in
Section 3 for Lindeberg’s proof of the central limit
theorem. It is indeed surprising that the proof does
not appear more often in standard texts (although
Billingsley (1968) and Breiman (1968) should be added
to the list of texts where it does appear), especially
since the characteristic function approach is an effec-
tive source of confusion for beginners.

As Le Cam notes, the proof has even more to
recommend it than its simplicity. It can be modified
to give more information on the rate at which S,
converges in distribution to T,, and it is easily ex-
tended beyond the case of distribution functions on
the real line. I’ll indicate briefly how this can be done.

Lindeberg’s argument depends on not much more
than Taylor’s theorem to compare the expected value

-Pf(S,) of a smooth function of S, with the corre-
sponding expected value Pf (T,) for the sum of Gaus-
sian increments. This translates into a bound on the
difference A(x) = P{S, = x} — P{T, = x} between
distribution functions when f is chosen as a smooth
approximation to the indicator function of (—o, x].
The f used by Lindeberg was sandwiched between the
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Feller had a superb background in classical analysis,
and accordingly devised a heavily formal version of
the central limit theorem, whereas Lévy produced a
rather vague but correct in principle corresponding
version. As always, Lévy exploited his unparalleled
intuition to the despair of his readers, who found his
work vague and obscure, although insightful and in-
structive when finally mastered. Lévy was one of the
first probabilists to treat sample functions and se-
quences in depth, but never fully accepted measure
theory as the mathematical basis of probability. For
example, to him conditional expectations were a part
of the essence of probability, needing no formal gen-
eral definition.

indicator functions of (=, x] and (=, x + L], for a
small L, and was piecewise cubic in (x, x + L). The
Lipschitz constraint on the second derivative (ac-
tually, Lindeberg put a bound on the third derivative)
forces L to be of the order A™'/3; a function with this
degree of smoothness cannot negotiate the descent
from 1 down to 0 in a shorter interval. Because this f
fits between the two indicator functions,

P{S, < x} < | Pf(S,) — Pf(T,)| + P{T, < x + L}.

As Le Cam shows, the first term on the righthand side
is bounded by AB, with 8 a sum of third absolute
moments; the second term exceeds P{T, < x} by the
probability that T, lies in (x, x + L], that is, by a term
of order L. An A of the order 37%/* balances these two
contributions to the difference A(x) between distri-
bution functions. A similar argument gives a similar-
looking lower bound. Since the method works uni-
formly in x, this produces the bound of order 3/ that
Le Cam quotes from Lindeberg.

The same idea works for subsets of other linear
spaces. If B is such a subset, the challenge is to find a
smooth approximation f to the indicator function of
B: an f for which a Taylor expansion is possible; which
takes values close to 1 well inside B, and values near
0 well outside B; and which makes the transition
between these two levels as rapidly as possible near
the boundary of B. If a bound on

A(B) = P{S, € B} — P{T, € B}

is sought, attention must be paid to how much mass
the distribution of T, puts in the transition region



