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Comment

J. A. Hartigan

Efron and Tibshirani are to be congratulated on a
wide-ranging persuasive survey of the many uses of
the boostrap technology. They are a bit cagey on what
is or is not a bootstrap, but the description at the end
of Section 4 seems to cover all the cases; some data y
comes from an unknown probability distribution F; it
is desired to estimate the distribution of some function
R(y, F) given F; and this is done by estimating the
distribution of R (y*, F) given Fwhere F'is an estlmate
of F based on y, and y* is sampled from the known k.

There will be three problems in any application of
the bootstrap: (1) how to choose the estimate F?
(2) how much sampling of y* from F ? and (3) how
close is the distribution of R( y* F) given F to
R(y, F) given F?

Efron and Tibshirani suggest a variety of estimates
F for simple random sampling, regression, and auto-
regression; their remarks about (3) are confined
mainly to empirical demonstrations of the bootstrap
in specific situations.

I have some general reservations about the boot-
strap based on my experiences with subsampling tech-
niques (Hartigan, 1969, 1975). Let X;, ..., X, be a
random sample from a distribution F, let F, be the
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empirical distribution, and suppose that t(F,) is an
estimate of some population parameter ¢t (F). The sta-
tistic t(F,) is computed for several random subsamples
(each observation appearing in the subsample with
probability ¥2), and the set of t(ﬁ',,) values obtained is
regarded as a sample from the posterior distribution
of t(F). For example, the standard deviation of the
t(F,) is an estimate of the standard error of t(F,)
from t(F); however, the procedure is not restricted to
real valued ¢.

The procedure seems to work not too badly in
getting at the first- and second-order behaviors of

" t(F,) when t(F,) is near normal, but it not effective

in handling third-order behavior, bias, and skewness.
Thus there is not much point in taking huge samples
t(F,) since the third-order behavior is not relevant;
and if the procedure works only for ¢(F},) near normal,
there are less fancy procedures for estimating standard
error such as dividing the sample up into 10 subsam-
ples of equal size and computing their standard devia-
tion. (True, this introduces more bias than having
random subsamples each containing about half the
observations.) Indeed, even if ¢(F,) is not normal, we
can obtain exact confidence intervals for the median
of t(F./0) using the 10 subsamples. Even five sub-
samples will give a respectable idea of the standard
error.

Transferring back to the bootstrap: (A) is the boot-
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strap effective for non-normal situations? (B) in the
normal case, does the bootstrap give accurate assess-
ment of third-order terms? If not, it is scarcely justi-
fied to do many bootstrap simulations, since you will
only use them to estimate a variance. The asymptotic
justifications of the bootstrap such as in Bickel and
Freeman (1981) or Singh (1981) do consider behavior
near the normal.

To be specific, consider the case where a statistic
t(F,) estimates a parameter ¢t(F). The first kind of
bootstrapping might be on the quantity t(F,) — t(F);
to estimate its variance ¢%(F)/n we compute repeat-
edly t(F,) — t(F,) where F, is the empirical distribu-
tion of a sample of size n from F,. Thus ¢2(F,) will
be used to estimate o(F). We might hope that

- oF) , ofL
HE) = tF) +E7 =+ 0<n)

n

where £ ~ N(0, 1). This is the case referred to above
where t(F,) is normal and numerous resampling esti-
mates are available to estimate o%(F). To do better,
consider the higher order terms:

(F) 83(F)
tF,) = t(F) + ¢ 2 (82— 1)
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+ b—(? + 0(n™%?2).

Then
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We might expect that the sample quantities o(F),),
s3(F,); b(F,) are within O(n~"?) of the population
quantities; but since ¢(F,) — o(F) = O(n~?), the
error in approximating the distribution of ¢ (F,) — t(F)
by that of t(F,) — t(F,) is O(n™"2), so that the
additional skewness and bias terms are of no interest:

. a
P|(t(F,) —t(F) = —
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- P[t(ﬁ',,) t(F,) < O(n~v2).
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The bootstrap distribution is no better than any nor-
mal approximation using an estimate of variance ac-
curate to O(n~?)!

On the other hand, if

R(y, F) = [t(F,) — t(F)]/o(F),

[t(Fn) — t(F)])/o(F)
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Now s5(F,) estimates s3(F) and b’ (F,) estimates
b’ (F) to within O(n~?), and the Cornish-Fisher ex-
pansion is accurate to skewness and bias terms:

P<t(F") — t(F) _ _a_>
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These results are given for t(F,) = X in Singh (1981).

The conclusion is that for ¢t(F,) near normal there
is no advantage for the bootstrap over other resam-
pling methods, unless the pivotal [t(F,) — t(F)]/a(F)
is used. Usually o(F) is not known; that’s why we are
resampling in the first place. We would need to
estimate it by bootstrapping and use the pivotal
(t(F,) — t(F))/o(F,). And the distribution of this
pivotal would be determined by bootstrapping to ob-
tain [t(F,) — t(F,)]/o(F,). Note that o(F,) requires
two levels of bootstrapping; this might get close to
Professor Efron’s objective of soaking up all the spare
cycles on the West Coast!

Let us consider the modest objective of estimating
the variance of t(F,). The various resampling tech-
niques compute the variance of t(W?), t(W?), ...,
t(W*) where t(W') denotes the statistic computed on
X; repeated W'times, 1 < i < n. What is a good choice
of WY, W2 ..., W*? If in fact X, . .., X, are sampled

-from N(u, 0?) and t = X, a minimum variance un-

biased estimate of ¢ is obtained by setting W! =1 +
Vng! where £, o2, ..., £* are any k orthonormal
vectors orthogonal to 1. The quantities vn£! can be
obtained roughly by sampling each of them indepen-
dently from N(0, 1). Bootstrap resampling, for large
n, has W! approximately independently Poisson with
expectation 1. Random subsampling, for large n has
W! approximately independent and approximately
taking values 0 and 2 with probability Y. The Dirichlet
distribution for F given F, produces weights W' that
are approximately exponential with expectation 1.
Any resampling scheme in which the weights are
approximately independent with mean and variance 1
will give the right expected variance, but the efficiency
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of the estimate (at normal means) is optimal for
Wi=1+ Vntl

For n = 8, obtain an efficient estimate from subsam-
ples (1234), (1256), (1278), (1357), (1368), (1458),
(1467); use as many as you need, and if n > 8 divide
the sample into 8 groups as evenly as possible. I think
it must be rare that the various approximations needed
to connect the resampled computation to the compu-
tation of interest will be satisfied well enough to justify

Rejoinder

B. Efron and R. Tibshirani

Professor Hartigan, who is one of the pioneers of
resampling theory, raises the question of higher order
accuracy. This question has bothered resamplers since
the early days of the jackknife. Sections 7 and 8 of
our paper show that the bootstrap can indeed achieve
higher levels of accuracy, going the next step beyond
simple estimates of standard error. The bootstrap
confidence intervals we discuss are not of the crude
(although useful) first-order form 6 + Gz“). They
explicitly incorporate the higher order corrections
about which Hartigan is legitimately concerned.

In particular the “z,” term (7.8) is a correction for
bias, and the acceleration constant “a,” (7.16), is a
correction for skewness. These correspond to Harti-
gan’s b(F) and s;(F), respectively. The reader who
follows through Tables 5 and 7 will see these correc-
tions in action. The fact that they produce highly
accurate confidence intervals is no accident. The the-
ory in Efron (1984a, 1984b) demonstrates higher order
accuracy of the BC, intervals in a wide class of situa-
tions. This demonstration does not yet apply to fully
general problems, but current research indicates that
it soon will. (The impressive higher order asymptotic
results of Beran, Singh, Bickel, and Freedman, re-
ferred to in the paper, underpin these conclusions.)

It is worth mentioning that the bias and skewness
corrections of the bootstrap confidence intervals are
not of the simple “plug into an approximate pivotal”
form suggested in Hartigan’s remarks. The theory is
phrased in a way which automatically corrects for
arbitrary nonlinear transformations, even of the vio-
lent sort encountered in the correlation example of
Table 5. In this sense the bootstrap theory does handle
“non-normal situations.”

Since this paper was written, research by several
workers, including T. Hesterberg, R. Tibshirani, and
T. DiCiccio, has substantially improved the compu-

more than a few resamples. Perhaps this method
might be called the shoestring.
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tational outlook for bootstrap confidence intervals. It
now appears possible that bootstrap sample sizes
closer to B = 100 than B = 1000 may be sufficient for
the task. However, these improvements are still in the
process of development.

Professor Hartigan’s last remarks, on the compar-
ative efficiency of different resampling methods, need
careful interpretation. There are two concepts of ef-
ficiency involved: the efficiency of the numerical al-
gorithm in producing an estimate of variance, and the
statistical efficiency of the estimate produced. There
is no question that other resampling techniques, for
example, the jackknife, can produce variance esti-
mates more economically than does the bootstrap. We
have argued, both by example and theory, that the
bootstrap variance is generally more efficient as a
statistical estimator of the unknown true variance.

This is not surprising given that methods like the
jackknife are Taylor series approximations to the
bootstrap (see Section 10). The simple idea in (2.3),
substituting F for F, lies at the heart of all nonpara-
metric estimates of accuracy. The bootstrap is tl3e
crudest of these methods in that it computes o(F)
directly by Monte Carlo. For this reason it is also the

“ method that involves the least amount of analytic

approximation. It is perhaps surprising, and certainly
gratifying, that a method based on such a simple form
of inference is capable of producing quite accurate
confidence intervals.

To say that the bootstrap is good, as we have been
blatantly doing, doesn’t imply that other methods are
bad. Professor Hartigan’s own work shows that for
some problems, for example, forming a confidence
interval for the center of a symmetric distribution,
other methods are better. We hope that resampling
methods in general will continue to be a lively research
topic.



