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A Statistical Perspective on llI-posed
Inverse Problems
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Abstract. Ill-posed inverse problems arise in many branches of science and
engineering. In the typical situation one is interested in recovering a whole
function given a finite number of noisy measurements on functionals.
Performance characteristics of an inversion algorithm are studied via the
mean square error which is decomposed into bias and variability. Variability
calculations are often straightforward, but useful bias measures are more
difficult to obtain. An appropriate definition of what geophysicists call the
Backus-Gilbert averaging kernel leads to a natural way of measuring bias
characteristics. Moreover, the ideas give rise to some important experimen-
tal design criteria. It can be shown that the optimal inversion algorithms
are methods of regularization procedures, but to completely specify these
algorithms the signal to noise ratio must be supplied. Statistical approaches
to the empirical determination of the signal to noise ratio are discussed,;
cross-validation and unbiased risk methods are reviewed; and some exten-
sions, which seem particularly appropriate in the inverse problem context,
are indicated. Linear and nonlinear examples from medicine, meteorology,
and geophysics are used for illustration.
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1. INTRODUCTION

Inverse problems pertain to situations where one is
interested in making inferences about a phenomenon
from partial or incomplete information. Accordingly,
statistical estimation and model building are both
inverse problems. In modern science there is an in-
creasingly important class of inverse problems which
are not amenable to classical statistical estimation
procedures and such problems are termed ill-posed.
The notion of ill-posedness is usually attributed to
Hadamard (1923); a modern treatment of the concept
appears in Tikhonov and Arsenin (1977). In an ill-
posed inverse problem, a classical least squares, min-
imum distance, or maximum likelihood solution may
not be uniquely defined. Moreover, the sensitivity of
such solutions to slight perturbations in the data is
often unacceptably large.

A typical example of an ill-posed inverse problem,
arising in stereology, is described by Nychka et al.
€1984). Here one is interested in the estimation of
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three-dimensional tumor size distribution in liver tis-
sue from measurements on cross-sectional slices. A
schematic for the experiment is given in Figure 1.1.
By modeling tumors as spheres randomly distrib-
uted in the tissue, an approximate integral relation-
ship between the three-dimensional distribution of
tumor radii and the two-dimensional distribution
of radii observed in cross-sectional slices may be de-
rived. Letting 2, be the observed proportion of two-
dimensional slices with radii in the interval [x;, x;.1]

" one has

502

zi=fK(xi,r)ﬁg(r) dr+e, 1=1,2, ---, m,

where ¢ are measurement/modeling errors, f; is the
density of three-dimensional tumor radii, and the
kernels K(x;, r) are given by

0 esr<ux,
vrt — x? X =<r< X,

Vr2—x? = VrP—x%, x4 <r<R,

i=1’2’...’m’

K(x;, r) =

where ¢ < x; < %0 < +++ < %41 < R. Physically, ¢ is
the smallest detectable tumor radius and R is the
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Data: .
z, = Fo(xin) — Fo(x), % <X

Model:

R
= f K(x,, r)fs(r) dr + &

FiG. 1.1. Reconstruction of the tumor size distribution from data on cross-sectional slices.

largest possible tumor radius in the given section of
tissue. Since ¢ <= x;, < % < -+ < Xpy1 = R, the
estimation of f; is restricted to the interval [, R]. It is
easy to appreciate the ill-posedness of this inverse
problem. The kernels K(x,, -) are smooth; as a result
relatively large perturbations of f; can give rise to very
slight perturbations in the data and conversely. It
follows from this that least squares, minimum x>, or
maximum likelihood solutions will be very sensitive
to slight changes in the data.

I1l-posed inverse problems have become a recurrent
theme in modern science, see for example crystal-
lography (Grunbaum, 1975), geophysics (Aki and

Richards, 1980; Bolt, 1980; Jeffreys, 1976), medi-
cal electrocardiograms (Franzone, Taccardi, and
Viganotti, 1977), meteorology (Smith, 1983; Smith et
al., 1979), microfluoroimagery (Mendelsohn and Rice,
1982), radio astronomy (Jaynes, 1983), reservoir en-
gineering (Kravaris and Seinfeld, 1985; Neuman and
Yakowitz, 1979), and tomography (Budinger, 1980;
Vardi, Shepp, and Kaufman, 1985). Correspording to
this broad spectrum of fields of application, there is a
wide literature on different kinds of inversion algo-
rithms, that is, techniques for solving the inverse
problem. The basic principle common to all such
methods is as follows: seek a solution that is consistent
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both with the observed data and prior notions about
the physical behavior of the phenomenon under study.
Different practical problems have led to unique strat-
egies for implementation of this principle, such as the
method of regularization (Tikhonov and Arsenin,
1977), maximum entropy (Jaynes, 1983), and quasi
reversibility (Lattés and Lions, 1969). Understanding
the performance characteristics of a given inversion
method is an important issue. First, such information
has obvious intrinsic value and second, it can critically
influence the choice of experimental design (see
Section 2).

The primary goal of this paper is to identify some
tools for assessing the finite sample performance char-
acteristics of an inversion algorithm. These tools, most
of which can be found scattered throughout the diverse
inverse problem literature, are considered in the con-
text of the following generalized nonlinear regression
model. Measurements, z;, are of the form:

zi:n(xi,0)+€i, i=1’2’...’m,

where 6 is in O (the nominal parameter space),
n(x;, -) are linear or nonlinear functionals of 6§, and
the ¢, are measurement errors assumed to have mean
zero. In all that I discuss, there will be an underlying
assumption that the unknown true function, 6, is well
approximated by a smooth function. Although this
assumption does not allow one to talk about highly
discontinuous functions, such as those that arise in
typical pattern recognition problems, the model is still
quite general, and includes for example linear and
nonlinear integral equations of the first kind. Exam-
ples used later on include the temperature retrieval
problem in satellite meteorology and the system iden-
tification problem of reservoir engineering.

1.1 Inversion Algorithms and the Method
of Regularization

An inversion algorithm, S, is a mapping that takes
data into parameter estimates,

6 = Sz.

When S is linear then 6 can be written as a linear
* combination of impulse response functions, s;; i.e.,

m

i) = ¥ sz,
i=1

where s; = Se; and e; is the ith unit vector in R™.
In statistical terms, an inversion algorithm would
be simply called an estimator, but here the terms
estimator and inversion algorithm are used inter-
changeably.

One of the most useful techniques for generating
inversion algorithms or estimators is the method of
regularization (MOR) (see Titterington, 1985). The

MOR procedure is due to Tikhonov (1963) and
Tikhonov and Arsenin (1977). There are various pos-
sible implementations of the method, but they all
amount to choosing § to be the minimizer of a weighted
combination of two functionals. The first functional
measures lack of fit to the observed data and the
second measures physical plausibility of the estimate.
For example, one might choose 6 to be the minimizer
of a criterion of the form

(1.1) % g [z = n(x;, 0)) + NJ(0), N> 0.

The functional  is chosen so that highly irregular or
physically implausible 6’s have large values. Statisti-
cians will recognize this method as a version of pen-
alized likelihood estimation described by Good and
Gaskins (1971); the sum of squares is the likelihood
part and the functional J the penalty term. The
method is equivalent to the method of sieves intro-
duced by Grenander (1981). Also, if J is chosen by
some information principle such as entropy, J(0) =
— [ 6(¢t)log 6(¢) dt, then the method of regularization
yields a procedure equivalent to the method of maxi-
mum entropy pioneered by Jaynes (see Jaynes, 1983,
and Chapter 4 of McLaughlin, 1983).

When the functionals, 5(x;, -), are linear in 6, and
J is quadratic with J() = 0 (= 0 for § = 0), then the
solution to [1.1] is linear in the observed data. More-
over, in this case the MOR has an interesting Bayesian
interpretation. To see this, first suppose that O is
finite-dimensional, i.e., © = span;<p<x{¢.] with ¢
linearly independent. The elements of O can be writ-
ten as Y, Bréx for B = (B1, Bz, -+ - , Bk)’ in R, so that
O can be identified with R¥. Since o is quadratic and
J(0) = 0, J(8) can be expressed as a quadratic form in
B, J(0) = B’QB, for some positive semidefinite matrix
Q, it follows that the MOR estimator is Yx 89 where
B minimizes

i

[2: — X{B]* + \B'QB.

3=

Here X is a design matrix, X;, = n(x;, ¢»). Thus g is
given by

g =Sz where S=[X'X+m\]X".

Obviously, the MOR estimator is linear in Athe ob-
served data. A Bayesian interpretation for g8 is ob-
tained by specifying a Gaussian prior with mean zero
and covariance matrix proportional to Q7'. Then, if
the ¢; values are independent and identically distrib-
uted Gaussian ragldom variables with mean zero, the
MOR estimator, B is the posterior mean of 8 given the
data.

The foregoing statements carry through to more
general settings. If O is a Hilbert space with inner
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product (-, -), the n(x;, -) are bounded linear func-
tionals and J is quadratic, J(0) = (6, W8), where W
is positive semidefinite, then it can be shown (see Cox,
1983, for example) that the MOR estimators have the
form

6, = Sz whére S =[X'X + mAW]'X’

where the design matrix, X is an operator derived from
the functionals n(x;, -). Thus S is a linear operator
from the data space into O. General Bayesian inter-
pretations for the method are also available, these are
discussed by Kimeldorf and Wahba (1971). Further
results on the optimality of the MOR are described in
Section 2.

1.2 Outline

Performance characteristics of an inversion algo-
rithm are studied via the mean square error which can
be split into bias and variability components. Bias
measures the systematic error while variability meas-
ures the random error. In Section 2, I consider linear
inversion algorithms and describe some ways of meas-
uring bias and variability. Variability is calculated in
a direct manner. For bias it is convenient to introduce
a generalized version of what geophysicists call the
Backus-Gilbert averaging kernel (see Backus and
Gilbert, 1968 and 1970). The generalized notion of the
averaging kernel allows one to compute the maximum
or average expected bias and also leads to some natural
design criteria. These are described and illustrated in
Section 2.4. Optimal inversion algorithms can be
found and these turn out to be MOR procedures. The
use of B-splines for obtaining numerically convenient
and reliable approximations to the averaging kernel
and bias is described in Section 3. Although the theory
of linear inverse problems is fairly well established,
the field of nonlinear inverse problems is in its
infancy. There are many exciting and challenging
problems that need to be tackled in this area. The per-
formance of MOR estimators when applied to two
interesting nonlinear inverse problems is discussed in
Section 4. One of these problems arises in satellite

. meteorology and is concerned with the estimation of
atmospheric temperature from upwelling radiance
measurements. The second problem is of major in-
terest in reservoir engineering. It concerns the esti-
mation of reservoir characteristics, the ease of flow of
fluid in a reservoir, from pressure-history data meas-
ured at distributed well sites. As described in Section
2, optimal inversion algorithms although MOR pro-
cedures are not fully specified without supplying the
signal to noise ratio. For a given problem this will not
be known and so has to be empirically determined.
The final section of the paper deals with this issue;
the methods of cross-validation and unbiased risk are

described and some relevant extensions to ill-posed
inverse problems are developed.

2. FINITE SAMPLE PERFORMANCE OF AN
INVERSION ALGORITHM

The quality of an inversion algorithm at some point,
t, is measured by comparing the estimate, é(t), to the
true value, 6(t). This difference can be decomposed
into systematic and random components as

0(t) — 6(t) = [6(t) — EB(t)] + [E6(t) — d(t)].

The expectation is with respect to the error distribu-
tion. The average performance of the inversion at ¢ is
measured by the mean square error (MSE).

MSE(t) = E[6(t) — 6(t)]?
= [6(t) — EA())* + E[6(t) — E4(t)]?
= bias?(t, §) + var(t, 6).

Mean square error depends both on # and the assumed
error distribution. It is the sum of the squared bias,
bias?(t, §), and the variance, var(t, ). If the inversion
algorithm is designed solely to minimize bias then the
variance dominates the mean square error and vice
versa. Thus a good inversion algorithm must balance
bias and variability. Unbiasedness is not a desirable
property in this context.

Mean square error performance of an inversion
algorithm can, in principle, be found by Monte Carlo
simulation. Modern computing resources are making
this a very viable and practical approach. For linear
problems one can avoid direct Monte Carlo simulation
and in the process obtain some useful insights which
can be applied to more complex situations.

2.1 Linear Problems

By a linear problem I shall mean that both the
functionals, n(x;, -), are linear in 6, and the inversion
algorithm, S, is linear in the data.

2.1.1 Variability

Variability computations for linear inversion algo-
rithms are very straightforward. By linearity, vari-
ability does not depend on 6 and

var(t, ) = var(t) = var[i s,(t)c,]

where s; is the impulse response function. Thus if the
errors, ¢;, have covariance Y., then

var(t) = s(t)’ Z. s(t)

where s(t) = (s1(t), sa(t), - - , S (¢))’. In particular, if
the errors are independent with constant variance ¢,
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then the variability is simply
var(t) = o’s(t)’s(t).
2.1.2 Bias

Bias properties are best understood by introducing
the notion of the averaging kernel. In certain circum-
stances the averaging kernel yields a representation
of the form

(2.1) Ei@t) = f A(t, 5)0(s) ds,

for the systematic part of the estimate. The function
A(t, -) is known as the averaging kernel at ¢, and it
determines the nature of the bias incurred at ¢. The
averaging kernel is related to what engineers and
astronomers call the point-spread function. The point-
spread function at t is defined to be the solution
obtained by the inversion algorithm when the true
function is a Dirac é-function at ¢ and there is no
measurement error. Thus from [2.1] if the averaging
kernel at t is A(t, ), then the point-spread at ¢t is the
function A(-, t).

The representation in [2.1] is an L, representation
for the averaging kernel. In the geophysics literature
this representation is known as the Backus-Gilbert
averaging kernel, after two geophysicists Backus and
Gilbert (1968, 1970). Related ideas go back to Peano
(1914), who used a similar representation to study the
bias in numerical quadrature formulae (see also Sard,
1949). Alternative representations for the averaging
kernel are also possible and these alternative repre-
sentations are more useful when it comes to computing
bias. The averaging kernel and its generalizations are
described next.

2.2 Averaging Kernel

2.2.1 Backus-Gilbert Formulation

Backus and Gilbert worked in an integral equation
context,

n(xi: 0) = f Kl(s)a(s) dS, = 17 2: oo m,
and the kernels K;(-) are known smooth functions.

For a linear inversion algorithm the E#(t) can be
written as

Ef@t) = § si(t) f Ki(s)0(s) ds.

Taking the summation inside the integral sign, this
becomes:

Ed@t) = f A(t, $)0(s) ds

0.0 0.2 0.4 0.6 0.8 1.0

FiG. 2.1. Sample averaging kernel for a MOR procedure applied to
the tumor problem (r = 0.4).

where

m

A(t, s) = Y si(t)Ki(s).
i=1

The function A(¢, -) is the Backus-Gilbert averaging
kernel for the inversion algorithm S at ¢. For illustra-
tion, an averaging kernel corresponding to a method
of regularization procedure applied to the tumor size
distribution problem, described in Section 1, is given
in Figure 2.1. One can see that the kernel is well
centered about the point of interest, r = 0.4. Moreover
the kernel seems fairly symmetric so that if the three-
dimensional tumor radius density were locally linear
in the neighborhood of this point, then the inversion
algorithm would be locally unbiased. Properties of the
averaging kernel can be varied by changing the regu-
larization parameter, A—large values of A\ cause the
averaging kernel to be more spread out. Techniques
for empirically selecting this parameter are discussed
in Section 5.

The center, spread, and skewness of the averaging
kernel give a rough appreciation for its behavior. As-
suming they exist, these are defined to be the first,
second, and third moment of the absolute value of
the averaging kernel when suitably normalized. Let
A\(t, -) = A\(t, -)/[ | Ax(t, )| ds. Then the charac-
teristics of the averaging kernel are as follows:

Center

c(t) = f [ A(t, ) | s ds;

Spread

sp(t) = \/ | Ax(t, 8) | (s — c(t))* ds;

Skewness

3
sk(t) = f | Ax(t, s) | [-(ss—p(%é)—)] ds.
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The skewness is dimensionless while the center and
spread are in ¢ units. Skewness is important since a
symmetric averaging kernel (sk(t) = 0) will exactly
pass a linear trend.

Intuitively, the bias at a point, ¢, is determined by
how close the averaging kernel is to a Dirac é-function
at t. Backus and Gilbert tried to develop some direct
measures of the nearness of the averaging kernel to a
Dirac é-function—“6-ness of the averaging kernel.”
By choosing the inversion algorithm, so that the av-
eraging kernel is as é-like as possible, subject to some
upper bound on the size of the standard error, one
obtains so called Backus-Gilbert inversion algorithms.
The idea seems perfectly reasonable; however, there
is some degree of arbitrariness in the é-ness criteria
defined by Backus and Gilbert. Moreover, in general
it is not true that the function maximizing a é-ness
criterion will necessarily be the Dirac é-function.
Problems with the §-ness criteria really arise because
the Backus-Gilbert calculus takes place in an L, set-
ting where evaluation is not a continuous linear func-
tional. By working in a space where evaluation is
continuous, one can derive a more refined formulation
of the averaging kernel and us. a straightforward
calculus to assess 6-ness. The refined definition of the
averaging kernel also allows one to deal with more
general linear functionals 75(x;, 8).

2.2.2 Refined Formulation of the Averaging Kernel

Preliminaries: Linear Functionals and Representers.
The notion of a representer of a continuous linear
functional will be needed. To motivate this concept,
consider first the case where © = span,;<x{¢:} and
the ¢, are linearly independent. Here, elements of O
are identified by a K-vector of coefficients, 8 in RX.
Moreover, the usual inner product on R¥ determines
an inner product on O by

(01, 62) = B18:

where 6, = Y., Buxéx and 0. = Rii Bordr. If n(x;, -)
is linear then for any 0 in O

(2.2) n(xi, 0) = X8

where § = YK, Bior and X; = (n(x;, ¢1), nlxi, ¢2),

-, n(x;, ¢x))’. The vector X; determines an element,
£, = 2f-1 Xudr, in O with the property that for all 6
in ©

"(xi, 0) = (fxn 0)'

In functional analysis terms, &, is the representer of
the linear functional »(x;, -). An important linear
functional is evaluation at a point. The representer in

O of evaluation at ¢ is given by

K

e = Y ¢u(t)pr.

k=1
One can easily verify that
a(t) = (et: 0)’

for all  in O.

The notion of a representer extends to more elabo-
rate function spaces. The level of functional analysis
needed to understand this is elementary and the
interested reader might consult Rudin (1976). It is
important to realize that, in general, the form of
the representer depends on which inner product is
used. Let © be a real Hilbert space with inner
product (-, -) and norm | -||. A linear functional .l is
continuous if there is a constant M such that

[1(6)| = M|18) forall 6in ©.

Corresponding to any continuous linear functional, [,
there exists a representer £ in O such that

1(#) = (&, 0) forall 6in ©O.

This is known as the Riesz representation theorem
(Rudin, 1976). A Hilbert space of real valued functions
in which evaluation is continuous is known as a re-
producing kernel Hilbert space (RKHS). Reproducing
kernel Hilbert spaces play an important role in applied
mathematics and their role in the study of ill-posed
inverse problems has been emphasised by Golomb and
Weinberger (1959); see also Wahba (1984). Evaluation
is not continuous in L., but it is continuous in the
space of functions the first derivatives of which are
square integrable.

Representer of the Averaging Kernel. Given the no-
tion of a representer, the generalization of the aver-
aging kernel is very simple. Let O be a real Hilbert
space with inner product (-, -) and suppose that the
functionals 7(x;, -) are continuous with representers
£,.- Since

m

Eé(t) = 2 si(t)n(xia 0):

=1

the representer of the averaging kernel, A(t), is given
by

m

A(t) = X si(b)&,.
i=1
Thus the averaging kernel is a linear combination of
the representers of the functional n(x;, -). The partic-
ular linear combination is determined by the impulse
response functions of the inversion algorithm.
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2.3 Bias Measures and Some Design Criteria

The more general formulation of the averaging ker-
nel leads to natural ways of measuring bias and this
in turn motivates some useful design criteria. Let O
be such that evaluation at t is continuous and let
e, denote the corresponding representer. From the
averaging kernel, the bias at ¢t may be written as

o(t) — 6(t) = (e, — Alt), 9).

Average Bias. The representation, (e, — A(t), 0),
can be used to compute the expected squared bias
with respect to a prior distribution on possible 6
values. Thus, if © = span;<.<x{®:} and a prior mean
and covariance for 0 is specified by means of the
coefficients of the ¢.’s, 8,

Ey[B] = Bo, Vary[B] = Xy,
then the average expected bias is
() = E,l0(:) — E6@)

= Ez(e; — A(t), 0)*

=c{ YpcC + (e — A(2), 00>2,
where

c. = ((e. — A1), ¢1),
(e — A(8), ¢2), - -+, (& — A(2), ¢x))’

and
K

0= X Bordr
k=1

Maximum Bias. A less sophisticated measure of
bias is the maximum bias over all functions in O the
norm of which is less than some specified value, u.
From the averaging kernel representation for bias and
the Cauchy-Schwarz inequality, this is given by

sup [0(t) — E6(t))> = sup (e, — A(t), 0)*

11011 2<p? 16 12<u?
= |le. — A(t) || *n.

Thus letting by (t) = || e, — A(t) ||, b34(¢) is proportional
to the maximum squared bias over any ball in ©. Sard
(1949) would probably call b%(t) the modulus of the
bias at ¢.

Figure 2.2 plots the maximum bias, by(t), and
standard error, square root of variability, for a MOR
inversion applied to the tumor size distribution prob-
lem. Both the bias and standard error have poor
behavior for small radii, suggesting that there is dif-
ficulty in getting reliable estimates of the size distri-
bution for small radii. This is a consequence of the
simple fact that small tumors are hard to detect, see
Nychka et al. (1984) for more discussion. The ripples
in the plot are due to the finite sample size, m = 50,

|

L L ] n

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Maximum Bias Standard Error

FiG. 2.2. Maximum bias and standard error for a MOR procedure
applied to the tumor problem. The ripples are due to the finite
sampling (m = 50).

in this illustration. The vertical scales on the bias and
variability plots are left unspecified. Only if particular
values for the u and ¢ are assigned can an appropriate
scaling be set up.

Design Criteria. Combining bias with variability
gives an overall assessment of the performance of the
inversion algorithm which can be used for design
purposes. The average bias measure gives rise to an
average mean square error design criterion (AMSE):

AMSE(t) = b%(t) + var(¢).

Also, from the maximum bias measure, one obtains
the maximum mean square error design criterion
(MMSE):

MMSE(t) = ub3;(t) + var(¢).

2.4 Optimal Inversion Algorithms and
Experimental Design

Since both the average and maximum mean square
errors depend on the inversion algorithm, algorithms
can be selected which perform best with respect to
either of these criteria. Interestingly, the solution one
obtains in each case is a MOR procedure. This analysis
‘can be carried out in a very general setting. However,
the structure of these results is most transparent when
O is finite-dimensional and the measurement errors
are mean zero uncorrelated with constant variance o°.

Minimizing the Average Mean Square Error. Let
s(t) = (s:1(¢), s2(t), - - -, sk(t)). For simplicity suppose
that the prior for 8 has zero mean and covariance
72 Y. The average mean square error can be written
as

AMSE(t) = rz[Xt — § s,—(t)X,] Eﬁ[Xt — f: s,-(t)X,]
=1 =1
+ o2s(t)’s(t),

where X, = (¢1(t), ¢2(t), - - -, ¢x(t))’ and the ith row
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of X is given in equation [2.2]. Minimizing with
respect to s(t) gives:

2
[xzﬁX' + % I]§(t) = X3,X/!.

This holds for any ¢. If 24 is invertible, then, after
some algebra, the optimal inversion algorithm can be
expressed as

0’2 !
S=[X’X+—22;1] X’.
T

Comparing this with the forms given in Section 1.1, it
can be seen that the optimal algorithm corresponds
to a MOR estimator with A\ = (¢2/m7?) and J(0) =
BZ;'8. A7 is interpreted as the signal to noise ratio.

Minimizing the Maximum Mean Square Error. The
maximum mean square error in a ball of radius u is
given by

m

MMSE(t) = ﬂQ[Xt -2 Si(t)Xi] [Xt - i si(t)Xi]

i=1 i=1
+ o2s(t)’s(t).

Again minimizing with respect to s(¢), the optimal
vector satisfies

2
Px+%4wHXM,
u
so the optimal inversion algorithm is given by
[ 2 B
S = [X’X+—QI] X',
u

This is a MOR inversion algorithm with A = (¢*/mu?)
and J(0) = || 0]%>. Here A" is again interpreted as a
signal to noise ratio.

Versions of the above results have appeared at sev-
eral times in the literature (see Foster, 1961; Strand
and Westwater, 1968; and Weinreb and Crosby, 1972).
The optimal inversion algorithm from the point of
view of average mean square error is called the mini-
mum rms solution, while the optimal solution for
maximum mean square error is the minimum infor-
mation solution. Generalizations of these results have
appeared in the statistics literature. Kimeldorf and
Wahba (1971) show that the minimum rms solution
is sometimes interpretable as an optimal Bayesian
procedure. Minimum information solutions have also
been termed minimax. Results on the minimaxity of
the MOR are given by Li (1982) and also Speckman
(1979). In practice the signal to noise ratio is not
known so that the parameter A needs to be set empir-
ically. Some statistical methods available for doing
this are given in Section 5.

Experimental Design. The MMSE and the AMSE
are also functions of the design points, x;, i = 1, 2,

.-, m, and an optimal experimental design can be
defined as the design making the MMSE or the AMSE
minimum. Since one may not be interested in perform-
ance at just a single point, ¢, an integrated AMSE or
MMSE over some region of interest is often more
appropriate. Weinreb and Crosby (1972) have carried
out a program of this kind in connection with the
selection of spectral wavelengths for satellite radiom-
eters. Their criterion is reduced to a simple trace
criterion (see equation [10] of their paper). More
recently, Wahba (1983a) has also discussed the design
issue. She presents two design criterion: one of which
is akin to Weinreb and Crosby’s criterion, see their
equation [13], and a second which is termed the “de-
grees of freedom for signal” criterion. The use of
integrated mean square error as a design criterion is
not new to statisticians. Box and Draper (1959) pro-
posed this as a design criterion for model-robust
response surface designs. Further discussion of this
literature can be found in Section 5 of the recent
paper by Steinberg and Hunter (1984).

3. NUMERICAL APPROXIMATION OF THE
AVERAGING KERNEL WITH B-SPLINES

Exact computation of averaging kernels requires the
manipulation of the representers of the functionals
n(x;, ) for i =1, 2, ---, m. In reproducing kernel
Hilbert spaces there are theoretical formulas available
for the evaluation of representers, see Nychka et al.
(1984) for example. However, direct evaluation of
averaging kernels by means of such formulas is ex-
tremely inefficient, computationally, so other ap-
proaches are needed. Approximating the elements of
O by simpler forms, it is possible to obtain highly
efficient methods for evaluating the averaging kernels
at a negligible loss in accuracy. To illustrate this I
consider one very popular MOR procedure for esti-
mating a one-dimensional real valued function, 6 de-
fined on an interval [a, b]: 0 is the minimizer over the
Sobolev space W3[a, b] = O of

m b
% Y [z — nxi, 9> + A f [6()]? dt, XA>0.

Wa, b] is an infinite-dimensional Hilbert space with
inner product

<aw=J¥mwnm

+ f 6(t)é(t) dt 6, ¢ in Wa, b).

Sobolev spaces are discussed at length’in the book by
Adams (1975). It is well known that the elements of
O can be approximated to an arbitrarily high de-
gree of accuracy by cubic B-splines. We take good
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advantage of this in the computation of the averaging
kernels. Before describing this let me pause briefly to
describe cubic B-splines. The standard reference on
B-splines is the book by DeBoor (1978). Throughout
this section continue to assume that the functionals
n(x;, -) are linear.

3.1 B-splines

Consider a set of distinct knot points [t; < & <
- oo < tgeq] With t3 < a and b < txyo. (Multiple knots
are also allowed; see DeBoor (1978) for more details.)
A cubic spline on [a, b] is a cubic polynomial between
successive knot points joined up at the knots so as to
have continuous second derivative over the interval
[a, b]. By increasing the knot density in [a, b], functions
in W¥[a, b] can be very closely approximated by cubic
splines. Cubic splines can be expressed as a linear
combination of basis elements {B;}£_;. The elements,
B., of the basis are called B-splines and the entire
basis is called the B-spline basis. Each element of the
basis is non-negative and has very local support; in
fact, B, is zero outside of the interval [tg, tp+4). Over
[tr, te+a], B is proportional to the probability density
for the sum of four independent uniform random
variables; U;, i = 1, 2, 3, 4, where U; is defined on
[tx+:-1, tr+i]. The local support property of B-splines
can be used to great advantage in computations.
DeBoor (1978) has developed a set of Fortran pro-
grams for manipulating B-splines and these are now
available in most modern mathematical software
libraries.

3.2 Computation of the Averaging Kernel
with B-splines

Let Ok = {Bili,. The MOR estimate 6y is approx-
imated as 6, = Y5, 8.B; where

(3.1) B=[X'X+ m\L]"'X'z

and X = n(x;, By) and Qu(J, k) = [5 B;(£)By(t) dt.
Three inner products on Ok will now be defined.
Let 0 = Ef:] 0kBk and ¢ = fo:l d’kBk in 9

1. Euclidean Inner Product:
K .
0, d)r = kZ 0. = 0'¢
=1

where

0 = (01’ 02: MY oK)I

and

¢ = (¢17 ¢27 D) ¢K),’

2. L, Inner Product:
(0, ¢)2 = f 0(t)p(t) dt = 0'Qve

where Q(J, k) = [ B;(t)Bk(t) dt,

3. Sobolev Inner Product:

0, ¢)s = f 8(t)p(t) dt + f d(t)p(t) dt

= 0'[90 + Q2]¢

Corresponding to each inner product there is an
approximate representation for the averaging kernel
at t. If these be denoted A (t), A.(t), and As(t), then

Eb\(t) = (Ag(t), 0)& = (As(2), 0)2 = (As(t), 0)s.

Ap(t) is most easily computed; from [3.1], its B-spline
coefficients are given by

a.(t) = X' X[X'X + mA\Q,] e(t)

where e(t) = (Bi(t), Ba(t), ---, Bk(t))’ are the B-
spline coefficients of the representer of evaluation at
t (with respect to the Euclidean inner product). The
B-spline coefficients, a,(t) and a,(¢), of A»(t) and As(t)
are directly obtained from the a.(t).

a(t) = Q'ac(t); a,(t) = [Q + Q] " a(t).

A word of caution. The matrices , and [Q + Q] are
poorly conditioned for K large. As a result a very
stable method such as a singular value decomposition
(see Dongarra et al., 1979) should be used to compute
the inverses. From the L, representation, it follows
that the Backus-Gilbert averaging kernel at t is ap-
proximately given by

K

As(t, s) = X az(t)Bil(s).

k=1

The Sobolev representation for the averaging kernel
is

K
At 5) = kg a(t)Bi(s).

Bias Computations. The average and maximum
bias can be approximated directly in terms of the

. Euclidean representation for the averaging kernel in

{B:}K_,. For example, the maximum bias in a ball of
radius p in © = W3[a, b] is u’b3(t) where

b(t) = [e(t) — a ()]’ [Q + Q] '[e(t) — a.(t)].

4. APPLICATION TO NONLINEAR INVERSE
PROBLEMS

The techniques described in Sections 2 and 3 will
now be applied to the study of two nonlinear ill-posed
inverse problems taken from satellite meteorology and
reservoir engineering. In both cases the function, 6, of
interest is restricted to be one-dimensional and the
following MOR procedure is considered: 6 is the
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minimizer in W¥a, b] of
m b
% Y [z — n(x, ) + A f [6))*dt, x> 0.
i=1 a

In order to study performance characteristics, linear-
ize the functionals 7(x,, -) about some value 6,,

n(xiy 0) = n(xu 00) + Vl’n(xiy 00)(0 - 00)’

and consider the properties of a modified MOR pro-
cedure: 0 is the minimizer of

1n b
m Y [z} = Vin(xi, 00)0]* + Xf [6(t))%*dt, A>0.
i=1 a

where 2} = z; — n(x,, 0) + Vn(x;, 6,)0,. The averaging
kernel calculus can be applied to the modified MOR
procedure and the results of this linearized analysis
are presented below. A rigorous justification for the
linearization is not attempted. (This is a very chal-
lenging problem and even an asymptotic analysis
seems to be quite difficult. The theory presented in
Cox and O’Sullivan (1985) may provide a starting
point for further investigation of this topic.) It is
assumed that the analysis will give reliable results
whenever the degree of nonlinearity in the functionals
n is low.

To compute averaging kernels, bias, and variability
for the linearized problem, I use a B-spline basis and
follow the development in Section 3. The number of
basis elements is chosen so that any plots of averaging
kernels and bias and variability characteristics are
visually unchanged by the addition of extra basis
elements. The design matrix, X, has the form

Xi/\‘ = V(ln(xla OO)BI\" i = 19 29 cee, M,

where B, is the kth element of the B-spline basis. Two
sets of system libraries were employed: computations
for the satellite meteorology example were carried out
on a DEC VAX 11/750 machine using the B-spline
and Linpack routines which are part of the publicly
available CMLIB; computations for the reservoir en-
gineering example, required repeated numerical solu-
tions of a diffusion equation, and these were carried
out,on a Boeing Computer Services Cray 1 machine
using routines available in the BCSLIB.

4.1 Temperature Retrieval from Satellite
Radiance Data

Intensities of radiation measured by modern mete-
orological satellites provide information about at-
mospheric characteristics such .as temperature and
moisture. This new database is becoming an increas-
ingly important tool in the process of nowcasting, i.e.,
specifying the current state of the atmosphere, and
forecasting, i.e., describing the future states of the
atmosphere. Smith et al. (1979) and Smith (1983)
describe the basic features of these measurement sys-

\
50 mbp

200 mb

Pressure (mb)

400 mb| ~o

700 mb}| ~

230 250 270

Temperature (°K)

FiG. 4.1. Typical climatological profile, T,. The vertical scale is
pressure in kappa ( pressure™®) units. Note the temperature inver-
sion high up in the atmosphere.

tems. A typical climatological temperature profile is
given in Figure 4.1. The vertical axis is decreasing in
pressure while the horizontal axis gives temperature.
It is standard practice for meteorologists to plot things
in this way because moving up the vertical axis then
corresponds to going higher up in the atmosphere.
The plot shows a temperature inversion near 20 mb;
the temperature is generally increasing as one moves
away from this point. Inversions are a character-
istic feature of atmospheric temperature profiles. The
location of this upper atmosphere temperature inver-
sion is known as the tropopause height.

The processing of radiance data to get temperature
estimates involves the solution of an interesting in-
verse problem. The radiative transfer equations, Liou
(1979), are used to model how the intensity of radia-
tion, z,, at frequency, »;, depends on the temperature
profile, T, temperature as a function of pressure, in
the column beneath the satellite;

2=R(T)+e, 1=1,---, m,

where

RO = BTG - | BTG ds

0

and x is some monotone transformation of pressure p;
x, corresponds to the surface and x, corresponds to
the top of the atmosphere. Meterologists usually work
in kappa units, i.e., x(p) = p*®, because atmospheric
variations are believed to be slowly varying in this
scale. 7,(x) is the transmittance of the atmosphere
above x at wave number », and B, is Planck’s function
given by:

B,[T] = c,v*/[exp(cov/T) — 1]
where
¢; = 1.1906 X 10 %erg cm? sec™'

and
¢, = 1.43868 cm/deg (K).
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The measurement errors, ¢;, are roughly mean zero
and uncorrelated. However, different channels have
different noise levels so by dividing through by relative
noise levels in channels results in a generalized non-
linear regression model as in Section 1. The TIROS-
N system, see Smith et al. (1979), has 15 channels
(m = 15). Linearizing the R, (T') about the climato-
logical profile, Ty, given in Figure 4.1 results in:

X0
ViR, (T)T = k,(v)T(x,) + f k(vi, x)T(s) dx,
where  E,(v) B,[To(x)]r,(x) and k(y, x) =
—B,[To(x)]7.(x). Since the linearized functionals have
an explicit form, the linearized design matrix is very
easy to compute by numerical integration:

Xip = VTRV,(TO)Bk

X0
= ky(v)Bp(x,) + f k(v;, x)Bi(x) dx,
where B is the kth element of the B-spline basis.

An averaging kernel at 700 mb for the MOR inver-
sion is given in Figure 4.2. The corresponding bias and
variability characteristics are given in Figure 4.3.
Again these plots correspond to a particular value for
the regularization parameter \. Larger values for the

50 mb|

200 mbl

Pressure (mb)

400 mb ) \

700 mb | )

F1G. 4.2. Averaging kernel at 700 mb for the temperature retrieval
problem. The sharp behavior near the surface is attributable to the
microwave channels.

50 mb|

200 mb |

Pressure (mb) =

400 mb [

700 mb |

Maximum Bias Standard Error

F1G. 4.3. Inversion characteristics of a MOR procedure applied to
the temperature retrieval problem.

smoothing parameter result in broader averaging ker-
nels (more bias and less variance). Notice that the
averaging kernel has sharp behavior near the surface.
This is attributable to the microwave channels. The
data obtained from these are nearly direct measure-
ments of the surface skin temperature, T'(x,). As a
result the L, representers of the functionals corre-
sponding to these channels are very spiked at the
surface and since the averaging kernel is a linear
combination of these representers, the behavior at the
surface is to be expected. The effect of the microwave
channels on the bias is also quite dramatic. The vari-
ability profile indicates regions near 600 mb and 200
mb where sampling density might be improved. How-
ever, there are physical constraints on selection of
spectral wavelengths which make it difficult to get
good coverage throughout the atmosphere (see Liou
(1979), page 250 and following). The operating char-
acteristics given in Figure 4.3 relate to maximum bias.
In a meteorological setting, where there is a huge
database of prior information on atmospheric varia-
tion, an average bias measure with respect to a cli-
matological prior would be more appropriate. In spite
of the fact that there is a dependence on the initial
climatology, T, the retrieval characteristics predicted
by the averaging kernel calculus is largely in agree-
ment with those found by Monte Carlo simulation in
O’Sullivan and Wahba (1985).

4.2 The History Matching Problem of Reservoir
Engineering
The dynamic flow of fluid through a porous medium
is usually modeled by a diffusion equation
du(x, t) 9 u _
ot p {a(X) 9 X t)} = q(x, t),
tin [0, T,

subject to prescribed initial and boundary conditions.
Here u is pressure, ¢ accounts for the withdrawal or

X in Q,

_injection of fluid into the region Q, and a is the

transmissivity or conductance which determines the
ease with which fluid flows through the medium. The
initial condition is u(x, 0) = uy(x) and a typical
boundary condition is no fluid flow across the bound-
ary of the region, i.e., (du/dw) = 0, where w represents
the direction normal to the boundary. The history
matching problem arises as one tries to use scattered
well data on u(x;, t;) and ¢(x;, t), 1 =1,2, ---, m,
j=1,2, ..., I, to infer the diffusion parameter,
a; see Cooley (1982, 1983), Kravaris and Seinfeld
(1985), and Neuman and Yakowitz (1979). This prob-
lem is an example of a broad class of inverse problems
which arise in connection with partial differential
equations. Such problems have attracted an amount
of pure mathematical interest. See Anger (1979),
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Lions (1971), McLaughlin (1983), and especially
Payne (1975).

For a simplified version of the history matching
problem, consider the situation discussed by Kravaris
and Seinfeld (1985). Let @ = [0, 1] and T = 1, assume
there is no injection or withdrawal of fluid and that
there is no flow across the boundary. Suppose that
there are 10 measurement sites at x; = (5i — 3)/49,
i =1,2 ..., 10, and readings on u are made for
t; = 0.0(.007)0.5. These data are modeled by a nonlin-
ear regression

zi=u(x, t; a) + ¢

where the errors are mean zero with constant variance.

The dependence of u(x;, t;; a) on a is again nonlin-
ear. By linearizing u(x;, ¢; a) about a plausible trans-
missivity profile, ay, such as the one given in Figure
4.4, one can compute averaging kernels, etc. The true
pressure history plays a significant role in determining
the information recovered about transmissivity.
Roughly speaking, gradients in the pressure history

.80

0.60

F1G. 4.4. A transmissivity distribution, a,, for the history matching
problem.

generate information about the transmissivity. A pres-
sure history corresponding to the transmissivity pro-
file in Figure 4.4 is given in Figure 4.5. This pressure
history is driven by an initial pressure distribution
which ranges from 10 at x = 0. to 100 at x = 1.

Computation of the Linearized Design Matrix.
Unlike the temperature retrieval problem, there is not
an explicit analytical representation for the observed
functionals, and this makes the computation of the
design matrix a bit more complicated.

ou
Xije = Vaul(xi, tj, ao)B, = . (i, 5 ao),
(0

where the gradient is taken in the direction of func-
tions of the form a(x) = £, a.B.(x) and & is the
solution to

u_ 3o ]I ) ‘l‘f}
at  ox atx dx
=gq(x,t) with (x,¢) in [0, 1] X [0, .5],

u(x, 0) = uo(x),

ou(x, t)
ox

subject to
=0 for x=0,1.

Let D(a): U— @ X U, X By X B, denote the mapping
D(a)u

_ a_lf _ é_ a_lf au(oy ') au(]-’ ')
_[at dx {a(x) éx}’ u(-, 0), ox ’ ox ]’

which takes pressure histories in U into the product
space of forcing functions @, initial pressure distribu-
tions Uy, and the ¢t = 0 and ¢t = 1 boundary value
functions B, and B;. Under regularity, the implicit
function theorem implies that the inverse of D(a),

e

F1G. 4.5. True pressure history. The initial distribution ranges from 10-100 units. Notice how the distribution flattens out in time. Data
accumulated on pressure at later times will tend to be less informative about transmissivity.
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denoted G(a), exists and is differentiable in a neigh-
borhood of ao.

G(a)[g, uo, 0, 0] = u(-, -; a).

The relation G(a)D(a) = I may be used to obtain
di(x;, tj; ao)/day. Differentiating,

2 (G@p@) =% p) + 6@ T2 = o
(03
Thus
49 6@ 22 G,
A,

which implies

au__ dD(a)
a0~ “‘lI }

oD@ | & u
day, “= [ dx {Bk(x) ax}’ 0,0, O]’

and the expression simplifies to
(x;, tj; ao)

i» £ i) u
day = G(aO)Iia_x' {Bk(x) a}’ 0’ 0’ 0]

Hence X, can be found by solving the original diffu-
sion equation with the forcing term, g, replaced by
(8/3x){Bk(x)(du/dx)} and the initial pressure distribu-
tion, u,, replaced by the constant 0.

By this method, the computation of the entire
linearized design matrix requires K separate numerical
solutions of the diffusion equation (K being the num-
ber of basis elements). Although this is a generally
applicable technique, it is rather inelegant. Since the
solution corresponding to B, is likely to be “near” the
solution corresponding to By, it may be possible to
improve computational efficiency by using some form
of relaxation. This is currently being investigated. For
the time invariant problem, Neuman and Yakowitz
(1979) use properties of a particular finite difference
scheme to develop a fast method for computing the

_analogue of the design matrix. A further approach to
this problem relying on an optimal control formula-
tion, is employed by Kravaris and Seinfeld (1985).

Linearized Averaging Kernels and Retrieval Char-
acteristics. Figures 4.6 and 4.7 give linearized averag-
ing kernels and retrieval characteristics. One would
suspect that information about a should depend crit-
ically on the true pressure history. If the initial pres-
sure were constant, then, since there would be no
pressure gradients, there would be no lateral flow.
However, the functional parameter is a transmissivity
and information about transmissivity can only be
generated by lateral flow. The averaging kernel and
the bias and variability characteristics show that for

But
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FiG. 4.6. Sample averaging kernels for a MOR procedure applied to
the history matching problem. The resolution is better near the center.
The assumed true pressure history causes the averaging kernels to
have sharp behavior near the boundary.

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
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Fi1G. 4.7. Inversion characteristics of a MOR procedure applied to
the history matching problem. Retrieval properties are best near the
middle of the x range.

the given pressure history, the greatest detail on trans-
missivity is recovered near the middle of the x range.
Changing the pressure history results in different re-
trieval properties—the bias and variability calculus
seems to make very good physical sense.

5. EMPIRICAL SELECTION OF SMOOTHING
PARAMETERS

Nearly all inversion algorithms, and in particular
the MOR, have explicit or implicit smoothing/tuning
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parameters, corresponding to the signal to noise ratio
which, in a practical setting, have to be selected by
the user. Two of the more popular techniques to
emerge from the statistical literature on this problem
are the methods of cross-validation and unbiased risk
estimation. Typically, these techniques try to find that
value of the smoothing parameter which minimizes
the predictive mean square error (PMSE),

PMSE() = = 3 [n(x, 0) = (s 0)F,

where 6 and 0, are the true and estimated functions.
(Throughout this section A\ will be used to denote the
smoothing/tuning parameters of the inversion algo-
rithm.) The predictive mean square (PMSE) is a
convenient criterion but not necessarily a criterion of
real intrinsic interest. Inverse problems are focused
on a particular function, so it maybe more appropriate
to phrase a loss directly in terms of that function.
Thus it might be of interest to consider a loss of the
form

1 X A
Loy =7 Z [0) = @)

where the ¢; values are some points of direct interest
to the investigator. For certain loss functions, which
are estimable in the sense described below, it is possible
to develop refined versions of the cross-validation and
unbiased risk assessments. It should be pointed out
that the PMSE has a certain robustness property; it
is often the case that the best choice of the smoothing
parameter, from the point of view of PMSE loss, is
very nearly optimal from the point of view of other
loss functions also (see Cox, 1983; Lukas, 1981;
Ragozin, 1981; and Wahba, 1979). Thus the practical
need for refined procedures will only arise in situations
where the PMSE and the loss function of interest
have very different minimizers.

It is assumed throughout that inversion algorithms
under consideration are linear and that the functionals
n(x,, 0) are themselves linear in 0. For some extensions
to nonlinear inversion algorithms see O’Sullivan and
Wahba (1985), O’Sullivan, Yandell, and Raynor
(1986), Villalobos and Wahba (1983), and Wahba
(1984). A brief review of cross-validation and unbiased
risk in the standard predictive mean square error
context is given next. For a more detailed discussion
of these methods see the recent review of Titterington
(1985).

5.1 Empirical Assessment of PMSE

The Hat matrix, H()\), is defined to be the matrix that
maps data z into predictions z,

H(\)z.

z

For a linear inversion algorithm the Hat matrix is

. . . A .
obtained from the impulse response functions, sﬁ ) via

HijO‘) = n(x;, 3})‘)).

Here the dependence of the inversion on the smooth-
ing/tuning parameters A is highlighted—the impulse
response functions are functions of A. The trace of the
Hat matrix occurs in both the cross-validation and
unbiased risk assessments of the PMSE. I begin with
the unbiased risk method which is easier to describe.

Unbiased Risk. This procedure assumes that one
has a reliable estimate of the noise level ¢. Given o,
the procedure uses the residual sum of squares (RSS)
to construct an unbiased estimate of the PMSE risk.
The basic steps are as follows:

PMSE()\) = % g:l [n(x:, 0) — 2]

In(8) = n(6) I,

3=

i'e'9 7’(') = (n(xly ’)’ ﬂ(xz, ')’ ) ﬂ(xm, '))l' By
linearity, the expected value of the predictive mean
square error is

mE{PMSE\)} = [ [l — HN)]n(®) [
+ o*tr[H(N)’H(N)]
= BIAS?(\) + o*tr[H(N)'H(N)].

Meanwhile,
RSS(\) = X [z — 21> = | I — HN)]z 7.
i=1

So the expected value is
E{RSS(N} = || [I—H(\]n(0) I
+ o2tr[[I— HN)])'[I—H\)]]
=BIAS?(\) + ¢*tr[[I— HN)]'[I = HM)]I

Combining these formulae gives that

PMSE() = - RSS(N) = o + 20° i HO)

is an unbiased estimate of the predictive mean square
error. In the standard regression context H =
X(X’X)"'X’ and PMSE reduces to the C, statistic of
Mallows (1973).

Cross-validation. In cross-validation one considers
a leave-out-one prediction, Z_,, which is defined to be
the prediction of n(x;, ) from an estimator con-
structed from data with the ith data point, z;, omitted.
The idea being that if the prediction rule is really good
(A well chosen), then 2_; should be reasonably close to
z; on average. Ordinary cross-validation or Allen’s
predictive sum of squares (PRESS) (see Allen, 1974)
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is defined to be
1 Z .
V0(>\) = ; ,‘gl [Z,‘ - Z_,']2.

For the MOR estimators in Section 1.1, where
H(\) = X[X’'X + mAW]'X’, a rank one update
formula gives that *

(2i — 2)

T (1= ha(V)

where h;(\) is the ith diagonal element of the Hat
matrix, also known as the ith leverage value. It follows
that the ordinary cross-validation assessment is a
weighted residual sum of squares

1 & Zi—éi >
““FﬁLQL—M@J'

é_,‘ =2

If instead of dividing residuals by 1 — h;(\), one
divides by the mean value, 1 — h;()\), then the gener-
alized cross-validation (GCV) of Craven and Wahba
(1979) is obtained. The GCV score is usually written
as

(1/m) ¥2 [z — 2]

[1 - @/m)tr HNV]*®

V(\) =

Since
V() RSS())
m [l - (1/m)tr HN)]?’

in a regression context, where H = X(X’'X)™'X’, the
GCYV score is proportional to the residual mean square
divided by the degrees of freedom for error. Thus the
GCV score reduces to a model selection statistic
proposed by Anscombe (1967) and simplified by
Tukey (see Mosteller and Tukey, 1977, page 386 and
following).

A great deal is known about the asymptotic behavior
of the above empirical assessment methods. The typ-
ical result says that the minimizer of the empirical
assessment tends to minimize the PMSE, in large
samples; Monte Carlo simulation results show that a
similar property tends to hold in finite samples, see
for example Craven and Wahba (1979), Golub, Heath,
and Wahba (1979), Nychka et al. (1984), Rice (1984),
and .Speckman (1982).

5.2 Empirical Assessment of Estimable Losses

Borrowing from the terminology of the standard
linear model define an estimable functional as follows:

DEFINITION. A continuous linear functional (&, -)
is estimable if there exists ¢ in R™ such that Ec'z =
(&, 0) forall 0 in ©O.

Clearly, since n(x;, -) are continuous linear func-
tionals, (£, - ) is estimable if and only if there is some

c in R™ such that

E = 'Zl Cigx,
where £, are representers of n(x;, -) in ©. With this a
loss function is estimable if it is defined in terms of
estimable functionals. A referee has pointed out that
asymptotic estimability could also be of interest in
certain circumstances. For a discussion of a particular

instance of this see Rice (1986).
To illustrate how to empirically assess estimable
losses consider a particular estimable loss of the form

T
L) = % (&, 0 = b))’

where £ are all estimable. Let ¢; be such that

m

gj = Z cjigx,y ]= ]-v M) T
J=1
A simple modification of the cross-validation and un-
biased risks techniques can be formulated to directly
assess the loss L(\).
Unbiased Risk Assessment of L(\). By a develop-
ment similar to that used in Rice (1986), the expected
value of L(\) is

T
E[LO)] = ¥ (&, 0 — Eb,)?

Jj=1

T
+0* 3 ¢jIHO) THW]e,

T
= BIAS*(\) + ¢ ¥ ¢/[H\)'IIHM)]e;.
j=1
The sum of squares,

T
SS = Y [e/z — ¢/z]%,

J=1

has expected value

T
E[SS]=BIAS?(\) + 62 X ¢/[I—HM\)'III - H\)]e;.

J=1

Thus

T T
L) =8S—06% 3 ¢/c;+20% ¥ ¢/HN)'¢;
=1 j=1
is an unbiased estimate of L()A). Again note that a
reliable estimate of ¢ is necessary in order to be able
to use this assessment.

Cross-validation Assessment of L(M\). The cross-
validation procedure is more complicated to derive.
Instead of leaving out one data point, one now omits
the ¢;th component of the data and uses the remaining
data to develop a prediction, ¢z_;, of (&, 6). The
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cross-validation assessment then compares c¢/z to
—~

cz_j,ie.,
T

Vo()\) = z [CJ"Z - Ei_j]z.

J=1

In the context of MOR estimators the situation be-
comes clearer. To make the notation less complicated,
suppose the c; are normalized so that ¢/c¢; = 1 for
j=1,2, ..., T. Let

=] — e.c!
P;=1- ¢jc].

P; is a projection onto the space orthogonal to ¢;. The
estimator obtained by removing the ¢;th component
minimizes

1

™ [Pi(z — n(0))]' Py [P;(z — 0(0))] + X (0, W)
where P; is the generalized inverse of P;. Since
P;P; P; = P, it follows that

¢z_;=c/[X'P;X + m\W]'X'P;z.

Again, using a rank one update formula, it follows
after some algebra that

__clz—cjz
[1 —¢/HMg¢]

where H(A) = X[X’'X + mAW]'X". Thus the ordi-
nary cross-validation score is

"l ez—c/z |
i = 2 [1 - cfH(Mc,] ’
and the GCV extension would be
T S [e]z — ¢f3]°
1 = ¢’"HNVeP?

- ’
CZ_; = C;Z

V(A =

where
P 1T
¢’HMNe == ¥ ¢/H(\Ng;.
TS

The advantage of the cross-validation assessment
over the unbiased risk assessment is that the cross-
validation method does not require knowledge of ¢.

ACKNOWLEDGMENTS

I was very fortunate to learn about inverse problems
from Professor Grace Wahba at the University of
Wisconsin. The motivation for this article arose out
of a series of lectures I gave in a seminar on “Inverse
Problems and Statistical Signal Models” jointly or-
ganized with David L. Donpho at Berkeley in the
Spring of 1985. I would like to thank the participants
in the seminar and also D. L. Banks, B. A. Bolt, D. R.
Brillinger, J. A. Rice, G. Wahba, two referees, and
especially Morris H. DeGroot, for many useful com-

ments which have lead to substantial improvements
in the paper. This work was supported by the National
Science Foundation under Grant MCS-8403239.

REFERENCES

ApAMS, R. (1975). Sobolev Spaces. Academic, New York.

AKk1, K. and RICHARDS, G. (1980). Quantitative Seismology: Theory
and Methods. Freeman, San Francisco.

ALLEN, D. M. (1974). The relationship between variable selection
and data augmentation and a method of prediction. Techno-
metrics 16 125-1217.

ANGER, G., ed. (1979). Inverse and Improperly Posed Problems in
Differential Equations: Proceedings of the Conference on Math-
ematical and Numerical Methods. Akademie-Verlag, Berlin.

ANSCOMBE, F. J. (1967). Topics in the investigation of linear
relations fitted by least squares (with discussion). J. Roy.
Statist. Soc. Ser. B 29 1-52.

Backus, G. and GILBERT, F. (1968). The resolving power of gross
earth data. Geophys. J. Roy. Astronom. Soc. 266 169-205.
Backus, G. and GILBERT, F. (1970). Uniqueness in the inversion
of inaccurate gross earth data. Philos. Trans. Roy. Soc. London

Ser. A 266 123-192.

Bovrt, B. A. (1980). What can inverse problems do for applied
mathematics and the sciences? Search 11 6.

Box, G. E. P. and DRAPER, N. R. (1959). A basis for the selection
of a response surface design. J. Amer. Statist. Assoc. 54
622-653.

BUDINGER, T. F. (1980). Physical attributes of single-photon
tomography. J. Nucl. Med. 21 6.

COOLEY, R. L. (1982). Incorporation of prior information on param-
eters into nonlinear regression groundwater flow models,
1. Theory. Water Resour. Res. 18 965-976.

COOLEY, R. L. (1983). Incorporation of prior information on param-
eters into nonlinear regression groundwater flow models,
2. Applications. Water Resour. Res. 19 662-676.

Cox, D. D. (1983). Approximation of the method of regularization
estimators. Technical Report 723, Statistics Dept., Univ.
Wisconsin-Madison.

Cox, D. D. and O’SuLLIVAN, F. (1985). Analysis of penalized
likelihood type estimators with application to generalized
smoothing in Sobolev spaces. Technical Report 51, Statistics
Dept., Univ. California-Berkeley.

CRAVEN, P. and WaAHBA, G. (1979). Smoothing noisy data with
spline functions: estimating the correct degree of smoothing by
the method of generalized cross-validation. Numer. Math. 31
377-403.

~ DEBOOR, C. (1978). A Practical Guide to B-Splines. Springer, New

York.

DONGARRA, J. J., BUNCH, J. R.,, MOLER, C. B. and STEWART,
G. W. (1979). Linpack User’s Guide. SIAM, Philadelphia.
FosTER, M. R. (1961). An application of the Weiner-Kolmogorov
smoothing theory to matrix inversion. J. SIAM 9 387-392.
FRANZONE, P. C., Taccarpi, B. and VigaNorTi, C. (1977). An
approach to inverse calculation of epi-cardial potentials from

body surface maps. Adv. Cardiol. 21 167-170.

GOLOMB, M. and WEINBERGER, H. (1959). Optimal approximation
and error bounds. In On Numerical Approximation (R. Langer,
ed.). Univ. Wisconsin Press, Madison.

GOLUB, G., HEATH, M. and WAHBA, G. (1979). Generalized cross-
validation as a method for choosing a good ridge parameter.
Technometrics 21 215-223.

Goop, I. J. and GASKINS, R. A. (1971). Non-parametric roughness
penalties for probability densities. Biometrika 58 255-277.

GRENANDER, U. (1981). Abstract Inference. Wiley, New York.



518 F. O’'SULLIVAN

GRUNBAUM, F. A. (1975). Remark on the phase problem in crystal-
lography. Proc. Nat. Acad. Sci. U. S. A. 72 1699-1701.

HADAMARD, J. (1923). Lectures on Cauchy’s Problem. Yale Univ.
Press, New Haven, Conn.

JAYNES, E. T. (1983). Papers on Probability, Statistics and Statistical
Physics. Synthese Library.

JEFFREYS, H. (1976). The Earth. Cambridge Univ. Press.

KIMELDORF, G. S. and WAHBA, G. (1971). Some results on Tche-
bycheffian spline functions. Math. Anal. Appl. 33 82-95.

KRrAvARIS, C. and SEINFELD, J. H. (1985). Identification of param-
eters in distributed parameter systems by regularization. SIAM
dJ. Control Optim. 23 217-241.

LATTES, R. and LioNs, J. L. (1969). The Method of Quasi-reversi-
bility, Applications to Partial Differential Equations. Elsevier,
New York.

L1, K. C. (1982). Minimaxity of the method of regularization on
stochastic processes. Ann Statist. 10 937-942.

LioNs, J. L. (1971). Optimal Control of Systems Governed by Partial
Differential Equations. Springer, Berlin.

Liou, K. (1979). Introduction to Atmospheric Radiation. Academic,
London.

Lukas, M. (1981). Regularization of linear operator equations.
Unpublished Ph.D. thesis, Australian National Univ.

MaALLows, C. L. (1973). Some comments on C,. Technometrics 15
661-675.

MCLAUGHLIN, D. W. (1983). Inverse Problems: Proceedings of a
Symposium in Applied Mathematics. Amer. Math. Soc., Provi-
dence, R. 1.

MENDELSOHN, J. and RICE, J. (1982). Deconvolution of micro-
fluorometric histograms with B-splines. J. Amer. Statist. Assoc.
77 748-17153.

MOSTELLER, F. and TUKEY, J. W. (1977). Data Analysis and Regres-
sion. Addison-Wesley, Reading, Mass.

NEUMAN, S. P. and YAKOWITZ, S. (1979). A statistical approach to
the inverse problem of aquifer hydrology, 1. Theory. Water
Resour. Res. 15 845-860.

NYCHKA, D., WAHBA, G., GOLDFARB, S. and PuGH, T. (1984).
Cross-validated spline methods for the estimation of three-
dimensional tumor size distributions from observations on
two-dimensional cross-sections. J. Amer. Statist. Assoc. 79
832-846. 4

O’SuLLIVAN, F. and WAHBA, G. (1985). A cross-validated Bayesian
retrieval algorithm for non-linear remote sensing experiments.
J. Comput. Phys. 59 441-455.

O’SULLIVAN, F., YANDELL, B. and RAYNOR, W. J. (1986). Automatic
smoothing of regression functions in generalized linear models.
J. Amer. Statist. Assoc. 81 96-104.

PAYNE, L. E. (1975). Improperly Posed Problems in Partial Differ-
ential Equations. SIAM, Philadelphia.

PEANO, G. (1914). Residuo in formulas de quadratura. Mathesis 4
5-10.

RAGozIN, D. (1981). Error bounds for derivative estimates based

on spline smoothing of exact or noisy data. Technical Report
GN-50, Statistics Dept., Univ. Washington.

RICE, J. A. (1984). Bandwidth choice for nonparametric regression.
Ann. Statist. 12 1215-1230. ]

RICE, J. A. (1986). Bandwidth choice for nonparametric differentia-
tion. J. Mult. Anal., in press.

RUDIN, W. (1976). Principles of Mathematical Analysis. McGraw-
Hill, New York.

SARD, A. (1949). Best approximate integration formulas; best
approximation formulas. Amer. J. Math. 71 80-91.

SMITH, W. (1983). The retrieval of atmospheric profiles from VAS
geostationary radiance observations. J. Atmospheric Sci. 40
2025-2035.

SMiTH, W. L., WooLF, H. M., HAYDEN, C. M., WARK, D. Q. and
MCcCMILLIN, L. M. (1979). The TIROS-N operational vertical
sounder. Bull. Amer. Meteor. Soc. 10 1177-1187.

SPECKMAN, P. (1979). Minimax estimates of linear functionals in
Hilbert space. Dept. Mathematics, Univ. Oregon.

SPECKMAN, P. (1982). Efficient nonparametric regression with
cross-validated smoothing splines. Technical Report 45, Statis-
tics Dept., Univ. Missouri-Columbia.

STEINBERG, D. M. and HUNTER, W. G. (1984). Experimental design:
review and comment (with discussion). Technometrics 26
71-130.

STRAND, O. N. and WESTWATER, E. R. (1968). Minimum-rms
estimation of the numerical solution of a Fredholm integral
equation of the first kind. SIAM J. Numer. Anal. 5 287-295.

TIKHONOV, A. (1963). Solution of incorrectly formulated problems
and the regularization method. Soviet Math. Dokl. 5 1035-1038.

TIKHONOV, A. and ARSENIN, V. (1977). Solutions of Ill- Posed Prob-
lems. Wiley, New York.

TITTERINGTON, D. M. (1985). Common structure of smoothing
techniques in statistics. Internat. Statist. Rev. 53 141-170.
VARDI, Y., SHEPP, L. A. and KAUFMAN, L. (1985). A statistical
model for positron emission tomography (with discussion).

J. Amer. Statist. Assoc. 80 8-317.

VILLALOBOS, M. and WAHBA, G. (1983). Multivariate thin plate
spline estimates for the posterior probabilities in the classifi-
cation problem. Commun. Statist. A 12 1449-1479.

WAHBA, G. (1979). Smoothing and ill-posed problems. In Solution
Methods for Integral Equations with Applications (M. Goldberg,
ed.) 183-194. Plenum, New York.

WAHBA, G. (1983a). Design criteria and eigensequence plots for
satellite computed tomography. Technical Report 732, Statis-
tics Dept., Univ. Wisconsin-Madison.

WAHBA, G. (1984). Cross-validated spline methods for the estima-
tion of multivariate functions from data on functionals. In
Statistics: An Appraisal (H. A. David and H. T. David, eds.)
205-233. Iowa State Univ. Press, Ames.

WEINREB, M. P. and CROSBY, D. S. (1972). Optimization of spectral
intervals for remote sensing of atmospheric temperature pro-
files. Remote Sens. Environ. 2 193-201.



