COLLINEARITY 93

3. WHY DO WE NEED COLLINEARITY
DIAGNOSTICS?

In trivial problems such as the CPI regression, it is
easy to understand the provenance of large variance
inflation factors. (Actually, «; is only a modest 7.5 for
the centered data.) It is hard to imagine actually
conducting a regression analysis with as little regard
for the nature of the variables as I showed in the
previous section, ignoring the clear a priori relation-
ships between CPI, GNP, CGNP, and the GNP defla-
tor. But in more complicated problems with many
variables, relationships such as the one between GNP
and CGNP can sneak into our regression models with
the data analyst unaware.

The real value of collinearity diagnostics is to alert
the statistician to the presence of a potential difficulty.
Both the condition number and the collinearity indi-
ces can help to assess the magnitude of the potential
problem. The «;’s can also help to identify particular
variables that are involved, so that they can indicate
a starting point for further investigation. It is this
latter property that makes diagnostics useful—they
can be used to focus and to direct further efforts in
refining the model. If they don’t point a finger some-
where, they are not terribly useful.

In the economics data, the moderate value of «;
might lead us to question the role of x; in the model,
as might the values IMP; = 0.63. Yet, the model can-
not be improved by removing either of the two vari-
ables. The problem is the GNP deflator, of course.
How might the diagnostics lead us to discover the
culprit?

There are two similar routes that can be followed
to construct supplementary diagnostics. When «,, (say)
is large, by definition x, is very nearly a linear com-
bination of the other variables, and that linear com-
bination is given by the coefficients (g1, - - -, fp-1)
from (S-3.7). These are simply the regression coeffi-
cients from the regression of x, on the other variables.
It is often the case when &, is large that the particular
linear combination implied by (g, - - -, fip—1) is inter-
pretable, and sometimes the linear combination x, —
Y, i x; can be recognized as a more sensible “regressor”
to have included in the first place than one or more
of the x;’s.

A second route is to examine the p X 1 vector v,
corresponding to the smallest singular value of X.
This vector can be used to obtain the vector u = Xv
which realizes inf(X); it is also the coefficient vector
for a, = vy B, the linear combination of the regression
coefficients about which the data are least informa-
tive. If one or more of the «;’s is large, then inf(X)
must be small, that is, the linear combination u
is close to zero. The coefficients v, point to the
“worst collinearity.” In practice, this linear combina-
tion is also often interpretable, and may suggest
ways in which the original variables can be removed,
rearranged, or reconstructed so as to avoid the near
singularity.
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1. COLLINEARITY AND ERRORS IN VARIABLES

Stewart gives simplified expressions for probing the
effects of errors in regression variables by comparing
his equations (6.3) and (6.5). Specifically, he defines

RE,;.. = Bo — Bp
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We do not know why these two measures use differ-
ent denominators. We also think that the distinction
between RE,;,. and RE,;, is artificial.

From Stewart’s equation (6.9) we know that
hohp = (n—p) (42 + ¢2). This is a nonnegligible value
even for small values of u} and o2. Therefore it does
not seem reasonable to set h, = 0. Rather than con-
sidering the effects of h, and v, separately, we prefer
to consider them jointly. We assess the relative error
in the pth coefficient due to errors in the pth predictor
by
REj = u

Bo
_ (ppp + ’}’p)2 + hghp — (ppp + 'Ypp)Ppp
(bop + vp)* + hphy .

(1)

It is easily seen that E(RE;) = 0 which is in agreement
with the well known fact that errors in variables
attenuate regression coefficients. Now suppose either
that u, = 0 or that the model contains a constant
term. Then

E(hpThp) = (n— P)U;zu
E(y,) = 0.
Substituting (2) in (1), we get

2

_ 2

RE, = — (n — plo 2
Ppp + (n - P)G P
Thus, REy,; is the special case of RE; corresponding

to the most common regression situations. If we follow
Stewart and set h, = 0 in (1), we get

= REbias .

RE, = _ Y ,

. P T

which says that if 4 = 0 or the model contains a
constant term then RE; = 0. This anomaly is another
argument against setting h, = 0.

2. COLLINEARITY INDICES AND LEVERAGE
POINTS

It is important to note that Stewart’s collinearity
indices are not resistant to the effects of high leverage
points (points that are separated from the bulk of
other data points in one or more dimensions). A high
leverage point can hide a collinearity (see Figure 1) or
create one (see Figure 2). Small collinearity indices do
not necessarily mean that the model is home free, and
large collinearity indices may be due to only one or
two data points. We refer to points that either hide or
create near collinearities as collinearity-influential
points. Collinearity-influential points are usually but
not necessarily points with high leverage, but not
all high leverage points are collinearity-influential.
Mason and Gunst (1985) show that collinearity can
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FiG. 2. An example of a data point that creates a collinearity.

be increased without bound by increasing the leverage
of a point. They also show that a k variate leverage
point can produce £ — 1 independent collinearities.
Therefore, any careful diagnosis of collinearity must
include diagnosis for collinearity-influential points.

. We suggest some diagnostic plots in the next section.

3. DIAGNOSING COLLINEARITY—INFLUENTIAL
POINTS

As Stewart shows, the jth collinearity index is re-
lated to the residuals obtained from the regression of
the jth column of X on all other columns. Let X; and
Xi;) denote the jth column of X, and X without the
Jjth column, respectively. The jth collinearity index
can be expressed as

) = 1X1/lell, j=1, - p,

where ¢; is the residual vector in the regression of X;
on Xj;;. Let P and Pj;; be the projection matrices onto
the spaces spanned by X and X|;;, respectively. To
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show the effect of the ith row of X on «; we write «; as

1/2 o 1/2
(4) Kj = I:x%l + z xf,-:l I:pu p”[}]:l )

2
rei €

where p;; and p;;;; are the ith diagonal elements of P
and Py;), respectively, and x;; is the ijth element of X.

A rash inspection of (4) may lead one to conclude
incorrectly that if e, = 0, then «; = . That is, if X;;
happens to lie on the fitted equation when X; is
regressed on X|;}, then «; = . However

eZ

(5) Dii — Dij1 = ?]ej
shows that as e} — 0, (pi — pugj;) — 0. In fact, the
second expression on the right hand side of (4),
(pi: — piit)/e?, is constant for all i.

A careful inspection of (4) and (5) leads us to suggest
the following graphical displays for the detection of
collinearity-influential points:

(i) Pairwise scatterplots of the columns of X.
(ii) Plot e; versus X, for each j.
(iii) Plot e?/e] e; versus py;;, for each j.

The pairwise scatterplots in (i) are common ad-
juncts to a careful regression analysis and can be
useful in the detection of pairwise collinearities and
pairwise collinearity-influential points. Of course,
pairwise scatterplots may not show multivariate
collinearities or multivariate collinearity-influential
points. The plots in (ii) and (iii) perform better in
that respect.

If X; is orthogonal to Xi;;, the plot of e =
(I — Pyjy) X; versus X; is a straight line through the
origin with slope of one. Deviation from the 45° line
indicates the existence of a collinearity between X;
and some columns of Xj;;. The pattern of points on
this plot is also important. Collinearity-influential
points are usually separated from the bulk of other
points.

The plot of e%/e} e; versus p;;;;; must satisfy

2
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and
0=< Diij1 = max(pii).

The scatter of points is governed by equation (5).
In particular, for fixed p;;, the larger p;;;; the smaller
e’ /el e;. Collinearity-influential points appear in the
lower right and upper left corners of this plot. A data
point in the upper left corner will be a high leverage
point only if X; is included in the model, whereas a
data point in the lower right corner will be a high
leverage point even if Xj is not included in the model.

TABLE 1
Simple correlation coefficients for the data in Stewart’s Table 3

X X, Xs X, Xs
1
X, 0.23 1
X —0.82 —0.14 1
X, —0.25 —0.97 0.03 1
Xs 0.31 0.15 —0.32 —0.17 1

For those readers with access to three-dimensional
scatterplots, we recommend a plot of e; versus X;
versus Pj;;j;. This plot combines the merits of plots
(ii) and (iii) in a single, effective diagnostic display.
Three-dimensional scatterplots are not yet wide-
spread, but their presence in statistics packages for
inexpensive microcomputers (e.g., in the Data Desk
package for the Macintosh, Velleman and Velleman
(1986)) presages a growing availability.

Example. Accepting the legitimacy of fitting a five-
predictor model to 13 data points, we follow Stewart’s
suggestion and fit the no-intercept model to the data
in Stewart’s Table 3. The simple correlation coeffi-
cients matrix ¢ = ¢;; (shown in Table 1) indicates the
existence of two pairwise collinearities; ¢34 = 0.97 and
c13 = 0.82. The scatterplots in Figures 3 and 4 show
that no data point seems to create or hide these
collinearities. However, the inspection of the other
pairwise scatterplots shows the existence of two other
collinearities. They have been hidden by a collinearity-
influential point. Figures 5 and 6 show that point 3
hides two collinearities; one between X; and Xj;, and
another between X; and X;. In fact when the third
row of X is omitted, c;5 changes from 0.31 to 0.73 and
¢35 changes from —0.32 to —0.82.

For j = 2, 3, 4, the scatterplots of e; versus X; (not
shown) do not show any discernible patterns that
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FiG. 3. Scatterplot of X, versus X,.
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deserve a comment. For j = 1 (Figure 7) point 10 is
separated from the other data points and for j = 5
(Figure 8) point 3 lies far from other points. Thus
points 3 and 10 have high potential for being colli-
nearity-influential points. The scatter plots of
e?/eTe; versus p;;; explain why. Point 3 lies in the
lower right corner of the plot in Figure 9 which means
that it is a high leverage point even if X; is not
included in the model. But because point 10 lies in the
upper left corner, its influence is contingent upon the
inclusion of X;. When X is deleted, the 10th diagonal
element of the projection matrix changes from pig10 =
0.72 to p1o,101; = 0.16. The position of points 3 and 10
are reversed in Figure 10. Thus point 3 is a high
leverage point only if X; is included in the model.
When X; is deleted, the third diagonal element of
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FIG. 7. Scatterplot of e, = (I — Pp;) X, versus X;.
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FI16. 9. Scatterplot of normalized residuals when X, is regressed on
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FI1G. 10. Scatterplot of normalized residuals when Xs is regressed
on Xis) versus the diagonal elements of Pjs).

the projection matrix changes from p;; = 0.99 to
D335 = 0.12.

Our analysis shows that points 3 and 10 are candi-
dates for being collinearity-influential points. Let us
now examine the effects of these points on collinearity

measures. The condition numbers and the collinearity
indices for the full and the reduced data are given in
Table 2. The collinearity indices hardly change when
point 10 is deleted but change substantially when
point 3 is deleted. Thus we may conclude that point 3
is the only single point that influences collinearities.
The impact of point 3 on the importance of the vari-
ables, and the estimated regression coefficients and
their variances, is shown in Table 3. The results based
on the full data are strikingly different from those
obtained when point 3.is deleted. In this example
collinearity indices support fitting the no-intercept

TABLE 2
Condition numbers and collinearity indices for the data
in Stewart’s Table 3

k(X) K1 K2 K3 Ky Ks

Full data 8 2.7 42 3.2 2.4 3.9
3rd row deleted 779 45 170 38 121 314
10th row deleted 88 3.6 4.7 38 2.5 4.0

model to the full data but not to the data without the
third row. :

4. COLLINEARITY INDICES AND CENTERING

We agree with Stewart that when there is a constant
term in the model, the data should be centered before
computing the «;’s and IMP;’s. In most multiple
regressions, the origin is not a meaningful data point.
A no-intercept model may represent a newborn
patient with no systolic blood pressure and a body
temperature of 0°F, or a house in the middle of a city
with no floor space and no rooms, or some other
nonsensical combination.

In some cases, however, it is more meaningful to fit
a no-intercept model to the data. If the user chooses
to fit a no-intercept model, we suggest that the regres-
sion package should: (i) advise the user to shorten any
artificially long column by subtracting a constant. For
example, if “year” (reported as a four digit number) is
one of the columns of X, this column should be cen-
tered (or at least be given as 0, 1, ---, n — 1) even if
the model does not contain a constant term and (ii)
ask the user to nominate a “typical” data point; either
one that is actually in the data set or one chosen for
convenience, and then shift the data around this point.
The package may suggest default values for a typical
point, for example, the median of each column of X.

We commend Stewart for providing specific advice
to developers of statistics packages and hope they
adopt these methods. We think that they should take
this opportunity and extend their packages to keep
information about the precision of the data. A package
that has this information could produce Stewart’s
diagnostics without requiring further computation
from the user. The information would also be useful
in drawing and labeling plots, in identifying data entry
errors, and in deciding how many digits of a computed
result to print. A package might reasonably use a
natural default assumption that all of the entered
digits are correct except for rounding errors and thus
the errors follow a uniform distribution over the in-
terval (—.5, .5). This is equivalent to setting w, = 0
and ¢2 = 10‘/v/12, where ¢ is the digit at which the
rounding occurs. Of course, the user should be en-
couraged to override this default assumption with
more accurate information.
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TABLE 3
The impact of point 3 on some regression results for the data in Stewart’s Table 3°

Y IMP, 8 Var (B)
Var.
F R F R F R F R

Xy 213 181 .04 .07 2.19 1.89 041 129
X, .602 4170 .06 .26 1.15 .90 .004 .063
Xs .104 .090 .05 .06 .76 .63 .029 .043
X, 171 .083 .04 .19 49 23 .003 066
X .001 .247 .06 48 .02 10.02 1.065 95.988

°F denotes full data and R denotes reduced data (point 3 deleted). Values of ; and IMP; are from
Stewart’s equations (5.1) and (5.2), respectively.
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Rejoinder

G. W. Stewart

I would like to begin by thanking the commentators
for giving my paper a fair and careful reading. Since
the following remarks must necessarily focus on our
differences, let me stress at the outset that I find much
to agree with in their comments.

I am happy to acknowledge that Donald Marquardt
knew of the connection between variance inflation
factors and collinearity. My only quibble is that one
must read a rather small section of his 1970 paper
very carefully in order to see it. Marquardt never uses
the word collinearity and only asserts that the vari-
ance inflation factors depend on the partial correla-
tions, without explicitly stating the nature of the
dependency. From his comment one can deduce that
he takes a partial correlation near one as a synonym
for collinearity and means for the reader to infer that
the dependency is the same as the one he writes down
for two variables. However, the passage can also be
read as a vague afterthought, which is how I inter-
preted it on first reading.

On nomenclature, the difficulty with the term var-
iance inflation factor is that it draws attention to one
effect of near collinearity to the exclusion of other,
equally important effects. It seems more natural to
me to give a simple characterization of near collinear-
ity and then show how it affects statistical procedures.
Taking the square root of the variance inflation fac-
tors not only simplifies the formulas but stresses a
useful connection with the condition number.
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David Belsley’s comments are practically a paper in
themselves, and a complete response would amount to
another. Here I will only make a few observations and
trust the reader to sort out the issues.

Belsley would make a distinction between data and
models, and in a sense I heartily agree. Numerical and
statistical tricks are no substitute for a knowledge of
the science underlying a problem. However, on close
inspection his distinction appears elusive. Is a con-
stant term model or data? How do we classify the
design matrix for an unbalanced analysis of variance?
Moreover, the term model has come to mean many
things. Belsley’s “rather exhaustive” survey evidently

did not include Draper and Smith (1981, page 86) or

Seber (1977, pages 42 and 43), who use the term model
in much the same sense as I do. Attempting to preempt
the word model is like trying to tell the tide where to
come in.

I will save my comments on importance for the end
of this rejoinder. Regarding centering, I will simply
restate that centering is a change of variables, and the
new ones are not equivalent to the old. There is
nothing vague or “psychological” about this observa-
tion, and it is ironic that Belsley quotes at length from
a passage that describes the psychological biases in
the opposing view.

Belsley points out that the collinearity indices do
not tell the dimension of the approximate null space
and provide little help in selecting an independent



