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1. INTRODUCTION

It has been a long time coming, but it is finally here.
The second edition of T. W. Anderson’s classic, An
Introduction to Multivariate Statistical Analysis, will
please all of those who have enjoyed the first edition
for so many years. It essentially updates the material
in the first edition without going far beyond the topics
already included there. A reader who had spent the
intervening 26 years on another planet might get the
impression that work in multivariate analysis has been
concentrated on just those topics with the addition of
factor analysis. Of course this impression is mistaken,
and Anderson himself notes in the Preface (page vii)
that “It is impossible to cover all relevant material in
this book.” So, in the course of reviewing this book,
and comparing it to the first edition, I thought it
might be interesting to take a thoroughly biased and
narrow look at the development of multivariate analy-
sis over the 26 years between the two editions. A
reader interested in a more complete and less person-
alistic review might refer to Subramaniam and
Subramaniam (1973) and/or Anderson, Das Gupta
and Styan (1972). Recent reviews of some contempo-
rary multivariate texts (less cluttered by reviewer bias)
were performed by Wijsman (1984) and Sen (1986).

Suppose we begin at the end. Nearly simultaneous
with the publication of the second. edition of Ander-
son’s book is the release of Multivariate Analysis by
Dillon and Goldstein (the Prefaces are dated June and
May 1984, respectively). This text, which is subtitled
Methods and Applications, is different from Ander-
son’s in every respect except the publisher. It even
seems to begin where Anderson leaves off with factor
analysis and principal components. I believe that the
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differences between the texts reflect two very different
directions in which multivariate analysis has pro-
gressed. The topics covered by Dillon and Goldstein
have, by and large, been developed more recently than
those covered by Anderson. As an illustration, fewer
than 18% of the references cited by Dillon and Gold-
stein are pre-1958, whereas almost 42% of Anderson’s
references are pre-1958. (Of course Anderson had a
headstart, but the other authors had access to his 1958
book. In three places, they cite Anderson’s 1958 book
in lieu of earlier work.) The major difference in em-
phasis is between theory and methods. To illustrate
this distinction, Anderson had twelve examples
worked out with data in his first edition and the same
examples appear in the second edition, with no new
ones (but one correction). This is due, in large part,
to the fact that the topics covered in the two editions
are nearly identical. (Although factor analysis has
been added as a topic, no numerical examples are
given, and no numerical exercises are included.) Dillon
and Goldstein work out numerous examples, often
reanalyzing the same data several times to illustrate
the differences between various techniques.

Since 1958, the development of multivariate theory

. has been concentrated, to a large extent, in the general
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areas that Anderson covered in his first edition. Mul-
tivariate methods, on the other hand, have taken on
a life of their own, with or without the theory that
mathematical statisticians would like to see developed.
This has led to an entire industry of exploratory and
ad hoc methods for dealing with multivariate data.
Researchers are not about to wait for theoreticians to
develop the necessary theory when they perceive the
need for methods that they think they understand.
The theoretical statisticians’ approach to multivariate
analysis seems to have been to follow the first princi-
ple of classical inference. “If the problem is too
hard, test a hypothesis.” The development of proce-
dures like cluster analysis, factor analysis, graphical

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
Statistical Science. IINOI ®

Www.jstor.org



REVIEW OF MULTIVARIATE ANALYSIS 397

methods and the like argue that more tests are not
going to be enough to satisfy the growing desire for
useful multivariate methods.

2. BACK TO THE BEGINNING
2.1 What'’s Old

The basic theoretical results with which Anderson
began his first edition are repeated in the second
edition with only minor clarifications. These include
the properties of the multivariate normal distribution
and the sampling distributions of the sufficient statis-
tics. They comprise the bulk of Chapters 2 and 3.
Dillon and Goldstein deal with all of these concepts
in fewer than 12 pages of an appendix. The new
material that Anderson adds to Chapter 3 includes the
noncentral x 2 distribution for calculation of the power
functions of tests with known covariance matrices. In
Chapter 5, he adds a section on the power of tests
based on Hotelling’s T2 The pace at which power
functions have been calculated for multivariate pro-
cedures is very much slower than the pace at which
tests have been proposed, even though it does not
make much sense to test a hypothesis without being
able to examine the power function. For a level «
chosen without regard to the power, one could reject
with too high a probability for alternatives fairly
close to the hypothesis or with too low a probability
for alternatives far away without knowing it. (See
Lehmann, 1958, and Schervish, 1983, for discussions
of this issue in the univariate case.) Multivariate
power functions are, of course, much more difficult to
produce than are tests. They are also more difficult to
understand than univariate power functions. Even in
the simple case of testing that the mean vector u
equals a specific value » based on Hotelling’s 77
the power function depends on the quantity 7° =
(u — v)TZ7'(u — »). Just as in univariate analysis, it
is rarely (if ever) the case that one is interested in
testing that u exactly equals », rather one is interested
in how far u is from v. If one uses the T test, one is
implicitly assuming that 7 adequately measures that
distance. If it does not, one needs a different test. If
72 is an adequate measure, what one needs is some
post-data measure of how far 77 is likely to be from 0.
The posterior distribution of 7 would serve this pur-
pose. This posterior distribution is easy to derive in
the conjugate prior case. In Chapter 7 (page 270),
Anderson derives the posterior joint distribution of u
and Z. This posterior is given by

p|Z ~ Np(ui, 1/M2),
2 ~ W;I(Aly al)a

where W, (A,, a;) denotes the inverse Wishart distri-
bution with scale matrix A,, dimension p, and a;

1)

degrees of freedom. In words, the conditional distri-
bution of u given X is p-variate normal with mean
vector u; and covariance matrix 1/\,2; the marginal
distribution of Z is inverse Wishart. The constants
u1, A1, A1, and a,; are functions of both the data and
the prior, but their particular values are not important
to the present discussion. (For large sample sizes, a,
and )\, are both approximately the size of the sample,
whereas yu, is approximately the sample mean vector
and A; is approximately the sample sum of squares
and cross-products matrix.) It follows that, condi-
tional on =, \;72 has noncentral x? distribution with
p degrees of freedom and noncentrality parameter

=N — )2 (u — »).

The distribution of 7 is a one-dimensional Wishart or
gamma distribution T'(Yza;, Y2y %), where

2= N — »)TAT (1 — v).

We get the marginal distribution of 7* by integrating
n out of the joint distribution of 7> and n. The result
is that the cumulative distribution function of 77 is

- 1\ g2 )’* T'(k + %a)
Fey = kgo [(1 + ¢2> (1 + y? k'T'(Y2a,)

t
(1/2>\1 ) k+p/2 k+p/2—-1 )\1
X I‘(k+1/2p)u exp 2u du|.

This function can be accurately calculated numerically
by using an incomplete gamma function program and
only a few terms in the summation, because the inte-
gral decreases as k increases. Due to the similarity
that this distribution bears to the noncentral x? dis-
tribution (the only difference being that the coeffi-
cients are generalized negative binomial probabilities
rather than Poisson probabilities), I will call it the
alternate noncentral x*(p, a;,¥*/(1 — ¢?)), abbreviated
ANC x2 The ANC x? distribution was derived in a
discriminant analysis setting by Geisser (1967). It
also turns out to be the distribution of many of the
noncentrality parameters in univariate analysis of
variance tests.

In other cases, when 72 does not adequately measure
the distance between u and v, the experimenter will
have to say exactly how he/she would like to measure
that distance. Perhaps several different measures are
important. One thing theoretical statisticians can do
is to derive posterior distributions for a wide class of
possible distance measures in the hope that at least
one of them will be appropriate in a given application.
What they are more likely to do is to propose more
tests whose power functions depend on parameters
other than 72. Any movement in this direction, how-
ever, would be welcome in that it would force users to
think about what is important to detect before just
using the easiest procedure.
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2.2 What’s New

An interesting addition to the chapter on Hotell-
ing’s T* is Section 5.5 on the multivariate Behrens-
Fisher problem. Consider ¢ samples of size N, i =
1, ---, g from normal distributions with different co-
variance matrices. The goal is to test Hy: Y0, Biu; =
u. The procedures described amount to transforming
the g samples into one sample of size min{N;, - - -, N,}
in such a way that the mean of the observations in
the one sample is 7, B;u;. The usual T? statistic is
now calculated for this transformed sample. These
methods are classic illustrations of the level « mindset,
that is, the overriding concern for having a test pro-
cedure with prechosen level o regardless of the data
structure, sample size or application. Data is discarded
with a vengeance by the methods described in this
section, although Anderson claims (pages 178), “The
sacrifice of observations in estimating a covariance
matrix is not so important.” Also, the results depend
on the order in which observations are numbered. Of
course, the posterior distribution of Y% , G;u; is no
simple item to calculate, but some effort might usefully
be devoted to its derivation or approximation.

One other unfortunate feature of Section 5.5 is the
inclusion of what Anderson calls (pages 180) “Another
problem that is amenable to this kind of treatment.”
- This is a test of the hypothesis u¥ = u® where

#( )

is the mean vector of a 2¢g-variate normal distribution.
The test given is a special case of tte general test of
Ho: Ap = 0 with A of full rank. The general test is
based on T? = N(Ax)T(ASAT) " '(A%) and it neither
discards degrees of freedom nor depends on the order-
ing of the observations. This test is simply not another
example of the type of test proposed for the Behrens-
Fisher problem.

A topic that has been added to the treatment of
correlation is the unbiased estimation of correlation
coefficients. This topic illustrates the second principle
of classical inference: “Always use an unbiased esti-
mator except when you shouldn’t.” The case of the
squared multiple correlation R? is one in which you
shouldn’t use an unbiased estimator. When the sample
multiple correlation R? is near 0, the unique unbiased
estimator based on R? may be negative. This is not
uncommon for unbiased estimators. Just because the
average of an estimator over the sample space is equal
to the parameter doesn’t mean that the observed value
of the estimator will be a sensible estimate of the
parameter, even if the variance is as small as possible.
I would suggest an alternative to the second principle
of classical inference: “Only use an unbiased estimator
when you can justify its use on other grounds.”

3. DECISION THEORY AND BAYESIAN
INFERENCE

A welcome addition to the second edition is the
treatment of decision theoretic concepts in various
places in the text. In Section 3.4.2, the reader first
sees loss and risk as well as Bayesian estimation.
Admissibility of tests based on T? is discussed in
Section 5.6. One topic in the area of admissibility of
estimators that has been studied almost furiously
since 1958 is James-Stein type estimation. Stein
(1956) showed that the maximum likelihood estimate
(MLE) of a multivariate mean (with known covari-
ance) is inadmissible with respect to sum of squared
errors loss, when the dimension is at least 3. Then,
James and Stein (1961) produced the famous
“shrunken” estimator, which has everywhere smaller
risk function. Since that time, the literature on
shrunken estimators has expanded dramatically to
include a host of results concerning their admissibility,
minimaxity and proper Bayesianity. Anderson has
added a brief survey of those results in a new Sec-
tion 3.5. He seems, however, reluctant to recommend
a procedure that acknowledges its dependence on sub-
jective information. This is evidenced by his comment
(page 91) concerning the improvement in risk for the
James-Stein estimator of u, shrunken toward v:

However, as seen from Table 3.2, the improvement
is small if 4 — v is very large. Thus, to be effective
some knowledge of the position of u is necessary. A
disadvantage of the procedure is that it is not objec-
tive; the choice of v is up to the investigator.

Anderson comes so close to recognizing the impor-
tance of subjective information in making good infer-
ences, but I will not accuse him of having Bayesian
tendencies based on the above remark. It should also
be noted, of course, that the choice of the multivariate
normal distribution as a model for the data Y is also
not objective, and is probably of greater consequence
than the choice of v. For example, if the chosen dis-
tribution of Y had infinite second moments and  were
still a location vector, admissibility with respect to
sum of squared errors loss would not even be studied
seriously.

In addition to the simple shrinkage estimator and
its varieties, Anderson reviews such estimators for the
mean in the case in which the covariance matrix is
unknown (Section 5.3.7) and for the covariance matrix
itself (Section 7.8). He also gives the joint posterior
distribution of x and = based on a conjugate prior, as
well as the marginal posteriors of u and =. He does
not give any predictive distributions, for example, the
distribution of a single future random vector, or of the
average of an arbitrary number of future observations.
Unfortunately, he got the covariance matrix of the
marginal distribution of u incorrect. For those of you
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who are reading along (page 273), the correct formula

is [(N+ k)N +m—1—p)]'B. Press (1982) gives a,

more detailed presentation of a Bayesian approach to
inference in multivariate analysis.

Bayesian inference in multivariate analysis has not
progressed by anywhere near the amount that classical
inference has. An oversimplified reason may be the
fact that everyone knows what to do when you use
conjugate prior distributions and nobody knows what
to do when you don’t. There are, however many (per-
haps too many) problems that can still be addressed
within the conjugate prior setting. There is the issue
of exactly what summaries should be calculated from
the posterior distribution. The standard calculations
are moments and regions of high posterior density.
The first principle of Bayesian inference appears to
be “Calculate something that is analogous to a classi-
cal calculation.” The Bayesian paradigm is much more
powerful than that, however. Having the posterior
distribution theoretically allows the calculation of pos-
terior probabilities that parameters are in arbitrary
sets. It also allows the calculation of the predictive
distribution of future data, which in turn includes the
probabilities that future observations lie in arbitrary
sets. These are the sorts of numerical summaries that
people would like to see, but the technology needed to
supply them is very slow in developing.

One reason for the slow progress in Bayesian meth-
ods is the computational burden of performing even
the simplest of theoretical calculations. Multivariate
probabilities require enormous amounts of computer
time to calculate. Also, calculation of summary meas-
ures when prior distributions are not conjugate is very
time consuming. Programs like those developed by
Smith, Skene, Shaw, Naylor and Dransfield (1984)
are making such calculations easier, but more effort
is needed. Computational difficulties have also hind-
ered the development of power function calculations
for multivariate tests. Perhaps breakthroughs in one
area will help researchers in the other also.

4. DISCRIMINANT ANALYSIS

Chapter 6 of Anderson, concerning classification
has expanded somewhat compared to the first edition,
although the introductory sections have remained bas-
ically intact. Notation has been altered to reflect
standardization. In addition, the formula for the
“plug-in” discriminant function W and the formula
for the maximum likelihood criterion Z are introduced
for future comparison in a new section on error rates.
A great deal of work had been done between the two
editions in the area of error rate estimation. Some of
this work is discussed in Section 6.6, “Probabilities of
Misclassification.” The presentation consists of sev-
eral theorems and corollaries giving asymptotic expan-
sions for error rates of classification rules based both

on W and on Z for the two population case. In light
of the dryness of this section, perhaps the author can
be forgiven for failing to discuss any results on error
rate estimation in the case of several populations such
as the asymptotic expansions given by Schervish
(1981a, b). Surprisingly, Dillon and Goldstein say even
less about error rate estimation, giving only a verbal
description of a few existing methods. This is an area
in which recent progress has consisted mainly of the
introduction of several methods involving bootstraps,
jackknives and asymptotics. The theory behind the
methods is a bit sparse, which helps to explain their
neglect by Anderson, but not of their shallow treat-
ment by Dillon and Goldstein.

Anderson’s treatment of the multiple group classi-
fication problem is identical in the two editions, al-
though Dillon and Goldstein adopt the alternative
approach based on the eigenanalysis of the matrix
W' B, in their notation. In this approach, one tries
to find a reduced set of discriminant functions that
provides nearly the same discriminatory power as the
optimal discriminant functions. For example, if one
wishes to use only one discriminant function, one
would choose the eigenvector of W™ B corresponding
to the largest eigenvalue. Geisser (1977) gives an ex-
ample illustrating how this first linear discriminant
function can lead to poorer classification than other
linear functions that are not eigenvectors of W= B.
The problem is that discriminatory power (measured
by misclassification probability) is not reflected in the
squared deviations that the eigenvalues of W™ B
measure. Guseman, Peters and Walker (1975) attack
the problem of finding optimal reduced sets of discrim-
inant functions for the purposes of classification. A
simplified solution in the case of three populations
was given by Schervish (1984). The theoretical analy-
sis through the eigenstructure of W~ B is based on
(what else?) tests of the hypotheses that successive
eigenvalues are 0. I hesitate to mention that the suc-
cessive tests are rarely performed conditionally on the
previous hypotheses being rejected, for fear that some-

-one may then think that this would be an interesting

problem to pursue. I was surprised to see Anderson
suggesting a similar sort of sequential test procedure
in the related problem of determining the number of
nonzero cannonical correlations. Anderson does note
(page 498) that “these procedures are not statistically
independent, even asymptotically.” Dillon and Gold-
stein also give an example (11.2-2, page 405) of this
successive unconditional testing. This example is
noteworthy for another lapse of rigor which may be
even more dangerous. They use V to denote the test
statistic and say:

Because V = 269.59 is approximately distributed as
x2 with P(K — 1) = 5(3) = 15 df, it is statistically
significant at better than the 0.01 level.
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Obviously, 269.59 is not approximately x 2 but neither
is V since the hypothesis is most likely false. It seems
a bit strange to use the approbatory description “better
than” when “less than” is meant. It is as if one were
rooting for the alternative. What kind of hypothesis
testing habits will a reader with little theoretical sta-
tistical training develop if this is the type of example
he/she is learning from?

5. EXPLORATORY METHODS

As mentioned earlier, several well known ad hoc
procedures have emerged from the need to do explor-
atory analysis with multivariate data. These proce-
dures can be quite useful for gaining insight from data
sets or helping to develop theories about how the data
is generated. Theoreticians often think of these pro-
cedures as incomplete unless they can lead to the
calculation of a significance level or a posterior prob-
ability. (This reviewer admits to being guilty of that
charge on occasion.) Although some procedures are
essentially exploratory, such as Chernoff’s (1973)
faces, others may suggest probability models, which
in turn lead to inferences. I discuss a few of the better
known exploratory methods below. Of course, it is
impossible to cover all exploratory methods in this
review. None of these methods is described in Ander-
son’s book, presumably due to the lack of theoretical
results. Dillon and Goldstein give at least some cov-
erage to each topic. Their coverage of cluster analysis
and multidimensional scaling is adequate for an intro-
ductory text on multivariate methods, but I believe
they short change the reader with regard to graphical
methods (as does virtually every other text on multi-
variate analysis). Now that the computer age is in full
swing, exploratory methods will become more and
more important in data analysis as researchers realize
that they do not have to settle for an inferential
analysis based on normal distributions when all they
want is a good look at the data.

5.1 Cluster Analysis

Cluster analysis is an old topic that has flourished
" to a large extent in the last 30 years partly due to the
advent of high speed computers that made it a feasible
technique. It consists of a variety of procedures that
usually require significant amounts of computation. It
is essentially an exploratory tool, which helps a re-
searcher search for groups of data values even without
any clear idea of where they might be or how many
there might be. Statistical -concepts such as between
groups and within groups dispersion have proven use-
ful in developing such methods, but little statistical
theory exists concerning the problems that give rise
to the need for clustering.

Not surprisingly, some authors have begun to de-

_velop tests of the hypothesis that there is only one

cluster. Here, one must distinguish two forms of clus-
ter analysis. Cluster analysis of observations concerns
ways of grouping observation vectors into homogene-
ous clusters. It is this form that has proven amenable
to probabilistic analysis. The other form is cluster
analysis of variables (or abstract objects) in which the
only input is a matrix of pairwise similarities (or
differences) between the objects. The actual values of
the similarity measures often have no clear meaning,
and when they do have clear meaning, there may be
no suggestion of any population from which the ob-
jects were sampled or to which future inference will
be applied. In these cases, cluster analysis may be
nothing more than a technique for summarizing the
similarity or difference measures in less numerical
form. As an exploratory technique, cluster analysis
will succeed or fail according to whether it either does
or does not help a user better understand his/her data.

From a theoretical viewpoint, interesting questions
arise from problems in which data clusters. Suppose
we define a cluster probabilistically as a subset of the
observations that arose independently (conditional on
some parameters if necessary) from the same proba-
bility distribution. For convenience consider the case
in which each of those specific distributions is a mul-
tivariate normal and the data all arose in one large
sample. We may be interested in questions such as (i)
What is probability that there are 2 clusters? (ii) What
is the probability that items k and j are in separate
clusters if there are 2 clusters. (iii) If there are two
clusters, where are they located? Answers to the three
questions raised require probabilities that there are K
clusters for K = 1, 2. They also require conditional
distributions for the cluster means and covariances
given the number of clusters, and they require proba-
bilities for the 2" partitions of the n data values among
the two clusters given that there are two clusters.
There are some sensible ways to construct the above
distributions, but the computations get out of hand
rapidly as n increases. Furthermore, as the number of
potential clusters gets larger than 2 or as the dimen-
sion of the data gets large, the theoretical problems
become overwhelming. Following the first principle of
classical inference Engleman and Hartigan (1969)
have proposed a test, in the univariate case, of the one
cluster hypothesis with the alternative being that
there are two clusters. Although easier to construct
than the distributions mentioned, such a test doesn’t
begin to answer any of the three questions raised
above.

5.2 Multidimensional Scaling

Dillon and Goldstein introduce multidimensional
scaling (MDS) as a data reduction technique. Another
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way to describe it would be as a data reconstruction
technique. One begins with a set of pairwise similari-
ties or differences among a set of objects and con-
structs a set of points in some Euclidean space (one
point for each object) so that the distances between
the points correspond (in some sense) to the differ-
ences or similarities between the objects (closer points
being more similar). If the Euclidean space is two-
dimensional, such methods can provide graphical dis-
plays of otherwise difficult to read difference matrices.
For example, the dimensions of the constructed space
may be interpretable as measuring gross features of
the objects. Any objects that are very different in
those features should be far apart along the corre-
sponding dimension.

There are two types of MDS. When the similarities
or differences are measured on interval or ratio scales,
then metric MDS can be used to try to make the
distances between points in the Euclidean represen-
tation match the differences between the objects in
magnitude. This type of scaling dates back to Torger-
son (1952). When the similarities or differences are
only ordinal, then nonmetric MDS can be used to find
a Euclidean representation that matches the rank
order of the distances to the rank order of the original
difference measures. Shepard (1962a, b) and Kruskal
(19644, b) introduced the methods and computational
algorithms of nonmetric MDS. The methodology of
both types of MDS is not cluttered with tests of
significance or probability models. In its current state
it appears to be a purely exploratory technique
designed for gaining insight rather than making
inference.

5.3 Graphical Methods

Graphical display of multivariate data has been
performed for many years. Tufte (1983) gives some
excellent historical examples of multivariate displays.
Computers have made the display of multivariate data
much easier and allowed the introduction of tech-
niques not considered feasible before. Chernoff’s
(1973) faces are one ingenious example, as are
Andrews’ (1972) function plots. Such methods are
often used as part of a cluster analysis in order to
suggest the number of clusters or to visually assess
the results of a clustering algorithm. Gnanadesikan
(1977) describes several other graphical techniques
that can be used to detect outliers in multivariate
samples. Tukey and Tukey (1981a, b, c¢) describe a
large number of approaches to viewing multivariate
samples, including Anderson’s (1957) glyphs and the
trees of Kleiner and Hartigan (1981). Most of these
techniques require sophisticated graphics hardware
and software in order to be used routinely. Their
popularity (or lack thereof) is due in large part to both
the expense involved in acquiring good graphics equip-

ment and the lack of a widely accepted graphics stand-
ard. That is, what runs on a Tektronix device will not
necessarily run on an IBM PC or a CALCOMP, etc.,
unless the software is completely rewritten. Most stat-
isticians (this author included) can think of more
interesting things to do than rewriting graphics soft-
ware to run on their own particular device. Perhaps
the graphics kernel standard (GKS) will (slowly) elim-
inate this problem.

6. REGRESSION

Regression analysis, in one form or another, is prob-
ably the most widely used statistical method in the
computer age. What would have taken many minutes
or hours (if attempted at all) in the early days of
multivariate analysis is now done in seconds or less
even on microcomputers. Hence, we expect to see some
discussion of multivariate regression in any modern
multivariate analysis text. Chapter 8 of Anderson’s
text deals with the multivariate general linear model.
The title of the chapter, unfortunately, exposes what
the emphasis will be: “Testing the general linear hy-
pothesis; MANOVA.” Nevertheless, the treatment is
thorough, providing more distributions, confidence
regions and tests than in the first edition.

Oddly enough, however, Dillon and Goldstein de-
vote two chapters of their text to multiple regression
with a single criterion variable. This is a topic usually
covered as part of a univariate analysis course, because
only the criterion variable is considered random. But
this reasoning only goes to further illustrate the dis-
tinction between the theoretical and methodological
approaches to statistics. If the observation consists of
(Xi,...,X,, Y), then why not treat it as multivariate?
The authors reinforce this point by denoting the
regression line E(Y | X). In addition to the mandatory
tests of hypotheses, they also discuss model selection
procedures, outliers, influence, leverage, multicolline-
arity (in some depth), weighted least squares and
autocorrelation. Neither text, however, considers
those additional topics in the case of multivariate
regression. Gnanadesikan (1977) has some suggestions
for how to deal with a few of them. As an alternative
to the usual MANOVA treatment of the multivariate
linear model, Dillon and Goldstein include a chapter
on linear structural relations (LISREL), which I dis-
cuss in Section 10.

7. CANONICAL CORRELATIONS

A topic very closely related to multivariate regres-
sion, but usually developed separately, is canonical
correlation analysis. Anderson develops it as an ex-
ploratory technique, being sure to add new material
on tests of hypotheses. Dillon and Goldstein introduce
the topic by saying (page 337), “The study of the
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relationship between a set of predictor variables and
a set of response measures is known as canonical
correlation analysis.” It seems clear that they intend
this to at least replace any discussion of multivariate
regression. What coverage of MANOVA they provide
is a special topic under multiple discriminant analysis.
Canonical correlation goes one step beyond multivar-
iate regression, however. In regression analysis, the
focus is on predicting the criterion variables Y from
the independent variables X. Canonical correlation
goes on to ask which linear functions of Y can be most
effectively predicted by X? The canonical variables
become those linear functions of Y together with their
best linear predictors. Because the multivariate
regression $X already gives the best linear predictor
of Y, the X canonical variable corresponding to ca-
nonical variable a”Y turns out to be a”8X times a
normalizing constant.

The theory and methodology of canonical correla-
tion, as described above, has been available for many
years. Anderson takes the methodology further by
showing how it applies to structural equation models
and linear functional relationships. For those unfa-
miliar with these topics, the introduction of linear
functional relationships in Section 12.6.5 will be a bit
confusing. It begins, essentially, as follows (page 507):

For example, the balanced one-way analysis of
variance can be set up as

Yo=vetp+Uga=1--,m j=1,---]

where
&U.=0,8U0.U7=¢,301v.=0

and
Oy, =0.

where 0 is ¢ X p; of rank q (< p;). No mention is given
in this discussion of where the matrix ® comes from
or what it means. The inference is that it specifies
linear functional relationships, but these have not
been part of any discussion of the one-way analysis of
variance prior to this point in the text. The discussion
of structural equation models and two-stage least
squares in Section 12.7 is more coherent and illus-
"trates the author’s ingenuity. Although the limited
information maximum likelihood estimator intro-
duced there appears ad hoc, it does show that canon-
ical correlation analysis is a bit more versatile than
most textbooks give it credit for being. Dillon and
Goldstein present a much more grandiose treatment
of linear structural relations (LISREL), which I dis-
cuss in Section 10.

a=1,...,m,

8. PRINCIPAL COMPONENTS

As mentioned earlier, Dillon and Goldstein begin
where Anderson leaves off by discussing principal

components. Although both authors give only a brief
treatment of this topic, their treatments differ dra-
matically. Anderson gives asymptotic distributions
for the vectors and eigenvalues. He even adds some
new discussion of efficient methods of computing the
eigenstructure. Other new material includes confi-
dence bounds for the characteristic roots and tests of
various hypotheses about the roots. Dillon and Gold-
stein, in contrast, say next to nothing about how to
calculate principal components, aside from the math-
ematical formulas. They give brief mention of one
hypothesis test (lip service to the first principle of
classical inference, no doubt). They describe the ge-
ometry of principal components in extensive detail,
and they present a brief treatment of some ad hoc
methods for choosing how many components to keep.
The major difference between the two treatments,
however, is that Dillon and Goldstein present princi-
pal components analysis as one part of a larger factor
analysis rather than as a separate procedure.

An interesting alternative derivation and interpre-
tation of principal components is suggested by results
of O’Hagan (1984). Let R be the correlation matrix of
a random vector X that has been standardized so that
R is also the covariance matrix. In most treatments,
the first principal component is that linear function
of X that has the highest variance subject to the
coefficient vector having norm 1. It also happens to
be that linear function whose average squared corre-
lation with each of the X;’s is largest. That is, if
ri(e) = corr(e”X, X;) then the ¢, which maximizes

7, ri(e), is the first principal component. So the
first principal component is that linear function of X
that would best serve as a regressor variable if one
wished to predict all coordinates of X from the same
regressor. Suppose now that we regress X on the first
principal component and calculate the residual covar-
iance matrix. In the residual problem, the second
principal component is that linear function of X that
maximizes the weighted average of the squared cor-
relations with the coordinates of X;. The weights are
the residual variances after regression on the first
principal component. That is, the second principal
component is the best regressor variable for predicting
all of the residuals of the X;’s after regression on the
first principal component. The remaining principal
components are generated in a similar fashion. The
advantages to this approach over the more standard
approaches are 2-fold. First, if one wishes to reduce
dimensionality, the goal should be to be able to predict
the whole data vector as well as possible from the
reduced data vector. That this is achieved by principal
components is not at all obvious from their derivation
as linear functions with maximum variance. Second,
there is no need to introduce the artificial constraints
that the principal components have norm 1 and that
they be uncorrelated or orthogonal. One can scale
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them any way one wishes for uniqueness, and they are
automatically uncorrelated because each one lies in
the space of residuals from regression on the previous
ones. Hence, the maximization problem one solves for
each principal component is identical with all of the
others except that the covariance matrix keeps chang-
ing. This approach is described in more detail by
Schervish (1986).

9. FACTOR ANALYSIS

Factor analysis has been described both as a data
reduction technique and as a data expansion tech-
nique. The basic goal is to find a small number of
underlying factors such that the observed variables are
all linear combinations of these few factors plus small
amounts of independent noise. Because the factors
are not observable variables, it turns out that there is
a great deal of indeterminacy in any particular factor
solution. That is, given a particular solution, there are
many alternative solutions that produce the very same
estimated covariance structure for the observed vari-
ables, but with different factors. Some arbitrary re-
strictions must be placed on the solution in order to
obtain a unique answer. Chapter 14 of Anderson’s
second edition is all new and contains a good exposi-
tion of the maximum likelihood approach to factor
analysis. This is the only approach in which statistical
theory has played an important role. It includes a
particular arbitrary restriction that allows calculation
of a unique solution.

9.1 Exploratory Factor Analysis

There are traditionally two modes in which one can
perform factor analysis. First, there is exploratory
factor analysis. In this mode, one is trying to deter-
mined both how many (if any) factors there are and
what they mean, if there are any. Once one has fit a
model with a specific number of factors, one can rotate
the factors through all of the equivalent solutions by
using any of several exotically named techniques.
With the maximum likelihood approach, one can also
test the hypothesis that there are only m common
factors where m is smaller than the dimension of the
observation vectors. If the test rejects the hypothesis,
one is free to add more factors until the result is
insignificant. This practice is deplorable in the usual
hypothesis testing framework, although I am sure that
some unfortunate person somewhere is currently
trying to solve the problem of determining the level of
this procedure, or sequences of critical values to guar-
antee a specified level. Because it is never conclusively
decideable how many factors there are in a given
application, it would be worth while to have a model
that would allow calculation of the probability distri-
bution of the number of factors. This would require
subjective information about the factor structure.

Consider the example analyzed in Section 3.4 of
Dillon and Goldstein by both the principal factor
method and maximum likelihood. The example con-
cerns ten political and economic variables measured
on 14 countries. Dillon and Goldstein present a prin-
cipal factor solution with four factors and a maximum
likelihood solution with three factors. The fourth prin-
cipal factor contributes almost as much to the solution
as does the third. But Dillon and Goldstein claim that
the likelihood ratio test of the three-factor model
(using the maximum likelihood method) produces a
x? value of 20.36 with 18 degrees of freedom, and
accepts the model at any commonly used « level. They
do not report the result of a test of the two-factor
model, and they claim that the fitting of a four-factor
model failed to converge. I used BMDP4M (cf. Dixon,
1985) to fit the two- three- and four-factor models so
that I could compare them. Unfortunately, I was un-
able to reproduce Dillon and Goldstein’s results. The
two- three- and four-factor models converged in 7, 17
and 8 iterations, respectively. The x? values were
50.475, 38.400 and 19.857 for two, three, and four
factors, respectively, with 26, 18 and 11 degrees of
freedom. (Note that BMDP4M does not calculate the
x2 value so I had to work with the output, which was
rounded to three digits. Hence, some rounding error
has been introduced into my calculation. I used both
the raw data and the correlation matrix and got similar
results.) The results of the three-factor fit with a
varimax rotation are given in Table 1. The results of
the four-factor fit with a varimax rotation are given
in Table 2.

The point of this example is to illustrate the diffi-
culty one has in determining the number of factors.
The hypothesis test is not conclusive (regardless of
whether Dillon and Goldstein’s or my calculations are
correct). The fourth factor in Table 2 is certainly not
easy to interpret, but does that mean that we should
believe there are only three factors? The fourth factor -
contributes 84% as much variance as does the third
factor. One has to look carefully at the meanings of

TABLE 1
Maximum likelihood solution with 3 factors and varimax rotation

Factor
Variable 1 2 3
1 0.846 0.298 0.338
2 0.870 0.471 0.145
3 0.769 0.010 -0.095
4 0.442 0.141 0.658
5 —0.102 0.929 0.356
6 0.510 —0.375 0.224
7 0.237 0.754 0.192
8 0.814 —0.076 0.241
9 0.341 —0.254 —0.034
10 —0.038 0.288 0.823
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TABLE 2
Maximum likelihood solution with 4 factors and varimax rotation

Factor
Variable 1 2 3 4
1 0.588 0.570 0.352 0.444
2 0.714 0.606 0.177 0.219
3 0.993 -0.100 —0.007 0.055
4 0.275 0.302 0.572 0.204
5 0.005 0.750 0.360 —0.555
6 0.212 -0.105 0.169 0.547
7 0.028 0.929 0.112 —0.014
8 0.653 0.181 0.212 0.510
9 0.042 0.028 -0.159 0.444
10 0.013 0.140 0.970 -0.200

the variables and try to imagine what, if anything,
could contribute to the variables in the proportions
given by each of the columns. If this is not possible,
rotate the factors and try again. When done, one may
have a deeper understanding of the data set or even
have developed a new theory for explaining the data.
One does not (in this case at least) have a conclusion
as to how many factors there are. I am beginning to
understand why Anderson did not include any numer-
ical examples of factor analysis in his second edition.

9.2 Confirmatory Factor Analysis

In the second mode of operation, namely confirma-
tory factor analysis, one hypothesizes a factor structure
of a particular sort and then uses the data to find the
best fitting model satisfying the hypothesized struc-
ture. The specified structure may be extremely specific
(going so far as to specify all of the factor loadings) or
less specific, such as only saying that some loadings
are required to be zero. In general, confirmatory analy-
sis does not permit arbitrary rotations of the factors
because the specified structure might be destroyed by
the rotation. After fitting the model, one is compelled
to test the hypothesis that the model fits, presumably
by using the likelihood ratio test. Dillon and Goldstein
present an example of this procedure in Section 3.8.5.
The example concerns eleven variables on n = 840
subjects and three hypothesized factors with certain

, specified loadings equal to zero. They calculate the
likelihood ratio x? statistic as 50.99 with 35 df
(p = 0.0395) and claim (page 104), “The fit of this
model is not satisfactory.” First of all, a x> value so
close to the degrees of freedom with n = 840 is not
bad if the hypothesized model has any a priori credi-
bility. Aside from this often neglected point, one must
ask, “Then what?” Dillon and Goldstein fit a second
model with comparable results and conclude (page
106) “that the data do not confirm the a priori as-
sumptions about their structure.” I suggest that this
is more a failure of the hypothesis testing mentality

than of the hypothesized model. I took the same data
and used BMDP4M to find the unrestricted maximum
likelihood solution with three factors and a varimax
rotation. The x 2 statistic was 26.99 with 25 df (I refuse
to look up the p-value). This is presumably a pretty
good fit. The solution bares a good deal of resemblance
to the hypothesized solution and only has high load-
ings in two of the thirteen places hypothesized to be
zero. This is not to say that the hypothesis should be
accepted, but rather that one should not (just) calcu-
late the p-value and ignore how close the data really
are to the hypothesis.

9.3 Interpretation

As an exploratory technique, factor analysis is as
good as the insights its users gain from using it. As an
inferential technique, however, it suffers from a lack
of predictive validity. One cannot observe factor scores
and then predict observables. However, there is no
arguing the fact that the statement of the factor
analysis problem is very appealing intuitively. Large
sets of moderately correlated variables probably have
some common structure, the discovery of which might
shed considerable light on the process generating the
variables. What seems so mystifying about factor
analysis is how that discovery occurs. After forming a
factor solution, one is still left with the question of
whether the original variables are linear combinations
of the factors or if the factors are just linear combi-
nations of the original variables. Certainly the esti-
mated factor scores are just linear combinations of the
original variables. If these later prove useful in some
as yet unspecified problem, it may still be the original
variables and not the hypothesized factors that are
doing the work. Put more simply, the way the common
factor model is implemented, it is as if the user is
regressing the original variables on each other to find
a few best linear predictors. This is essentially what
principal components analysis does, and that is why
the two methods are often used for similar purposes.
This discussion is not intended to discourage or de-
nigrate work in the area of factor analysis, but rather
to encourage those, who feel that the common factor
model has something to offer, to develop experiments
in which the use of that model can be distinguished
from regression.

10. PATH ANALYSIS AND LISREL

The path analysis and LISREL models are generally
not well known to mathematical statisticians, because
they are most commonly discussed in writings by and
for psychometricians. In this section, I present a very
cursory overview of the ideas underlying these models
and some examples of how they can be used and
misused.
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10.1 Path Analysis

When dealing with a large collection of variables, it
is very useful to sort out which of them one would like
to be able to predict from which other ones. The same
variables may play the role .of predictor in one situa-
tion and criterion in another. The power of multivar-
iate analysis is its ability to treat joint distributions,
not just conditional ones like traditional regression
analysis. Hence, the initial stages of a path analysis
can be quite useful. A diagram illustrating which vari-
ables one thinks influence which others, and which
ought to be correlated with each other can help one to
organize the analysis more sensibly. (See Darroch,
Lauritzen and Speed, 1980, for an introduction to
general graphical models. Also, see Howard and
Matheson (1981) and Shachter (1986) for descriptions
of how influence diagrams can be used to model sub-
jective probabilistic dependence between variables.
Spiegelhalter (1986) and Lauritzen and Spiegelhalter
(1987) show how such diagrams can be useful in expert
systems.)

What I would object to in the practice of path
analysis are the attempts to interpret the coefficients
placed along the path arrows. Take the following
trivial example in which two correlated exogenous
variables X, X, are thought to influence the endoge-
nous variable Y. The residual of Y is ey. The notation
is borrowed from Dillon and Goldstein (Chapter 12).
Figure 1 is a typical path diagram. The single-headed
arrows denote effect or causation, whereas the double-
headed arrows denote correlation. Suppose all three
variables have variance one and intercorrelations of
0.9. Without going into details, the path coefficients
would be as follows:

rxx, =9, Pyx = AT31,
Pyx, = AT37, P, = .2768.

One would be led, by the path analysis methodology,
to interpret Pyx, = .4737 as the direct effect of X;
onY.

The remainder of the correlation between Y and X;
is .9 — .4737 = Pyx,rx,x, = 4263 and is attributed to
“unanalyzed effects.” (If X, had not.been in the pic-

XX, ~ P— €y

Fic. 1. A path diagram.

ture, Pyx, would equal .9 and there would be no
unanalyzed effects.) Suppose, that we know that X, =
X, + Z, and we set X; = v5Z (the standardized version
of Z). Then rx x, = —.2236. Replacing X, by X3 in the
path analysis leads to the following path coefficients:

rx,x, = —2236, Pyxl = 9474,
Pyx, = 2120, P, = .2768.

Now the direct effect of X, is .9474 and the unanalyzed
effect is —.0474. For a simple path diagram like Fig-
ure 1, such an ambiguous definition of “direct effect
of X; on Y” is easy to understand. But in more
complicated analyses, such ambiguity will affect and
indirect effects of X; on variables in other parts of the
diagram making any interpretation tenuous at best.

Of course, the ambiguity of regression coefficients
is not news to most readers. For this reason, it is
surprising that Dillon and Goldstein do not mention
multicolinearity as one of the potential drawbacks to
such models. Statisticians constantly tell their stu-
dents to be careful not to interpret a regression coef-
ficient as measuring the effect of one variable on
another when the data arises from an observational
study. It is not even the effect of one variable on the
other ceteris paribus. In the example above, it would
be impossible to vary X; while keeping X, and X;
fixed. The only safe interpretation of a regression
coefficient is simply as the number you multiply by
the independent variable X; in a specific regression
model to try to predict the dependent variable Y,
assuming that Y and the X;’s all arise in a fashion
similar to the way they arose in the original data set.
When the variables all arise in a designed experiment,
in which each X; is fixed at each of several values and
the other X; are chosen equal to one of their several
values, then the interpretation is clearer due to the
way the data arose. If one now fixes all of the X; but
one, the coefficient of the other variable does measure
how much we expect the response to change for one
unit of change in that variable (assuming the change
occurs in a manner consistent with how the variable
changed in the experiment). If, on the other hand,
one merely observes the X; for a new observation and
then wishes to predict Y, based on the results
of a designed experiment, one has the problem of
assuming that the conditions of the experiment were
sufficiently similar to those under which the new
observation is generated. This is closely related to
Rubin’s (1978) notion of ignorable treatment assign-
ments. The basic question to be answered is, “What
effect, if any, does a deliberate intervention to affect
the exogenous variables have on the relationship be-
tween the endogenous and exogenous variables?” This
question can only be addressed by people with signif-
icant subject matter knowledge.
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10.2 Linear Structural Relations

A more general method for analyzing path diagrams
is the LISREL model for linear structural relations.
This model is quite general and allows the fitting of
hybrids of factor analysis and general linear models.
Its generality also makes it very easy to misuse, how-
ever. In Section 12.5.3, Dillon and Goldstein consider
an example borrowed from Bagozzi (1980). The goal
of the example was (Bagozzi, 1980, page 65) “... to
discover the true relationship between performance
and satisfaction in an industrial sales force.” More
specifically (same page) “. .. four possibilities exist:
(1) satisfaction causes performance, (2) performance
causes satisfaction, (3) the two variables are related
reciprocally, or (4) the variables are not causally re-
lated at all and any empirical association must be a
spurious one due to common antecedents.” The linear
structural relations are stated in terms of latent
variables £, = achievement motivation, £ = task spe-
cific self esteem, £; = verbal intelligence, 7, = perform-
ance, 1; = job satisfaction. The exogenous latent vari-
ables £; are introduced as possible “common anteced-
ents.” Based on the above statement of goals, one
would now expect to see models in which », and 7,
were causally related to each other along with models
in which they were causally unrelated, but in which
causal effects existed from the & to the ;. The initial
model of Bagozzi (1980) is described by the equation

&
I =Bi)(m)_ (0 vz =3 s}
o (4 B0 5 (0 ()

where the {; are disturbance terms and the matrix
multiplying the »’s is assumed nonsingular. This equa-
tion is the algebraic representation of the path dia-
gram in Figure 2. Figure 2 is the portion of the path
diagram that concerns the latent variables only. The
observed variables can be appended with more arrows
to make a much more impressive diagram. The paths
in Figure 2 with coefficients 8, and 3, represent recip-
rocal causation between 7, and 5,. The covariance

N2 j—(2

i

Fi1G. 2. Bagozzi (1980) initial model.
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Bagozzi deletes those paths with coefficients 8; and
Y21 because the estimates are not significant at level
.05 and arrives at his final model. It has a likelihood
ratio x® of 15.4 with 15 degrees of freedom and is
depicted in Figure 3. Because the f; coefficient is
estimated to be zero (more precisely, because the
hypothesis that 8; = 0 is not rejected), Bagozzi claims
(page 71), “Perhaps the most striking finding is that
job satisfaction does not necessarily lead to better
performance.” He then goes on to offer advice to
management based on this finding, such as (page 71)
“... resources should be devoted to enhancement of
job satisfaction only if this is valued as an end in and
of itself...” Bagozzi appears to have fallen into a
common trap described by Pratt and Schlaifer (1984,
page 14) (but presumably known in 1980):

Exclusion of a regressor because it contributes little
to R? or because 'its estimated coefficient is not
statistically significant may make sense when one
wants to predict y given a naturally occurring x, but
not when one wants to know how two or more x’s
affect y. Here it implies that if the data provide very
little information about the separate effects of two
factors, it is better to attribute almost all of their
joint effect to one and none to the other than to
acknowledge the unavoidable uncertainty about
their separate effects.

As an example of how to fit a specified LISREL
model, the Bagozzi example is excellent in that it
illustrates several features of the model and allows
comparison of the initial and final models. As an
example of how causal analysis should be done, how-
ever, I find this example disappointing. First of all, it
was an expressed goal of the project to see if common
antecedents can explain the association between per-
formance and satisfaction. No causal models involving
only paths from common antecedents were described

Fi6. 3. Bagozzi final model.
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in the example. Some hypothesis tests on the partial
correlation between performance and satisfaction
given some other variables were performed, but the
other variables did not include all three of the &
variables. In fact, there are models involving no causal
arrows between performance and satisfaction, which
are equivalent (not just similar) to the models in (2).
It is well known that, in many cases, several causal
models are equivalent in the sense that the parameters
are one-to-one functions of each other. As an example,
the following model is equivalent to (2):

El %
Mm)y_ (% a2 a3 § 1
@ <n2) <a4 cay cas)(g) * (f 3‘)
The model of (3) is is not linear in the parameters,
hence, it cannot be fit with the computer program
LISREL IV of Joreskog and Sorbom (1978), nor can
it be fit with the EQS program of Bentler (1985).

However, it can be fit via straightforward maximum
likelihood. The equations relating the two models are

B = ar/ay,

Bz =c,

Y1 = a4 — Cay,

Y2 = az(l — can/ay),

s = az(l — car/ay),

(0= G T ) )
21 \022 _ﬁ2 1 ‘l/;l ‘l/;2 _ﬂl 1/

with some restrictions on the parameters. The model
(3) corresponds to the path diagram in Figure 4. Notice
that there are no paths between 5, and 7., although
there are extra paths from the £ to the 7. In this
model, the » variables are not causally related, but are
both affected by the three common antecedents. One
could just as easily start with a model of this sort and
delete paths until one had a model that made sense
and fit acceptably. The final model would lead to
different conclusions from the model that Bagozzi
arrived at, and one would be hard pressed to distin-
. guish them based on the data.

As an example, I replaced the coefficients ca, and
cas in Figure 4 with a5 and ag, respectively, so that I
could use the program EQS of Bentler (1985). The
model had a likelihood ratio x 2 of 9.3 with 12 degrees
of freedom. To fit a model more like the final model
of Bagozzi, I set ¢35 = 0 and a, = 0 and got a likelihood
ratio x2 = 14.2 with 14 degrees of freedom. If I set
as =0, I get x2 = 16 with 15 degrees of freedom. This
last model is depicted in Figure 5. All of these models
(the ones depicted in Figures 2 to 5) fit the data
comparably with an average absolute difference be-
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Fi16. 4. Model equivalent to Bagozzi initial model.
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F16. 5. Final model with no causation between 7’s.

tween the observed and fitted correlations of about
11% of the average absolute correlation. The model of
Figure 5 is not equivalent to that of Figure 3, due to
the deleted paths, and the causal conclusions that
would be drawn from the two models would be differ-
ent. Because I do not claim to be an expert in
management science, I will not begin to offer advice
to managers. Nor will I recommend the model of
Figure 5 over that of Figure 3. (In fact, I would
recommend that neither model be used for causal
inference, but rather only for prediction, as suggested
by Pratt and Schlaifer.) But I would offer advice to
users of structural equation models: Don’t start draw-
ing conclusions from your models until you have spent
more time looking at alternative but nearly equivalent
models that have different causal links. (See Glymour,
Scheines, Spirtes and Kelly, 1987, for a description of
one way to examine alternative causal models.)

10.3 Interpretations

The issue of how to detect causation is a difficult
one. Philosophers have been arguing about it for cen-
turies, and I do not propose to settle it here. Holland
(1986) describes a precise but narrow view of how to
define and detect causation. Pratt and Schlaifer (1984)
offer a different account of causation in statistical
models. The discussions of these papers suggest that
we are no closer to understanding causation than were
Aristotle and Hume. Fortunately, the sensible practice
of statistical techniques does not require that one even
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pretend to have an understanding of causation. It is
in the various subject matter disciplines in which
statistics is used that researchers can attempt to model
and understand causation. Take Bagozzi’s model for
example. It may or may not be reasonable within the
various theories of management science to model a
causal relationship hetween the various latent con-
structs described in the example. The statistical meth-
ods merely give you ways to quantify your uncertainty
about those relationships, given that you believe a
particular model for the generation of the data. It is
the beliefs about those relationships, whether stated
explicitly or implied by the form of the model, that
express the causal relations. Two different researchers
who believed strongly in two different, but predictively
equivalent, causal models for the data could collect
data for an eternity and never be able to distinguish
the two models based on the data. Only by arguing
from subject matter considerations (or designing dif-
ferent experiments) would they be able to conclude
that one model is better supported than the other.
Perhaps the Bagozzi example is an isolated instance,
but I would remind the reader that Bentler (1985) also
presents it as an example of the use of EQS. If this
example is being singled out as exemplary or proto-
typical, then those who teach the use of LISREL
models to their students ought to look for some better
examples.

The most important thing which Dillon and Gold-
stein have to say about the use of the LISREL model
is contained in a paragraph at the end of Chapter 12
entitled “Indeterminacy”:

If the analysis is data driven and not grounded in
strong a priori theoretical notions, it is always pos-
sible to find an acceptable x2-fit, and it is always
possible to find several models that fit the data
equally well. Thus, in the absence of theoretical
knowledge, covariance structure analysis becomes a
limitless exercise in data snooping contributing lit-
tle, if anything, to scientific progress. It is a simple
fact that exploratory analysis is better performed
by other methods that impose fewer restrictive
assumptions [e.g., principal components analysis
(Chapter 2)]. ’

It is 'possible, of course, to make use of structural
equation models without getting hog-tied by the
ambiguity of causal interpretations. By making only
predictive inferences, one gives up the compulsion to
draw causal inferences from observational data and
concentrates on simply modeling the joint distribu-
tions of the unknown quantities. For example, if I
were to learn the value of 7, “job satisfaction” for a
salesperson selected from a population like that in
this study, then what would be the (conditional) dis-
tribution of 7, “performance”? Which one “causes”

the other is not an issue. In fact, Lauritzen and Spie-
gelhalter (1987) drop the directional arrows from the
paths in their graphical models to further emphasize
that inference is a two-way street. One can condition
on whatever variables become known and make infer-
ence about the others. On the other hand, if I need to
make some policy decisions as to whether to try to
increase job satisfaction or something else in the hopes
of affecting performance, I must raise the question of
whether the associations of the variables measured in
the observational study remain the same when I in-
tervene with new policies. This is a subject matter
question that mere statistics alone cannot address (at
least not without a different data set). Such issues do
not invalidate the use of structural equations models,
but rather, they make it clear that it is irresponsible
to teach causal modeling without preparing the
students to make the appropriate subject matter
judgments.

11. TESTING HYPOTHESES

As mentioned earlier, a great deal of the theoretical
research performed in multivariate analysis since 1958
has been in the area of hypothesis testing. Hence, it
is not surprising that Chapters 8, 9 and 10 of Ander-
son’s book have been substantially rewritten. These
chapters consider testing everything under the sun.
Discussion of more invariant tests has been added,
where just the likelihood ratio tests were discussed
before. Distributions of the test statistics have been
developed in the intervening years and these are given
for all of the tests considered. New results on admis-
sibility of tests and properties of power functions have
been included. There is also an expanded treatment
of confidence regions. A remark from the Preface of
the first edition seems to have been adopted as a
battle cry by an entire generation of multivariate
researchers: “In many situations, however, the theory
of desirable or optimum procedures is lacking.” Un-
fortunately, the emphasis has been on the procedures
and not on the desirability and/or optimality of them.
The result is that the likelihood ratio criterion has
been augmented by a battery of uniformly most won-
derful invariant tests and confidence regions.

One possible explanation for the plethora of invar-
iant multivariate tests, despite their dubious inferen-
tial relevance is the fact that the distributions of
the test statistics depend only on the small dimen-
sional maximal invariant, and are therefore easier to
derive mathematically. Power function calculations
are largely ignored, even when they are available,
because the maximal invariant is generally not the
parameter of interest to the researcher who collected
the data. Ease of derivation is also a reason why so
much of the Bayesian methodology in multivariate
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analysis relies on conjugate priors. This situation is
reminiscent of the following story of a man who lost
his room key:

A man lost his room key one night and began
searching for it under a street lamp. A police officer
happened by and began to help him look.

Officer: What are you looking for?

Man: My room key. I heard it drop from my key-
chain.

Officer: Where were you standing when you heard
it drop?

Man: About half-way up the next block.

Officer: Then why are you looking for it here?
Man: Because the light is better under the street
lamp.

In multivariate analysis (if not in the entire field of
statistics), we have taken to solving problems because
we can solve them and not because somebody needs
the solution. If a problem is hard to solve, it makes
more sense to try to approximate a solution to the
problem than to make up and solve a problem whose
solution nobody wants. The theory of invariant tests
is elegant mathematically, but it does not begin to
address the questions of interest to researchers, such
as “How much better or worse will my predictions be
if I use model B instead of model A?” or “To what
extent has the treatment improved the response and
how certain can I be of my conclusion?”

This point about the relevance of the maximal in-
variant parameter was raised in Section 2.1 with re-
gard to Hotelling’s T?. As Lehmann (1959, page 275)
puts it:

When applying the principle of invariance, it is
important to make sure that the underlying sym-
metry assumptions really are satisfied. In the
problem of testing the equality of a number of
normal means y,, ..., us, for example, all param-
eter points, which have the same value of y? =
3 ni(u; — u.)%/o? are identified under the principle
of invariance. This is appropriate only when these
alternatives can be considered as being equidistant
from the hypothesis. In particular, it should then be
immaterial whether the given value of 2 is built up
by a number of small contributions or a single large
one. Situations where instead the main emphasis is
on the detection of large individual deviations do
not possess the required symmetry, . ..

The justification for the use of invariant procedures
has always been mystifying. Anderson (page 322) gives
the only legitimate reason of which I am aware
for using invariant procedures: “We shall use the prin-
ciple of invariance to reduce the set of tests to be
considered.”

Perhaps in the next 26 years, those who feel com-
pelled to develop tests for null hypotheses will at least
enlarge their horizons and consider tests whose power
functions depend on more general parameters that
might be of interest in specific applications. Implicit
also is the hope that the deviation of the power func-
tion will be treated as equal in importance to the
derivation of the test.

But, it will take more than a new battery of variant
(opposite of invariant?) tests to get the focus of mul-
tivariate analysis straight. The entire hypothesis test-
ing mentality needs to be reassessed. The level «
mindset has caused people to lose sight of what they
are actually testing. The following example is taken
from one of the few numerical problems worked out
in Anderson’s text (page 341) and is attributed to
Barnard (1935) and Bartlett (1947). It concerns p = 4
measurements taken on a total of N = 398 skulls
from ¢ = 4 different periods. The hypothesis
is that the mean vectors u® for the four different
periods are the same. Anderson uses the likelihood
ratio criterion —k log U, 4—1,,, where n = N — g and
k=n—%(p — q + 2), and writes (page 342):

Since n is very large, we may assume —k log Uy 3 304
is distributed as x 2 with 12 degrees of freedom (when
the null hypothesis is true). Here —k log U = 77.30.
Since the 1% point of the x, distribution is 26.2,
the hypothesis of u® = u@ = 4@ = 4@ is rejected.

The corresponding coordinates of the sample mean
vectors do not differ very much compared to the
sample standard deviations. If we were to consider
the problem of sampling a new observation and
classifying it into one of the four populations, we
could calculate the correct classification rates for the
four populations (assuming a uniform prior over
the four populations). By using the asymptotic expan-
sions of Schervish (1981a), we get the results in
Table 3. The reason these numbers are so small (we
could get 0.25 by just guessing), despite the low
p-value for the hypothesis, is that the mean vectors
are actually quite close. The square roots of the esti-
mated Mahalanobis distances between the pairs of
populations (3© — y9)TE (39 — y“) are given
in Table 4. Population 4 does seem to be uniformly
separated from the others, accounting for it having
the largest correct classification rate. Even so, it is no
more than one estimated standard deviation (in the
observation scale) from any of the other three popu-
lations. A one standard deviation difference between

TABLE 3
Estimated correct classification rates

Population 1 2 3 4
Estimated rate 0.41 0.32 0.30 0.54
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TABLE 4
Pairwise estimated distances

Population
Population 1 2 3
2 .653
3 . .632 .407
4 .986 946 923

two populations allows a correct classification rate of
0.69 compared to the 0.5 you would get by mere
guessing. On the average, the correct classification
rates are not much larger than what one could obtain
by guessing, except for population 4. Simply rejecting
the hypothesis does not tell the story of how little the
mean vectors differ. The low p-value is due as much
to the large sample size as it is to the differences
between the mean vectors.

12. DISCRETE MULTIVARIATE ANALYSIS

Some people do not consider categorical data analy-
sis as “multivariate.” Bishop, Fienberg and Holland
(1975) are notable exceptions. Anderson does not say
a word about it. Nor does he even acknowledge it as a
multivariate topic which he will not cover. On the
other hand, Dillon and Goldstein devote two chapters
to discrete multivariate analysis. These two chapters,
however, are as distant in approach as they are in
location in the book (Chapters 8 and 13). The earlier
chapter discusses classical methods like x? tests and
log-linear models. The later chapter describes an
approach more familiar to psychometricians, namely
latent structure analysis.

Latent structure analysis attempts to construct an
additional discrete unobserved variable X, whose val-
ues are called latent classes, to go with the observed
categorical variables Y;. The Y;, in turn, are modeled
as conditionally independent given X. This sounds a
lot like the construction of factors in factor analysis.
In fact, latent class modeling is actually quite a bit
like discrete factor analysis. In particular, it shares
some of, but not all of, the identifiability problems of
factor analysis. Take the first example of Chapter 13
given in Table 13.1-1 on page 492 of Dillon and
Goldstein. It is a hypothetical two-way table exhibit-
ing significant dependence between rows and columns.
Below the table are two subtables corresponding to
levels of a third (unobserved) variable (in this case
education). In each of the subtables, the two observed
variables are independent. This is an example of con-
ditional independence of two categorical variables
given a third latent variable. Because the actual tables
given by Dillon and Goldstein have errors in them (for
example, the subtables do not add up to the aggregate

table and one of the subtables does not have the rows
and columns independent, I have revised the data as
little as possible to make them correspond to the
description above. The data are in Table 5. I have
converted the subtables to probabilities, so as to avoid
the embarassment of fractional persons. The subtables
give the conditional probabilities given the corre-
sponding level of the latent variable. The probability
in the lower right corner of each subtable is the
marginal probability of that latent class.

The strange feature of this example is that it would
be impossible to use the latent class modeling meth-
odology to arrive at the solution given in Table 5
without placing arbitrary restrictions on the parame-

~ ters of the solution. The reason is that a latent class

model with two latent classes is nonidentifiable in a
2 X K table. Such a model would require 4K — 3
parameters to be estimated, whereas there are only
2K — 1 degrees of freedom in the table. The noniden-
tifiability in this example is disguised by the fact that
the latent classes have been named “Low Education”
and “High Education” and corresponded to actually
observable variables. Had they been unspecified, as in
most problems in which latent class modeling is ap-
plied, the user would have had a two-dimensional
space of possible latent classes from which to choose.
With expressed prior beliefs, about the classes, one
can at least find an “average” solution by finding the
posterior mean, say, of the cell probabilities under the
model. For example, suppose I have a uniform prior
over the five probabilities p;, the probability of being
in the first class (assumed less than 0.5 for identifia-
bility), pr 1, the conditional probability of reading the
Times given class 1, pp|1, the conditional probability
of reading the Daily News given class 1, and pr|» and
Dp)2 similarly defined for Class 2. The posterior means
of the conditional and marginal cell counts are given
in Table 6. The estimation was done by using the

TABLE 5
Hypothetical two-way tables

Regularly Read
Regularly Read Daily News
Times —_—
Yes No
Aggregate table
Yes 116 244 360
No 524 116 640
Total 640 360 1000
Latent class 1 (high education) :
Yes 2311 .5689 .8000
No .0578 1422 .2000
Total .2889 7111 3714
Latent class 2 (low education)
Yes .0812 .0188 .1000
No .7308 .1692 .9000
Total .8120 .1880 .6286
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TABLE 6
Posterior from uniform prior

Regularly Read
Regularly Read Daily News
Times —_—
Yes No
Smaller latent class (1),
Yes .0232 .0005 .0236
No 9532 .0232 9764
Total 9764 .0236 .4830
Larger latent class (2)
Yes 2137 .4766 .6904
No .0959 2137 .3096
Total .3096 .6904 5170
Marginal probabilities .
Yes 1218 .2465 .3683
No .7308 .1692 6317
Total 6317 .3683 1.0

program of Smith, Skene, Shaw, Naylor and Drans-
field (1984). The numbers in the lower right corners
of the subtables are the means of p; and 1 — p;. The
marginal table is not identical with the original table,
but we do not expect it to be due to substantial
" uncertainty and asymmetry in the posterior distribu-
tion. I also used a different prior distribution that had
high prior means in the cells with low probabilities in
Table 6 to see how sensitive the fit was to the prior.
The posterior means of the cell probabilities were very
close to those in Table 6. The important thing to keep
in mind when estimating latent class parameters is
that, unless one has an a priori reason to believe there
are such classes and what they are, one will be hard
pressed to offer any explanation for what the estimates
are estimates of.

If one has prior beliefs about what the latent classes
are, we saw how a Bayesian analysis can help to deal
with the nonidentifiability in small tables. Identifia-
bility is not a problem in larger tables in which the
number of cells is much larger than the number of
parameters fit by a latent class model. Also, “rotation”
of latent classes is not an option as was rotation of
factors in factor analysis. However, there is still more
to the analogy between latent class models and factor
analysis. The analogy extends to the two modes in
'which they can operate. Exploratory latent class mod-
eling is searching for latent classes and hoping you
can interpret them. There is also a mode, which I
would call confirmatory latent class modeling. Just as
in confirmatory factor analysis, one can incorporate
prior assumptions about the latent classes and then
fit models to see how well or badly they fit. But, when
operating in the confirmatory mode, one should also
not fall into the trap of rejecting a model without
looking at how far it is from fitting well (as was done
in the example in Section 9.2). In their Section 13.3,
Dillon and Goldstein give a good example of perform-

ing a confirmatory latent class analysis and avoiding
the trap.

13. CONCLUSION

The theory and practice of multivariate analysis has
come a long way since 1958, and a great many talented
people have contributed to the progress. The books by
Anderson and Dillon and Goldstein give an excellent
overview of that progress. Each one does a good job of
what it sets out to do. Were one to teach a purely
theoretical course in multivariate statistics to gradu-
ate students, one could do much worse than follow
Anderson’s text. One could do slightly better by
augmenting it with a supplementary text offering
a different perspective, such as that of Press (1982).
Theory alone, however, can be quite sterile, and
Anderson’s text does not give the reader much expo-
sure to the broad range of multivariate methods that
are available for data analysis. On the other hand,
teaching statistical methods without theory gives sta-
tistics a “black box” image. I do not believe that a
student would gain much understanding of multivar-
iate analysis if his/her sole exposure to ‘the subject
were a course from Dillon and Goldstein’s text. Some
of what each of these texts lacks is supplied in abun-
dance by the other. But, as I have probably made clear
elsewhere in this review, I believe that the two of them
together still paint a somewhat incomplete picture of
what multivariate theory and methods should be.

Despite the progress in multivariate statistics since
1958, there is still a long way to go. Theré is an old
saying that one must crawl before one can walk. In
multivariate analysis, I am afraid that we may have
made the crawl an artform of its own. That is not to
say that no good work is being done, but only that
many of the results obtained are second and third
order improvements on existing results. The field has
great unexplored potential. In its current state, mul-
tivariate inference consists largely of invariant tests
and the corresponding confidence regions, although
very little effort has gone into predictive inference.
Techniques such as latent class modeling and factor
analysis have taken the journey one turn further away
from prediction. They have taken the focus off of
parameters, which, although unobservable, can usu-
ally be identified within the stochastic model, and
placed the focus on unobservable and unidentifiable
latent constructs.

The job for which statistical inference is best suited
is to make statements about things which will or could
(at least in theory) be observed, that is, to make
predictive inference. This job has been neglected by
multivariate researchers for too long. Fortunately, the
methods and models that people develop to solve other
interesting problems (such as LISREL, discriminant
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analysis, MANOVA, etc.) are still of use in predictive
inference when appropriately interpreted and modi-
fied. For example, in a one-sample problem with
p variate normal data X; ~ N,(u, 2), the marginal
posterior distribution of the the mean vector u is
multivariate ¢ with mean vector x; and covariance
matrix [A(a; — 1 — p)]*A;, where u;, A\;, A; and a;
have the same meanings as they did in (1). It is
easy to show that the predictive distribution of the
average of m future X; observations is also multivari-
ate ¢t with mean vector u;, but with covariance matrix
(m™'+ A7Y)(a; — 1 — p) 'A;. But predictive inference
is not solely a rewording of parametric inference. It
also needs to have its own unique set-of tools devel-
oped, and I hope that a generation of researchers can
begin to develop them with the same fervor with which
they have developed what we now call multivariate
analysis.
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Comment

T. W. Anderson

1. OBJECTIVES

I am pleased that Statistical Science has furnished
the opportunity to review my second edition and stim-
ulate a discussion of the development and future of
multivariate statistical analysis. The reviewer makes
clear that his paper is “a thoroughly biased and narrow
look”; I look forward to an unbiased, broad and com-
prehensive view in the future.

This article contrasts two books on multivariate
statistical analysis that are very different in content
and objectives. I shall*-hold my discussion to Scher-
vish’s remarks concerning my book. Let me first elu-
cidate my criteria for inclusion of material. Writing a
book on multivariate statistical analysis originated as
an idea some forty years ago. It was accomplished over
a period of years in connection with teaching courses
in the Department of Mathematical Statistics at Co-
lumbia University. I wanted to write about statistical
analysis that I thought has a sound foundation, about
methods that were widely accepted. When the first
edition was published in 1958, I had no thought that
a quarter of a century would pass before the second
edition would appear. When I finally came to revise
the book, I found that most of the contents had stood
the test of time; there was little that I wanted to
change or delete, although there was a good deal that
could be added. It has been a great satisfaction to me
that the book has stood up so well; the initial selection
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of material has been justified. The objectives and
organization of the first edition have been retained.
In fact, the headings of the chapters and of most of
the sections have been kept.

Although the book includes a considerable amount
of mathematics, the primary objective is to provide
and explain the methods and their properties. I think
that the purpose of statistical theory is to initiate,
develop, clarify and evaluate statistical methods. One
criterion for inclusion of a topic is that it contributes
to understanding useful procedures. Accordingly,
there is not much theory in the book for its own sake,
but I will admit that the relevance of some material is
a matter of personal taste and some theory is to satisfy
intellectual curiosity.

A second criterion, as the reviewer has surmised, is
that a topic has a mathematical backing. For a confi-

- dent and thorough understanding, the mathematical

theory is necessary. This implies a rigorous treatment.

Thirdly, I wanted to organize the contents coher-
ently. This desire is partly for the sake of clarity and
efficiency of exposition and partly for personal satis-
faction—aesthetics, if you will.

An outcome of following these criteria was that the
inference treated here is based on normal distributions
as models. There was not a place for ad hoc methods,
valuable though they may be. Normal distributions
serve as suitable models for generating many sets of
data, but, of course, not for all sets.

Because the book is aimed at statistical practice,
I included a number of examples, perhaps not
enough. Beside the twelve examples mentioned by



