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Dynamic Graphics for Data Analysis

Richard A. Becker, William S. Cleveland and Allan R. Wilks

Abstract. Dynamic graphical methods have two important properties: direct
manipulation of graphical elements on a computer graphics screen and
virtually instantaneous change of the elements. The data analyst takes an
action through manual manipulation of an input device and something
happens in real time on the screen. These computing capabilities provide a
new medium for the invention of graphical methods for data analysis.
A collection of such methods—identification, deletion, linking, brushing,
scaling, rotation, and dynamic parameter control—is reviewed. Those who
develop dynamic methods must deal with a number of computer hardware
and software issues, because for a dynamic method to work there must be
a sufficiently fast flow of information along the channel that starts with
the analyst’s input and ends with the changed graph. Furthermore, for a
dynamic method to be useful, the visual and manual tasks must be easy to
perform. Several computing issues dealing with speed and ease of use—
system bandwidth, input and output devices, low-level algorithms, device
independent graphics, and data analysis environments—are reviewed.

Key words and phrases: Statistical graphics, computer graphics, brushing,

rotation, multivariate analysis, software, hardware.

1. INTRODUCTION

Dynamic graphical methods have two important
properties: direct manipulation and instantaneous
change. The data analyst takes an action through
manual manipulation of an input device and some-
thing happens, virtually instantaneously, on a com-
puter graphics screen. Figure 1 shows an example in
which a dynamic method is used to turn point labels
on and off. The data analyst moves a rectangle over
the scatterplot by moving a mouse; the figure shows
the rectangle in a sequence of positions. When the
rectangle covers a point, its label appears and when
the rectangle no longer covers the point, its label
disappears.

1.1 The Importance of Dynamic Methods

., In the future, dynamic graphical methods will be
ubiquitous. There are two reasons. One is the addition
of dynamic capabilities to the methodology of tradi-
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tional static data display provides an enormous in-
crease in the power of graphical methods to convey
information about data—wholly new methods become
possible and many capabilities that are cumbersome
and time consuming in a static environment become
simple and fast (Tukey and Tukey, 1985). Huber
(1983) aptly describes the importance of the dynamic
environment: “We see more when we interact with the
picture—especially if it reacts instantaneously—than
when we merely watch.” This does not mean that
current static methods will be discarded, but rather
that there will be a much richer collection of methods.
The second reason is that the price and availability of
powerful statistical computing environments are rap-
idly evolving in a direction that will permit the use

" of dynamic graphics (McDonald and Pedersen,
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1985a, b). Thus, it seems likely that the methods
described in this paper will be standard methodology
in the future. Furthermore, because the number of
people that have so far been involved in research in
dynamic methods is relatively small, the development
of new dynamic methods should' accelerate as the
appropriate computing environments become more
widely available.

1.2 Two Early Systems

A recognition of the potential of direct manipula-
tion, real-time graphics for data analysis goes back as
far as the early 1960s when computer graphics systems
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Fi16. 1. Dynamic graphics. In a dynamic graphic method, the data
analyst directly manipulates graphic elements on the screen, causing
virtually instantaneous changes of the elements. The figure shows an
example. The analyst moves a rectangle around the screen by moving
a mouse; when points enter the rectangle their labels appear and
when the points leave the rectangle their labels disappear. The method
used is brushing, which is discussed later.

first began appearing. Tukey and Wilk (1965) write:
“Visual presentation of z = f (x, y) is far from easy,
yet badly needed. Of three possibilities—contours,
families of cross-sections, and isometric views—the
first seems, so far, most likely to be effective, though
direct-interaction graphical consoles may offer other
possibilities” ;

In the late 1960s, Fowlkes (1971) developed a dy-
namic system for making probability plots. By turning
a knob, the user could continuously change a shape
parameter for the reference-distribution on a proba-
bility plot displayed on the screen; the knob could be
turned to make the pattern of points as nearly straight
as possible. The data could be transformed by a power
transformation, (y + c¢)?, with ¢ and p each changed

by a knob. Points could be deleted by positioning
a cursor on them. The system demonstrated that
dynamic graphical methods had the potential to be
important tools for data analysis.

Another early system was PRIM-9 (Fisherkeller,
Friedman and Tukey, 1975), a set of dynamic tools for
projecting, rotating, isolating, and masking multi-
dimensional data in up to nine dimensions. Rotation
was the central operation; this dynamic method allows
the data analyst to study three-dimensional data by
showing the points rotating on the computer screen.
Isolation and masking were features that allowed
point deletion in a lasting or in a transient way.
PRIM-9 was an influential system; many subsequent
systems were modeled after it and during the 1970s
dynamic graphics and PRIM operations were nearly
synonymous. (In fact, in the rush to implement PRIM
systems, Fowlkes’ ideas were nearly forgotten.) As the
reader will see from the descriptions to follow and
their origins, it was not until the early 1980s that
significantly different methods would begin appearing;
this was stimulated in large measure by new comput-
ing techniques coming from computer scientists.

1.3 Contents of the Paper

A variety of dynamic graphical methods are de-
scribed and illustrated in Section 2 of this paper.
Sections 2.1 to 2.6 cover identification, deletion, link-
ing brushing, scaling, and rotation. Section 2.7 de-
scribes in a general way what many of the methods
are doing—providing dynamic parameter control—
and thereby opens the door to a large collection of
potential methods. Computing issues are discussed in
Section 3 of the paper; hardware and software consid-
erations tend to be much more tightly bound to the
success of dynamic methodologies than is the case
for static graphical methods. Section 4 of the paper is
a brief summary and discussion.

2. METHODS
2.1 Identification of Labeled Data

Identification has two directions. Suppose we have
a collection of elements on a graph (e.g., points) and
each element has a name or label. In one direction of
identification we select a particular element and then
find out what its label is; we will call this labeling. In
the other direction, we select a label and then find the
location on the graph of the element corresponding
to this label. We will call this locating. Identifica-
tion tasks, although seemingly mundane, are so all-
pervasive that simple ways of performing them are
of enormous help to a data analyst.

Labeling Points. Suppose x; and y; for i = 1 to n
are measurements of two variables that have labels.
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F1G. 2. Identification. Log brain weight is graphed against log body
weight for a collection of animal species. Each point has a name, the
species name. As we saw in the previous figure, dynamic graphics
provides easy methods for labeling: making the name for a point
appear on the screen. We can also locate: find the data point with a
particular name. In this figure, the species modern man was located
by selecting it from a pop-up menu, which resulted in the circle for
modern man being highlighted.

Figure 2 shows an example. The data are measure-
ments of the brain weights and body weights of a
collection of animal species (Crile and Quiring, 1940).
Biologists study the relationship between these two
variables because the ratio (brain weight)/(body
weight)?? is a rough measure of intelligence (Gould,
1979; Jerison, 1955). In Figure 2, the data are graphed
on a log scale and the axes are scaled so that y =
2x/3 is a 45° line; thus, 45° lines are contours of
constant intelligence under this measure. Each point
on the graph has a label: the name of the species.

In analyzing bivariate data with labels, we almost
always want to know the labels for all or some of the
points of the scatterplot. For example, in Figure 2 the
point graphed by a filled circle is interesting because
it lies on a 45° line that is above the lines for all other
points, which means that this species has a higher
intelligence measure than all others. Which is it? With
static displays, finding out the labels of points on
scatterplots is a cumbersome task. It is not possible
to routinely show the labels of all points because
overplotting frequently causes an uninterpretable
mess; this would be the case int Figure 2. With dynamic
displays, getting label information is simple because
the data analyst can turn labels on and off very
rapidly. One method for doing this has been illustrated
in Figure 1. It turns out that the label for the inter-

esting point in Figure 2 is, not surprisingly, “modern
man.”

Locating Points. In analyzing labeled points we
often want to go in the other direction and locate a
point with a certain name. For example, we might
have asked where modern man is in Figure 2. This
task also can be accomplished in a particularly effi-
cient way by using dynamic graphics. The data analyst
can press a button on a mouse to bring up a menu on
the screen that shows the labels, move the mouse to
select the label, and then release the button (Becker
and Cleveland, 1987); this can result in the point
being highlighted, as modern man is highlighted in
Figure 2.

Locating Different Data Sets: Alternagraphics. In
graphing two-variable data we often encounter an-
other type of identification problem: the quantitative
information is partitioned into subsets, and we want
to locate the different subsets on the plot. For exam-
ple, in Figure 2 the data can be categorized into five.
subsets: primates, nonprimate mammals, fish, birds,
and dinosaurs. The subsets are shown in Figure 3.
Another way to think of this is that there is a third
variable, a categorical one, that we also want to show.

Subsets of the quantitative information on a graph
can be enormously varied. Here are just three exam-
ples: 1) each subset is a set of points, as in Figure 3;
2) each subset is a collection of contours of a third
variable as a function of the two axis variables; 3) the
first subset is a scatterplot of points and the remaining
subsets are regression curves of y on x resulting from
several different models.

Comparing subsets can be surprisingly tricky when
using static graphics. Part of the problem is that we
want to be able to do more than just figure out to
which subset each element of the graph belongs; we
want to perceive each subset as a whole, mentally
filtering out the others. With static graphics, many
methods have been suggested (Cleveland, 1985)—use
different plotting symbols, use different colors, or
connect points of the same subset by lines. Often,

- none of these methods works, because the overlap of

elements of the graph makes it impossible to distin-
guish the different subsets. In such cases the only
solution is use juxtaposed panels as illustrated in
Figure 3. The drawback to such a display is that we
cannot compare the locations of different subsets as
effectively as when all of the data are on the same
panel.

A dynamic method that is often effective for iden-
tifying subsets is alternagraphics (Tukey, 1973). At a
given moment in time the viewer can identify some of
the subsets and the selection of identified subsets can
be changed quickly. There are many ways of imple-
menting this idea. One is to cycle through the subsets
showing each for a short time period. More explicitly,
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F1G. 3. Alternagraphics. Another identification task for which dy-
namic methods are particularly well suited is locating different data
subsets on a graph. For example, the brain and body data consist of
five groups of species. In alternagraphics, data sets are identified by

" highlighting each in turn in rapid succession or by showing each set
by itself and rapidly cycling through the sets.

a graph of the first subset appears on the screen for,
say, 1 sec, then it is replaced for 1 sec by a graph of
the second subset, and so forth until we get to the last
subset. Then the process repeats. Of course, the sub-
sets are all shown on common axes so that the scale
of the pictures remains identical as various subsets
are shown. Another technique is to show all of the
data at all times and have the cycling consist of a
highlighting of one subset at each stage. A third tech-

nique is to provide the data analyst with the capability
of turning any subset on or off with a simple and rapid
action such as the use of a mouse to point to a subset
name on a menu and then clicking a button; with such
a technique the analyst can rapidly get any panel of
Figure 3 (Donoho, Donoho and Gasko, 1985)

2.2 Deletion

Another fundamental operation that can be easily
carried out by using dynamic graphics is deleting
points from a graph. Figure 4 illustrates one simple
use of deletion. A scatterplot is made and there is an
outlier that causes the remaining points on the graph
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F1G. 4. Deletion. In a dynamic graphics environment, points can be
deleted by direct manipulation, for example, touching them with a
cursor. In this figure, the outlier in the top panel is deleted, producing
the graph of the bottom panel.
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to be crammed into such a small region that their
resolution is ruined; the analyst removes the point
by touching it with a cursor, and after the deletion
the graph is automatically rescaled and redrawn

on the screen. For example, Fowlkes (1971) used

this dynamic deletion of outliers for probability
plots; after points -were selected for deletion, the
expected order statistics of the reduced sample were
recomputed automatically and the graph redrawn.
Deletion is actually a very general concept that can
enter dynamic graphical methods in many ways. Its

basic purpose is to eliminate certain graphical ele-

ments so that we can better study the remaining
elements. For example, the outlier deletion lets us
focus more incisively on the remaining data, and in
alternagraphics, subsets can be temporarily deleted to
allow better study of the remaining subsets. Other
applications of deletion will be given in later sections.

2.3 Linking

Suppose we have n measurements on p variables
and that scatterplots of certain pairs of the variables
are made. A linking method enables us to visually link
corresponding points on different scatterplots. For
example, suppose there are four variables—x, y, w,
and z—and that we graph y against x and z against w.
To link points on the two scatterplots means to see
by some visual method that the point (xx, y:) on the
first plot corresponds to (wx, 2:) on the other plot. To
illustrate this, consider the Anderson (1935) iris data
made famous by Fisher (1936). There are 150 meas-
urements of four variables: sepal length, sepal width,
petal length, and petal width. Two scatterplots are
shown in Figure 5. The data have been jittered, that
is, small amounts of noise added, to avoid the overlap
of plotted symbols on the graph. Each scatterplot has
two clusters, and we immediately find ourselves want-
ing to know if there is some correspondence between
the clusters of separate plots.

Linking is a concept that has long existed in the
development of static displays (Chambers, Cleveland,
Kleiner and Tukey, 1983; Diaconis and Friedman,
1980; Twufte, 1983). One method for linking is the M
.and N plot of Diaconis and Friedman (1980); lines are
drawn between corresponding points on the two scat-
terplots. Another method is to use a unique plotting
symbol for each point (Chambers, Cleveland, Kleiner
and Tukey, 1983) on a particular plot and to use the
same symbol for corresponding observations on dif-
ferent plots.

A third method is the scatterplot matrix, all pairwise
scatterplots arranged in a rectangular array, which
arose, in part, because it provides a certain amount of
linking. An example is Figure 6, which shows the iris
data. To maximize the resolution of the plotted points,
scale information is put inside the panels of the off-
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F16. 5. Linking. The scatterplots show the four variables of the
Anderson iris data. Linking points on different scatterplots means
visually connecting corresponding points.

diagonal of the matrix; the labels are the variable
names and the numbers show the ranges of the vari-
ables. Consider the cluster to the northwest in the
sepal length and width plot of the (1,2) panel. Does

" this cluster correspond to one of the two clusters in

the petal length and width scatterplot of panel (4,3)?
By scanning horizontally from the (1,2) panel to the
(1,3) panel and then vertically to the (4,3) panel we
can see that the top half or so of the northwest sepal
cluster corresponds to the top half or so of the north-
east petal cluster. By scanning vertically from the
(1,2) panel to the (4,2) panel and then horizontally to
the (4,3) panel we can see that the left half or so of
the northwest sepal cluster corresponds to the bottom
half or so of the northeast petal cluster. The union of
these two scans shows that most of the northwest
sepal cluster corresponds to most of the northeast
petal cluster; it is a good guess that the remaining
pieces of the clusters also correspond.
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FIG. 6. Linking. The iris data are shown by a scatterplot matrix, which allows a partial linking of points. Overlapping points on this screen
dump sometimes give unusual effects, because of the XOR style of graphics being used (see Section 3.3).

The earliest dynamic method for linking of which
we are aware is described by Newton (1978). The
analyst used a light pen to draw a polygon bounded
by a set of points on one plot; the enclosed points,
together with all corresponding points on other scat-
terplots, were highlighted. For example, in Figure 7,

the points in the northwest sepal cluster of the (1,2) -

panel, as well as all corresponding points on other
panels, have been highlighted. Now we can see easily
" that the northwest sepal cluster corresponds to the
northeast petal cluster. ‘

McDonald (1982) developed another dynamic sys-
tem for linking. In his method a cursor is positioned
on one plot. All points close to the cursor on the plot
are red, all points that are intermediate distances from
the point are purple, and all far points are blue. All
points corresponding to the same observation on the
collection of scatterplots have the same color. When
-the cursor is moved, the coloring changes to reflect
the change in the cursor position.

2.4 Linking, Deleting and Labeling by Brushing

All of the methods for linking discussed in the
previous section have certain limitations. The scatter-
plot matrix only allows partial linking. The M and
N plot quickly becomes cluttered by the connecting
lines. The unique plotting symbol method does not
allow effective linking of groups of points and the
overplotting of symbols obscures them. McDonald’s
method gives quite interesting results in some cases
but has a limited domain of application because the
coloring scheme does not provide a sufficiently incisive
specification of regions of interest. Polygon drawing
can provide incisive specification, but it is manually
awkward and does not lead directly to a sufficiently
rapid way of changing the region that is highlighted.
In this section we will see how brushing overcomes
these limitations.

Brushing is a dynamic method in which the data
analyst moves a rectangle around the screen by mov-
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Fi16. 7. Linking. The northwest cluster in the (1,2) panel has been highlighted together with all corresponding points on the other panels. Now
we can see that the northwest cluster in (1,2) corresponds to the northeast cluster of (4,3).

ing a mouse (Becker and Cleveland, 1984 and 1987).
The rectangle, which is called the brush, is shown in
the (3,2) panel of Figures 8 and 9. Brushing allows
linking in such a way that a wide variety of data
analytic tasks can be carried out. Also, brushing can
be used to delete and label points. In the next sections
we will describe the features of brushing: movement
of the brush, the ability to change the shape of
the brush, three paint modes (transient, lasting, and
undone), and four operations (highlight, shadow
highlight, delete, and label).

The Scatterplot Matrix. Brushing can, in principle,
be done on any subset of the collection of p (p — 1)
scatterplots of the p variables (Stuetzle, 1987). How-
ever, if we are interested in all p variables and in their
relationships, it is usually best to operate on the entire
scatterplot matrix. This matrix has been a successful
static graphical tool because it provides a highly in-
tegrated view of all of the data. As we saw earlier, it
is possible to carry out, purely visually, a partial

linking of points on different scatterplots, even with-
out brushing. Furthermore, by scanning a row or a
column, we can see one variable graphed against all
others in a convenient and efficient way. Of course, if
p or n are too large it may not be possible to put the
full matrix on the screen and have good resolution; in

. such a case we have to be satisfied with looking at
subsets of the variables.

Highlighting, Brush Shape and the Three Paint
Modes of Brushing. When the paint mode is transient,
brushing with the highlight operation works as follows.
A panel of the scatterplot matrix is selected as the
active panel. All points on the active panel that are
inside the brush are highlighted, as well as the points
on other panels that correspond to these points. This
is illustrated in Figure 8. The active panel is (3,2) and
the brush is on this panel; it is covering the outlier on
the sepal width and petal length scatterplot and so we
can distinguish the points on other plots that corre-
spond to the outlier. When the brush is moved, points
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F1G. 8. Brushing. Brushing is a dynamic method for labeling, deleting and linking by highlighting. The rectangle in the (3,2) panel is the brush,
which the analyst moves around the screen by moving a mouse. When the operation is highlight, all points inside the rectangle on the active

panel and all corresponding points on other panels are highlighted.

that are no longer inside the brush are no longer
highlighted and the new points inside the brush be-
come highlighted; that is, the linked highlighting is
transient. For example, in Figure 9 the brush has been
moved to the right on the (3,2) panel and other points
are highlighted.

Consider, on one of the panels of a scatterplot
matrix, a subset of the points that cannot be enclosed
’ in a rectangle without enclosing points not in the
subset. With the transient highlighting just described,
we cannot simultaneously highlight the points of
the subset without also highlighting points not in the
subset. An example is the northwest cluster in panel
(1,2) of Figure 9. The problem is solved by the lasting
paint mode: when one button of the mouse is pressed,
points that are highlighted remain highlighted even
after the brush no longer covers them. Thus, an irreg-
ular cluster can be highlighted by using a small brush
and moving it over all sections of the cluster as if it

were being painted. This is illustrated by the sequence
in the first column of Figure 10. Lasting highlight can
be removed with the undo paint mode; when another
button of the mouse is depressed, the effect of the
brush is to reverse the highlighting of the points inside
it. This is illustrated by the sequence in the second
column of Figure 10.

Usually, lasting highlight is most conveniently car-
ried out when the brush is in the form of a small
square or small rectangle; this helps prevent the slop-
ping of highlight onto unwanted points (although undo
makes it easy to fix mistakes). A small brush is also
useful for highlighting a single point, as in Figure 8.
Other brush shapes are useful in other situations, as
we shall now see.

Conditioning on a Single Variable. By making the
brush long and narrow, we can highlight points for
which the values of a particular variable are in a
narrow range; thus, we can study the relationships of
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F1G.9. Transient paint mode. When the paint mode is transient, points previously inside the rectangle are no longer highlighted. In this figure
the rectangle has been moved to the right from its position in the previous figure, and new points are highlighted.

other variables for the selected variable held fixed to
this range. This is illustrated in Figure 11. The data
are from an experiment in which 30 rubber specimens
were rubbed with an abrasive material (Davies, Box,
Cousins, Hinsworth, Henny, Milbourn, Spendley and
Stevens, 1957). The abrasion loss (the amount of
rubber rubbed off), the hardness, and the tensile
strength of each specimen were measured. The pur-
»pose of the experiment was to see how abrasion loss
depends on hardness and tensile strength. In the orig-
inal analysis of these data, a linear regression model
was fit. In Figure 11 the brush is selecting low values
of hardness; from the highlighting in the (3,2) panel
we can see that there is a nonlinear dependence of
abrasion loss on tensile strength for hardness held
fixed to low values. Figure 12 shows a sequence con-
sisting of just the (3,1) and (3,2) panels of the matrix.
As we go from top to bottom in the figure, the brush
is moving from left to right in the (3,1) panel, condi-
tioning on higher and higher values of hardness. The

highlighted points of the (3,2) panels generally form
nonlinear patterns that appear to be just vertical
translations of one another. Figure 13 is similar except
that now we are conditioning on different ranges of
tensile strength; the highlighted points of the panels
on the left, which show the dependence of abrasion
loss on hardness for tensile strength held fixed to the
various ranges, also appear to be vertical translations
of one another, but unlike those in Figure 12 they
have a linear pattern.

Figures 12 and 13 suggest three things about the
data. First, there is a nonlinear dependence of abrasion
loss on tensile strength; the linear model used in the
original analysis appears incorrect. Second, there is a
linear dependence of abrasion loss on hardness. Third,
because of the vertical translation of patterns in Fig-
ures 12 and 13, a model for the data does not need a
hardness and tensile strength interaction term. These
conclusions have been confirmed by regression mod-
eling of these data (Cleveland and Devlin, 1986).
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FiG. 10. Lasting and undo paint modes. When the paint mode is
lasting, points remain highlighted. This enables highlighting of irreg-
ular clusters by painting, as illustrated by the sequence of panels in
the first column of the figure. When the paint mode is undo, lasting
highlight is removed. This enables removal of lasting highlight by
painting, as illustrated by the sequence of panels in the second column
of the figure. )

Conditioning on Two Variables and the Shadow
Highlight Operation. Figure 14 shows a scatterplot
matrix with four variables: wind speed, temperature,
solar radiation, and the cube roots of concentrations
of the air pollutant, ozone. The original data, from a
study of the dependence of ozone on meteorological
' conditions (Bruntz, Cleveland, Kleiner and Warner,
1974), were measurements of the four variables on 111
days from May to September of 1973 at sites in the
New York City metropolitian region. There was one
measurement of each variable on each day so the data
consist of 111 points in a four-dimensional space. The
analysis began with the cube root transformation of
ozone because of the success of power transformations
in previous analyses of air pollution data. Then a
nonparametric regression curve was fit using locally
weighted multiple regression, a local fitting procedure

(Cleveland and Devlin, 1986); that is, cube root ozone
was smoothed as a function of the meteorological
variables. The data of the scatterplot matrix in Figure
14 are the three meteorological variables and the
fitted, or smoothed, values of cube root ozone. Brush-
ing was applied to these data to explore the fitted
regression function, and to determine if there is ap-
preciable nonlinearity in the surface; whether the
nonlinearity exists is not immediately clear from the
scatterplot matrix alone.

In Figure 15 highlighting is being carried out, but
in a different way from that for the abrasion loss data
that were analyzed in the previous section. First, al-
though all data appear on the active panel, a scatter-
plot of radiation against temperature, only points that
are highlighted appear on the other panels. This
shadow highlight operation is useful in situations, such
as this one, where the amount of overlap of the plot-
ting symbols is so great that the highlighted symbols
are hard to distinguish from those not highlighted. A
second difference is that a square brush is being used
in the active panel; thus, we are conditioning on values
of radiation and temperature fixed to certain ranges.
The points of the (1,4) panel show us how the
smoothed cube root ozone values depend on wind
speed for the other two independent variables held
fixed to these ranges. This two-variable conditioning
can be done anywhere in the (2,3) panel to condition
on other ranges of radiation and temperature, or can
be done in the (2,4) panel or the (3,4) panel to condi-
tion on radiation and wind speed or temperature and
wind speed.

When brushing is used in this way, conditioning on
two variables, it becomes quite clear that the fitted
surface is highly nonlinear for the ozone data. For
example, in Figure 15, where we are conditioning
on middle values of temperature and high values of
radiation, the dependence of ozone on wind speed
has substantial curvature.

Brushing and Alternagraphics. Brushing in high-
light or shadow highlight mode can also be used to
perform alternagraphics. A categorical variable is de-
fined that describes the subsets—for example, it takes
on the value 1 if a point is in subset 1, 2 if it is in
subset 2, and so on—and is plotted along with the
other variables. Then, a highlighting of the different
subsets can be gotten by applying conditioning to the
categorical variable. It is also helpful to jitter the
values of the categorical variable—that is, add small
amounts of random noise—to reduce overplotting.
This method is illustrated in Figures 16 and 17 for the
brain and body weights discussed earlier. Figure 16
shows the full scatterplot matrix of the three variables:
log brain weight, log body weight, and a categorical
variable with jitter added that describes the species
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FiG. 11. Conditioning. The brush is highlighting points with low values of hardness. The (3,2) panel shows the dependence of abrasion loss on

tensile strength for hardness held fixed to low values.

class. (From left to right, the classes are birds, fish,
primates, nonprimate mammals, and dinosaurs.) In
Figure 17 the mode is shadow highlight, and the brush
in the (1,3) panel is selecting the value of the categor-
ical variable corresponding to nonprimate mammals,
so the scatterplot in the (1,2) panel is the brain and
body weights for this group of species. By moving the
brush on the (1,3) panel we can quickly select any
other group.

The Delete Operation. The delete operation is car-
ried out in the same way as highlighting. With no
buttons depressed, points inside the brush on the
active panel are deleted in a transient way along with
corresponding points on other panels. Pressing a
mouse button causes the deletion to be lasting, and
pressing another mouse button causes the deletion to
be undone, that is, deleted points reappear. Figures 18
and 19 illustrate the use of brush deletion in the
analysis of a time series. The figures are based on
the residuals, x(t), of monthly atmospheric concentra-

tions of CO, (Keeling, Bacastow and Whort, 1982)
after trend and seasonal components were removed.
The four variables in the scatterplot matrix are x(t),
x(t — 1), x(t — 2) and t. The (1,2) and (1,3) panels of
Figure 18 suggest there are nonzero autocorrelations
at lags 1 and 2. However, the (1,3) panel shows a

- peculiar excursion of the data near the end of the

observation period. It is natural to ask what effect this
excursion has on the autocorrelation. In Figure 19 a
brush has been positioned in the (1,4) panel so that
the points of the excursion are deleted. The autocor-
relation at lag 1 is reduced and the autocorrelation at
lag 2 disappears altogether; thus, much of the observed
autocorrelation at these lags is induced by the data of
the short, final time interval.

The Label Operation. The label operation is carried
out in the same way as highlighting and deleting, that
is, labeling can be transient, lasting, or undone. Figure
1, discussed at the beginning of the paper, illustrates
the use of transient labeling.
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FiG. 12. Conditioning. Each of the four pairs of graphs are the (3,1)
and (3,2) panels of the scatterplot matrix in the previous figure. The
brush is being moved from left to right on the (3,1) panel, conditioning
on different ranges of hardness.

2.5 Scaling

An important factor on a two-variable graph is the
aspect ratio: the physical length of the vertical axis
divided by the length of the horizontal axis. Changing
the ‘aspect ratio of a graph can have a radical effect
on our ability to visually decode the quantitative
information on the graph. Figures 20 and 21 are
an example. The data are the yearly sunspot num-
bers from 1749 to 1924 that Yule (1927) analyzed in
his landmark paper on autoregressive processes. In
Figure 20 the aspect ratio is one and in Figure 21 it is
0.065. In Figure 20 we cannot see an important feature
of the sunspot data that is apparent in Figure 21—the
sunspot numbers rise more rapidly than they fall; that
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FiG. 13. Conditioning. In this figure the brush is being moved on
the (3,2) panel, conditioning on different ranges of tensile strength.

is, the absolute rate of change is greater when sunspot

* numbers are increasing than when they are decreasing.

In studying a two-variable graph, we often judge the
slopes of line segments to determine the rate of change
of y as a function of x. For example, in Figure 21 we
judge the slopes of line segments connecting successive
data points to determine that the sunspots rise more
rapidly than they fall. In general the judgment of slope
is enhanced when the angles of line segments with
positive slopes are centered on 45° and when the
angles of line segments with negative slopes are cen-
tered on —45° (Cleveland and McGill, 1987). When
slopes tend away from +45°, either toward the vertical
or horizontal, relative judgments of slope decrease in
accuracy. Changing the aspect ratio of a graph changes
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F1G. 14. Scatterplot matrix. Four variables are shown.

the angles of line segments on the graph and therefore
our ability to judge slopes. In Figure 20 we lose our
ability to judge local slopes because the angles of the
line segments connecting successive points are too
close to £90°.

For static graphs the aspect ratio can be chosen by
selecting a set of line segments whose slopes are of
interest and then selecting the aspect ratio so that the
median of the absolute values of the angles of the
.segments is 45° (Cleveland and McGill, 1987). But
there are problems with this solution. One is that this
optimum aspect ratio for one set of slopes might be
quite different from that for another set of interesting
slopes on the graph. Furthermore, optimum aspect
ratios for many graphs, particularly those of long time
series, are so small that for the usual page width (about
18 c¢m in this journal), the optimally scaled graph is
too small in the vertical direction to have sufficient
resolution along the vertical axis.

Dynamic scaling, in which the data analyst controls
the length and width of the two axes, provides a

convenient solution to these problems. The data ana-
lyst controls the aspect ratio and the computer makes
the graph on the screen vary in a seemingly continuous
way; the rapid and easy change from one aspect ratio
to another allows accurate judgments of different sets
of slopes. One particularly nice implementation of
Buja, Asimov, Hurley and McDonald (1987) even
solves the problem of small aspect ratios interfering
with vertical resolution by using horizontal scrolling.
To get a small aspect ratio without ruining the vertical
resolution, the width of the graph is expanded beyond
the width of the screen; the analyst sees only a portion
of the graph at any moment and can scroll back and
forth, bringing different parts of the graph into view
in order to see all of it.

2.6 Rotation

Suppose x;, y;and z;, fori=1to n, are measurements
of three variables. The data configuration is a point
cloud: n points in three dimensions. The computer
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FiG. 15.  Conditioning with shadow highlight. When the brush operation is shadow highlight, all points on the active panel are shown, but on
the other panels only highlighted points are shown. The points of the (1,4) panel show how ozone depends on wind speed for high values of

radiation and middle values of temperature.

screen is two-dimensional, so we must be satisfied
with inferring the three-dimensional structure from
two-dimensional views. This, however, is not as lim-
iting as it might seem because one of the wonders of
the human visual system is that its algorithms for
perceiving the three-dimensional world have as their
input two-dimensional views falling on the retinas.
Just as a motion picture gives a, three-dimensional
"sense from pictures shown on a flat screen, so can a
computer display convey three-dimensional point
clouds by a rapidly changing sequence of two-
dimensional views (Fisherkeller, Friedman and Tu-
key, 1975). The point cloud is projected onto the
screen while the viewing angle changes through time;
the effect is an apparent rotation of the cloud that
allows us to see its three-dimensional structure. Ro-
tation is portrayed in Figure 22.

Control. There are many possibilities for selecting
an axis about which the cloud rotates (Fisherkeller,

Friedman and Tukey, 1975; McDonald, 1982; Tukey,
1987a). One is to use one of the three coordinate axes
of the data. Rotation about one of them changes the
orientation of the others from our fixed viewpoint—
that is, the projection plane of the screen—so the
apparent motion of the cloud about a given coordinate
axis will vary according to the position of the other
two axes. A second possibility for axis selection is to
have three fixed screen axes. that is, axes that are
fixed relative to the projection plane; the most sensible
are screen horizontal, screen vertical and perpendic-
ular to the screen. Once one of these six axes has been
selected, the data analyst can be given control of the
sign and speed of rotation.

A third possibility for axis selection can lead to very
delicate control of the cloud. The data analyst selects
a particular direction in the projection plane by mov-
ing a mouse or a tracker ball. The motion of the cloud
is what we would get if we reached out and spun the
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FiG. 16. Alternagraphics by brushing. Brushing can be used to show different data sets by adding a categorical variable that indicates to which
set each observation belongs. This figure shows a scatterplot matrix for the brain and body weight data, including a categorical variable identifying
each species as belonging to one of five categories of animals. From left to right on the (1,3) and (2,3) panels the categories are birds, fish,

primates, nonprimate mammals and dinosaurs.

cloud by pushing on the front of it in in the selected
direction. If the amount of rotation depends on how
far the device is moved, the data analyst has the feeling
of very direct control of the cloud. The cloud can also
be given inertia, so that once it is set in motion it
continues until the analyst changes the motion.

It is entirely reasonable to implement all three of
the above rotation-control methods in a dynamic
graphics system and allow each data analyst using the
system to discover his most comfortable control
method.

Enhancements. Motion is only one factor that the
human visual system uses to construct scenes; conse-
quently, rotation by itself does not give as strong a
three-dimensional view as we get of the real world.
Remember that points in three-space are not typical
of the real world—real objects are composed of sur-
faces, not points. However, certain enhancements to

rotation can increase the perception of depth. First,
we can add stereo vision (Becker, Cleveland and Weil,
1987; Donoho, Huber, Ramos and Thoma, 1986;
Littlefield, 1984). One way to do this is to show
two superimposed views of the cloud from two
slightly different viewpoints, one view in red, the other
in green, with overlap in yellow, and then view the
display with glasses that have one red lens and one
green. Each eye gets one view as in real-world vision.
(There are other methods of generating stereo views
that allow color in the pictures.)

Stereo vision enhances the three-dimensional effect
of the rotating cloud; but, even more importantly,
the three-dimensional effect remains even when the
motion stops. This is important for reasons that
will be given shortly. Because our visual systems also
use perspective to see depth, we can enhance point
cloud rotation by having the sizes or intensities of
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F1G. 17. Alternagraphics by brushing. Here one of categories (nonprimate mammals) of Figure 16 has been highlighted in shadow highlight
mode. By choosing a tall narrow brush and moving it across the (1,3) panel, each category is momentarily visible on all of the plots.

the plotting symbols obey the rules for perspective.
Another way to enhance the three-dimensional effect
is to enclose the cloud in a rectangular box whose
edges are the axes of the three variables; the box
provides perspective, which enhances the depth effect,
and also helps us perceive the axis directions.

Limitations. It should not be supposed that rotation -

and its enhancements give us for three variables
exactly what scatterplots give us for two. On a scat-
terplot, we make a variety of judgments of horizontal
and vertical positions to visually decode information
(Cleveland, 1985). Point cloud rotation and its en-
hancements add depth, but our judgment of a position
in depth is not nearly as acute as our judgment of
horizontal and vertical positions. Furthermore, when
a point cloud is rotating it is easy to lose a strong
cognitive fix on the axes and on which variable goes
with which axis, even when the axes are shown. It is
almost always the case in analyzing a set of data that
recognizing some pattérn in the data is not enough;

we need to be able to interpret the pattern in terms of
the measured variables. This is illustrated in the (1,2)
panel of Figure 6. We can readily perceive from this
scatterplot that there are two clusters of points, and
we can almost instantaneously conclude that the
cluster in the upper left consists of sepals that are
shorter and wider than those in the lower right. For a
scatterplot this process of interpreting a perceived
pattern in terms of the measured variables is done so
effortlessly that we are hardly aware that it is dis-
tinct from perceiving the pattern. For a rotating
three-dimensional point cloud we are often painfully
aware of the separation. The problem is alleviated
somewhat by having stereo; then the motion can be
stopped and a particular view contemplated. But
even with this enhancement, our cognitive processes
are considerably less adept than they are for two
dimensions.

Rotation with More Than Three Variables: Ad-
vanced Strategies. Suppose there are p variables
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FiG. 18. Time series. A time series, x(t), is explored by the scatterplot matrix. The (1,3) and (2,3) panels suggest that there is significant
correlation at lags 1 and 2. However, panel (1,4) shows there is a peculiar excursion of the data over a short time interval toward the end of the

data record.

where p > 3. We can study any three at a time by
rotation. If we do this, without saving the results of a
rotation in any way, we can effect rotation only about
axes that are a linear combination of three variables.
We can, however, adopt a replacement strategy, sim-
ilar to one used in PRIM-9 (Fisherkeller, Friedman
and Tukey, 1975), that allows arbitrary rotations.
, Think of the procedure as a recursion with a succes-
sion of rotation sessions. After the kth session, sup-
pose the data are described by a coordinate system
with variables 2, ..., 2,. Three of the variables, say
2; to 23, are selected for the next session. The data are
rotated to get a final view for the session. The vari-
ables 2;, 2, and 23 are now replaced by a new set of
three variables: the three that describe the screen axes.
At the beginning of the sessions, the z; are just the
original data variables. Needless to say we rapidly lose
a graphical appreciation of the meaning of identified
structures in terms of the original variables. However,

the system can keep track of the coefficients of the
linear transformation of the z; back to the original
variables as way of helping us to infer meaning.

During these rotation sessions we can also condition
on certain ranges of the z (Donoho, Donoho and
Gasko, 1985; Fisherkeller, Friedman and Tukey,
1975). For example, we might rotate with z;, z; and 23
and show only points for which a < 2, < b, which is a
form of deletion, or we might highlight points in this
range. This allows us to study the relationship of z;,
2, and 23 conditional on 2, in the range a to b. In
addition, we can hold the rotation fixed to a particular
view and vary a and b.

Far more experimentation is needed with these ad-
vanced strategies. In applications, it is easy to lose all
sense of where one is and what identified structures
mean. Carefully worked-out examples, complete with
strategies and what they show about the phenomenon
under investigation, are needed.
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Fld. 19. Deletion by brushing. Points can be deleted with brushing in the transient or lasting paint mode, and lasting deletion can be undone
by the undo mode. In this figure, the brush is removing the data of the short excursion. The autocorrelation at lag 2 has disappeared and the

autocorrelation at lag 1 has been substantially reduced.

Brushing vs. Rotation. Brushing and rotation can
both be used for studying multidimensional data.
Becker, Cleveland and Weil (1987) compared the two
methods by implementing both on a high performance
graphics workstation and using both to analyze a large
number of data sets. We will not repeat the details of
the investigation here, but will describe the basic
conclusions.

Suppose the data are three-dimensional and the goal
is to examine the trivariate structure. Simply because
we can see directly the three-dimensional structure,
rotation is particularly useful for exploring three-
dimensional properties such as clusters and collections
of points that lie close to one-dimensional and two-
dimensional manifolds. Brushing tends to be less use-
ful here, except in special cases.

Suppose the data are three-dimensional and the goal
is to explore the local dependence of one variable on
the two others. Again, rotation is a useful tool and
brushing tends to be of less help.

Suppose the data are three-dimensional and the goal
is to explore the conditional dependence of one vari-
able on another for the third held fixed. Here brushing
is particularly appropriate and rotation tends to per-
form less well. The reason is that the conditioning
techniques of brushing allows us to incisively study
conditional dependence, the usual goal, for example,
when we do a regression analysis.

Once the data are in four dimensions or more the
picture becomes somewhat less clear. If the goal is to
study dependence of one variable on the others, brush-
ing typically leads to more insight. For multivariate
studies where understanding the p-dimensional struc-
ture is the goal, both methods can lead to separate
and important insights. For example, when a cluster
is definable by its projection onto the plane of two
original variables, it can be explored through high-
lighting the cluster by brushing the scatterplot of the
two variables. However, if the cluster is definable by
a projection onto the space of three original variables,
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F16. 20. Dynamic shape control. The yearly sunspot numbers are graphed. The shape parameter of the graph—the vertical distance spanned
by the data divided by the horizontal distance spanned by the data—is equal to one. From this graph we get a good portrayal of the variation in
the peaks of the sunspot numbers but a poor portrayal of the shapes of the cycles.
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F16. 21. Dynamic shape control. The shape parameter of the graph is now 0.065 and we get a good portrayal of the shapes of the cycles— for
example, we can see that the data tend to rise more rapidly than they fall—but a poor portrayal of peak to peak variation. Dynamic graphics can
be used to continuously vary the shape parameter of a graph, quickly moving from this figure to the previous one.

SUNSPOT NUMBER

F1G. 22.  Rotation. Rotation on a computer graphics screen of measurements of three variables allows us to see the point cloud in depth, which
provides a three-dimensional scatterplot. Rotation is a particularly effective method when we are searching for trivariate structure, such as
clusters or manifolds, or when we want to study the local dependence of one variable on the other two. When the goal is to study conditional
dependence, brushing is typically more effective. The portrayal of a rotating point cloud in this figure is from the MACSPIN manual (Donoho,
Donoho and Gasko, 1985). Reprinted with permission of D? Software, Inc.
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F16. 23.  Four or more variables. It is quite sensible to use both brushing and rotation when there are four or more variables. One reason that
brushing is effective is the single integrated view provided by the scatterplot matrix. In this figure the logarithms of the weights of hamster organs
are graphed. There is an outlier in the (3,4) panel, which is being highlighted by the brush. By scanning rows 3 and 4, we can see the hamster

" has an enlarged spleen.

but not onto any plane of two of the variables, it is
detectable only through rotation.

One strength of brushing for four or more variables
is that the scatterplot matrix provides a single inte-
grated view of the data unless, of course, a large value
of n or p causes resolution problems. Even when
several rotating clouds are on the screen, the same
level of integration in not achieved. The integration
allows a number of data analytic tasks to be carried
out in a straightforward manner. An example is
provided by the data on Figure 23, which are the
logarithms of the weights of six body organs for
73 cardiomyopathic hamsters (Ottenweller, Tapp and
Natelson, 1986). The outlier in the (3,4) panel, which
is being highlighted by the brush, suggests that one
hamster has an unusually large spleen or an unusually
small liver. By scanning the spleen plots in row 4 and
the liver plots in row 3, we can see that the hamster
has an enlarged spleen.

Thus, the overall conclusion is that neither brushing
nor rotation uniformly dominates the other and it is
quite reasonable to have both tools available. In fact,
not only do brushing and rotation complement one
another, they can be combined to create more than
the sum of their parts (Becker, Cleveland and Weil,
1987; Stuetzle, 1987). A subset of three of the variables
is selected and rotation is applied to them on a panel
adjacent to the scatterplot matrix. This panel takes
part in the brushing operations just like the panels of
the scatterplot matrix. When a matrix panel is
brushed, the results are also shown on the rotation
panel; furthermore the rotation can be stopped at a
particular view and the rotation panel selected as the
master panel for the brushing operations.

2.7 The General Case: Parameter Control

Many of the methods described in the previous
sections provide the data analyst with a method for
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rapidly changing a parameter that affects a graphical
display. The following are examples: alternagraph-
ics—the value of the categorical variable that breaks
the data up into subsets; scaling—the height or width
of the graph; rotation—angle of view. Dynamic meth-
odology can in principle be used to control any param-
eter, discrete or continuous, that can affect a graphical
display. Two further examples are the powers of
power transformations of variables on a graph (Becker
and McGill, 1985; Fowlkes, 1971) and the smooth-
ness parameter of a nonparametric regression curve
superimposed on a two-variable graph (Friedman,
McDonald and Stuetzle, 1982). Thus, there are a vast
number of methods that can potentially be imple-
mented in a dynamic graphics environment.

3. COMPUTING ISSUES

This section focuses on some of the computing
issues involved in developing a dynamic method. The
discussion is needed because of two circumstances:
current hardware must be pushed nearly to its limits
to achieve the requisite speed for dynamic methods,
and present software environments leave the program-
mer with many steps between the conception of a new
idea and an easy to use implementation of it. With
present technology, developing easy to use, responsive
methods requires some knowledge of hardware and
software issues.

Two aspects of the hardware for a graphics comput-
ing system have a large impact on the speed and ease
of use of dynamic techniques: the bandwidth of
the complete system and the specific input/output
devices used in the system. These are discussed in
Sections 3.1 and 3.2.

There are several levels of software used in the
implementation of dynamic displays—low level soft-
ware that operates on bits in frame buffers, inter-
mediate level software that provides basic graphics
library functions and high level software that provides
an environment where data analysts can make good
use of dynamic graphics. The levels of software needed
to generate a particular dynamic display are deter-

~mined by many factors including the complexity of
the display and the hardware on which it will run. A
simple dynamic method may be trivial to implement
on very powerful hardware. Conversely, a graphical
method requiring fast display of large amounts of data
on an inexpensive computer system will probably force
the programmer to use many low level graphics algo-
rithms in order to get adequate performance.

Low level graphics techniques are described in Sec-
tion 3.3. These are the techniques typically used by
programmers who need maximal control over the
graphics display because higher level software either
does not perform the right task or does not perform

the task with enough speed. We then discuss higher
level, device-independent techniques in Section 3.4
are easy to use and are accessible to programmers and
to data analysts with programming experience. Fi-
nally, in Section 3.5, we take up the data analysis
environments that make dynamic graphics displays
available to data analysts.

3.1 System Bandwidth

Banduwidth is the speed with which user input, such
as mouse moves and button presses, can be translated
into picture updates on the screen. There are several
steps in this translation, any of which can be the
bottleneck that determines the overall bandwidth.
Composite speed may be limited by the speed of
numerical or graphics computations, by the speed
of the display hardware or by the speed of passing
information from input device to computer or from
computer to display device. It is hard to quantify the
required overall speed, but as a general rule of thumb,
the bandwidth should be sufficiently high that the
perceived response of the display to the input device
is virtually instantaneous. McDonald and Pedersen
(1985a) attempt to quantify hardware bandwidths of
the various components of modern workstations, and
also provide a general background on hardware from
a data analyst’s viewpoint.

Roughly speaking, the hardware necessary for doing
dynamic graphics consists of computing horsepower
sandwiched between input and output devices. The
ways in which such a complete system is typically
arranged can be broadly characterized as either the
time-shared model, the workstation model or the dis-
tributed processing model, which is often a hybrid of
the other two. Each organization has implications for
dynamic graphics.

In the time-shared model (Figure 24a), the user has
a terminal that is attached to a host computer. The
terminal’s display and input device are controlled by
a fixed terminal program that runs in a processor
inside the terminal. Because the terminal program is
fixed, graphics capabilities will be controlled from the
host computer by relatively primitive commands. This
means that dynamic graphics techniques are limited
in this model by the amount of information that can
be exchanged between the host and the terminal;
typical host-terminal communication speeds are rela-
tively low. For example, to display a thousand points
on a terminal might typically require sending four
bytes per point. The communication channel between
terminal and host rarely transmits more than 2000
bytes per sec, so that each display of a thousand points
would take a minimum of 2 sec to send; this is much
too slow for dynamic graphics. Furthermore, although
host computers in a time-shared environment may
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F1G. 24. Models for graphics systems. Three models that are used
for computing systems: (a) the time-shared model, in which a host
computer is shared among several users, each with a terminal that
has a fixed, relatively simple terminal program; (b) the workstation
model, in which the user has the exclusive use of an entire computer
(but perhaps sharing resources such as disk); and (c) the distributed
computing model, in which the graphics computations are split be-
tween a shared host computer and a dedicated, programmable local
computer.

have a fast processor, the response time for a partic-
ular user can be slow because of other users employing
the system. Because of these speed problems, the time-
shared model is generally unsatisfactory for dynamic
graphics.

In the workstation model (Figure 24b), the data
analyst has the sole use of a computer. In order to be
usable for dynamic graphics this computer should
have, as a rough minimum, a processor that can
perform one million instructions per second, a main
memory capacity of one megabyte, a minimum
screen resolution of about 500 by 500 and a high
speed network connection to access a disk or other
workstations—this connection should have a min-
imum speed of about one million bits per sec. These
requirements are discussed in more detail by Morris,
Satyanarayanan, Conner, Howard, Rosenthal and
Smith (1986). The great advantage of the workstation
model is that because the processor, the graphics
display and the input device are all housed together,
they can be connected by high speed communications
channels. Also, because the computer is dedicated to
one person, there are no time-sharing delays. Further-
more, workstations are becoming affordable for most
data analysts.

The distributed processing model (Figure 24c) is
often a hybrid of the time-shared and workstation
models. The user has a programmable computer with
a graphics display and this local computer is attached
to a time-shared host computer. Examples of distrib-
uted configurations include the AT&T Teletype 5620
programmable graphics terminal and Sun Micro-
systems’ NeWS window system. In this model, the
graphics computations are carried out in several pro-
cessors and the distribution of the computational
tasks is under control of the software rather than the
hardware. The information flow between the host
computer and the local graphics computer may con-
tain programs as well as data. Typically, extensive
computations are carried out at the more powerful
host machine and time-critical graphics operations
are performed by the local graphics machine.

There are several advantages of the distributed
processing model over the workstation model. One is
that the local graphics computer can be totally dedi-
cated to a particular graphics task, whereas a work-
station will also typically have to perform other tasks
associated with a sophisticated operating system. Be-
cause the cost of computing is shared among a number
of users on a time-shared host, more computing power
may be available to the person with the large host and
local graphics processor than the the person with the
workstation. This has an impact on any preprocessing
that needs to be done for a dynamic technique. Also,
the host machine gives the user the advantages asso-
ciated with a shared environment, such as access
to the files of others (although, with the advent of
network file systems, this is also available in the
workstation model). ,

The chief disadvantage of the distributed processo
model is that software design is more complicated.
The implementation requires part of the software to
be running on the host and part to be running in the
local machine; deciding how to do this partitioning
can be delicate (Pike, Guibas and Ingalls, 1984).

3.2 Graphics Input and Output

Most current systems use a mouse for graphics input
and a raster scan display for graphics output. A mouse
is a small hand-held device that keeps track of relative
changes in its position on a flat surface. These changes
are continuously sent to the computer, which is then
responsible for keeping track of the position of
the mouse. The mouse is typically equipped with one,
two or three buttons and the state of those buttons,
pressed or not, is also continuously available to the
computer.

A raster scan display has much in common with
a television. It has an electron gun behind the
screen that is continuously re-exciting spots on
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the screen with short persistence, i.e. that quickly fade
if not re-excited. The electron gun follows a fixed
scanning pattern from left to right, top to bottom.
The value for each 'spot on the screen (on/off or a
color) is stored elsewhere in fast memory (called a
frame buffer) and these values are read in synchrony
with the scanning of the electron gun.

An asset of raster scan devices is their low cost.
Raster scan hardware has two parts, the drawing
hardware (screen, electron gun, etc.) and the associ-
ated frame buffer that describes the image. The draw-
ing hardware is inexpensive because it is little differ-
ent than television technology. Raster scan was once
expensive because of the cost of the associated mem-
ory. Plummeting memory prices, however, have
changed this. For example, a medium resolution color
screen might have a 1024 by 1024 array of pixels (a
pixel, or picture element, is a frame buffer location,
corresponding to an individual spot on the screen)
with 8 bits of information stored for each pixel, and
this requires one megabyte of memory. In the past 5
years, the cost of memory has decreased 10-fold. This
trend, more than any other, has accounted for the
recent upsurge in the popularity and availability of
raster scan devices.

Raster scan devices also have added flexibility in
the frame buffer for color displays. In these displays,
each screen pixel is associated with a frame buffer
location where several (usually from 4 to 32) bits of
information are stored. Most modern color displays
use these bit patterns as indices into a color map:
a table of color definitions. The arrangement of the
frame buffer—several bits for each pixel—can be
viewed alternatively by considering, say, the first bit
for each pixel as a collection; this rectangular collec-
tion of bits is called the first bitplane, and the other
bitplanes are similarly defined (see Figure 25). Most
devices, under control of a numerical read mask, have
the ability to display any subset of the bitplanes at
any time.

Some hardware offers the ability to pan and zoom.

When the display hardware is reading the frame °

buffer, it can be set up to begin its scan anywhere in
~ the frame buffer—the visual effect is to shift the
picture horizontally or vertically (or both) with wrap-
around. In addition, the hardware can be instructed
to replicate the values it reads from the frame buffer
so that what would have been one pixel becomes a
block of identical pixels on the screen. The visual
effect is to zoom in on a part of the picture.

All of these features—color maps, bitplanes, zoom
and pan—can be used sepdrately or together to-make
rapid display changes, and are thus good grist for the
dynamic graphics mill. There are some subtle tradeoffs
involved between them, however. For a good discus-
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Fic. 25. Color displays. Relationships between the frame buffer,
bitplanes and color map in a typical color device are shown here. The
frame buffer may be viewed as a stack of bitplanes, here four. Reading
the bits in the same position for each plane gives the value of the
screen pixel at that position. The pixel value is used as an index into
a table of color definitions, each of which may be set independently of
the values in the frame buffer.

sion of the techniques and tradeoffs, see Heckbert
(1984).

3.3 Low Level Graphics Algorithms

It is often necessary to customize software to par-
ticular hardware in order to get maximum perform-
ance from a graphics device. Performance is essential
to the success of dynamic methods and often the
hardware used for dynamic graphics is just barely
capable of achieving adequate performance levels.
Even with very powerful hardware, it usually takes
little time before data analysts push the limits of the
hardware by wanting to increase the number of points
that are displayed, to add more complex numerical
methods to the display computations or to complicate
the methodology in other ways. It is easy to push even
the most powerful hardware to its limit. The remain-
der of this section describes some of the low level
algorithms useful for squeezing graphics performance
out of various types of hardware.

Integer Arithmetic. One technique applicable to
many display devices is the use of integer arithmetic
for time-critical computations. This is especially use-
ful on devices without floating point hardware that
would otherwise need to use (slow) software floating
point routines. Another advantage of integer arith-
metic is that it tends to match the resolution available
on graphics devices. Display devices often have
vertical and horizontal resolutions of fewer than
1000 pixels. This means that computations accurate
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to 10 bits are often sufficient for graphics; these can
be done with hardware supported 16-bit integer com-
putations. This integer arithmetic can be fast and can
also save space. On the other hand, more programming
care is required in translating ideas that are naturally
expressed as floating point computations into equiv-
alent integer computations.

Precomputation. Tradeoffs of speed versus memory
usage are generally as applicable to graphics as they
are to other computer algorithms. Time versus mem-
ory tradeoffs can be made by using precomputations;
for example, sines and cosines can be precomputed
and stored in a table so that trigonometric compu-
tations can be avoided during the display. Other
tradeoffs involve precomputed pictures.

Suppose we would like to produce an alternagraphic
display (Tukey, 1982). Sometimes, precomputing the
pictures is the easiest method of accomplishing this;
in this case, the length of time it takes to generate the
pictures is then not linked to the speed at which they
can be displayed. When the displays are precomputed
and then shown, the procedure is usually referred
to as an animation sequence. Such a sequence might
be used to show the contours of a surface varying in
time or to show successive slices through a three-
dimensional set of data. In these cases the sequence
can rapidly show (say from 3 to 30 pictures per sec) a
series of pictures that change slightly from one to the
next, giving the viewer the impression of a continu-
ously varying display. Alternagraphic displays also
cycle through a set of pictures, although typically more
slowly (a second or so per picture), and in this case,
the various pictures would usually change substan-
tially from frame to frame.

One of the major advantages of using precomputed
pictures is that there is no need to write special
purpose software to create the pictures to be displayed.
All that is necessary is to augment the available graph-
ics software so that it can draw pictures in portions of
selected bitplanes. Once the pictures are drawn, then
it is a simple matter to write a program to display
them alternately on the screen. The precomputed
pictures can also be stored offscreen and then rapidly
copied into the active memory when they are to be
displayed. Later, we will discuss operations for copying
bitmaps. More complicated schemes are possible on
devices with color maps, bitplanes, zoom and pan
(Heckbert, 1984).

An example of the use of precomputation for dy-
namic graphics involves producing a power transfor-
mation display. Suppose we have paired observations
x; and y; for i = 1, ..., n. A power transformation
can often be used to linearize a curved plot, to
stabilize variance or to enhance symmetry. It is
sometimes difficult to tell what will happen if we
transform both variables simultaneously. Therefore,

we want to allow two-dimensional motion of an
input device to select transformation powers « and 8
and to show the changing scatterplot of y? against
x% In order to prevent scale changes from affecting
the plot, we show y?/(max(y)’ — min(y)®) against
x¥/(max(x)* — min(x)*). We also need to make cor-
rections for the sign of « and 8 as well as use a
logarithmic transformation for « = 0 or 8 = 0.

Suppose the hardware configuration is one in which
computation is not enormously fast but there is a fair
amount of memory. Straightforward computations
would require floating point arithmetic to compute
exp(a log(x;)) and exp(B log(y;)) for each data point
each time « and 8 changed. This is a lot of computa-
tion to do at a rate of approximately 10 times per sec,
even for a moderate amount of data, say several
hundred observations.

We could use tables of log(x;) and log(y;) to speed
up this computation. However, by carrying precom-
putation just one step further, all floating point
arithmetic can be avoided during display. Select
a set of reasonable a values; for example, the 81
values a; = —4 (.1) 4. Next, compute a matrix with
n rows and 81 columns where the i, j entry is
x%/(max(x)% — min (x)%). Compute a similar matrix
for y and (8 values. (We cannot compute just one table
for grouped x and y because the denominators differ
for x and y.) To display the transformed scatterplot,
it is simple to find the column of the x matrix corre-
sponding to the current value of « and the column of
the y matrix corresponding to the current value of 3.
All that the device has to do is quickly produce the
scatterplot from the precomputed values. Notice that
it would probably be infeasible to precompute all
possible 81? pictures in advance; instead we have
stopped just short of producing pictures during the
precomputation. The important feature of this prob-
lem that allows us to succeed is that the power trans-
formation can be decomposed into separate operations
on the x and y coordinates.

Raster-op. Recently, bitmapped display devices

. have become very popular. Most graphics on these

devices is carried out by one very powerful operator,
known as raster-op or bitblt (Newman and Sproull,
1979; Pike, Guibas and Ingalls, 1984). Many bit-
mapped display devices provide special hardware to
assist raster-op.

The raster-op operator takes two rectangular arrays
of bits, the source and the destination, and combines
them using various functions. The function store cop-
ies the source rectangle to the destination (ignoring
any bits that were present in the destination); the or
function produces a one bit wherever a one bit appears
in either the source or the destination; exclusive-or
(XOR) produces a one bit whenever the source and
destination bits are not the same. See Figure 26.
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FIG. 26. XOR graphics. The results of combining two objects using the OR and XOR raster-op operations. Black represents 1-bits and white
represents 0-bits. Object A OR B has black wherever either A is black or B is black. Object A XOR B has black wherever either A or B but not

both, is black.

Raster-op using XOR is widely used in bitmap
graphics because it is its own inverse. If a source image
has been copied onto the destination using XOR, the
image will be erased completely if it is copied a second
time using XOR. Of course, XOR is not without its
drawbacks. When a picture is drawn using XOR to
position a number of objects on the plot, any overlap-
ping portions of different objects are invisible. This
leads to strange effects in scatterplots in which there
is a lot of overlap. In fact, if an even number of points
in a plot have exactly the same coordinates, they
completely obscure each other. This makes it impor-
" tant to use jittering techniques in which small
amounts of random noise are added to data points to
avoid exact overlap (Chambers, Cleveland, Kleiner
and Tukey, 1983) prior to making displays that are
done with XOR mode.

To see how a dynamic display may be implemented
on a bitmapped device, suppose we want to display
three-dimensional data by means of rotation. Suppose,
too, that the bitmapped display device has only mod-
erate computational power and no rotation hardware.
What programming techniques can we use to produce
an effective display?

First, we display the points on the screen in their
initial position by repeatedly using raster-op to copy
an offscreen image of a plotting symbol onto the screen
at plotting positions of the points. Next, we must
compute the new position-of each point as the point
cloud turns through a small angle. This can be done
by computation of a rotation matrix using trigono-
metric functions, composition of the rotation with the
previous rotation matrix and multiplication of the
data by the composite matrix. However, an approxi-
mation to these computations can be done very quickly
in integer arithmetic using only shift and add instruc-
tions. This technique was used in a version of point
cloud rotation by Andrews (1981) to achieve point
cloud rotation on a small and slow 8-bit personal
computer.

We can move each point from its present position
to its new position (after rotation) by means of raster-
op. For each observation we use raster-op with XOR
to copy an offscreen image of the plotting symbol
once again into its current position (thus deleting the
point) and then use XOR again to copy the image into
its new position. Thus, we delete the first point and
then redraw it, delete the second point and redraw it,
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and so forth through all of the points. This allows the
display to move without ever visibly erasing and re-
drawing, although the rotating point cloud may not
appear perfectly rigid when the number of points gets
large.

Raster-op can also be used with extra memory to
get what appears to be an instantaneous change from
one rotation angle to another. Memory is allocated
offscreen for a bitmap the same size as the onscreen
bitmap. The points are drawn into the offscreen bit-
map in their new position after rotation, and when all
of the points have been drawn, the offscreen bitmap
is copied into the onscreen bitmap using the raster-op
with the STORE function. This may be faster than
incremental plotting techniques when there are a large
number of points on the display, because it is only
necessary to draw each point once. Incremental tech-
niques undraw the point and then redraw it in a new
position, operating on each point twice. The draw-
backs to using offscreen memory are that it requires
a potentially large offscreen bitmap and it may be
somewhat slower for small numbers of points because
the offscreen memory must be cleared and then copied
into the frame buffer.

3.4 Device-independent Graphics:
Graphics Standards

It may take specialized programming techniques to
get adequate performance for dynamic displays on
commonly available graphics devices. Also, although
some of the low level operations we described in that
section are common to a number of graphics devices,
actual implementations usually vary slightly from ma-
chine to machine. This means that dynamic methods
whose algorithms use low level routines are usually
difficult to “port” from one variety of hardware to
another.

The Graphical Kernel System, known as GKS
(GKS, 1985), is now an international graphics stand-
ard. There are also a number of implementations of
the ACM-SIGGRAPH CORE proposal (CORE, 1977).
These standards describe device-independent low
level support for a variety of graphics input and output
devices. They provide device independent ways of
drawing lines, markers (point symbols), polygonal
areas and characters. They provide a mechanism to
translate from two-dimensional or three-dimensional
world coordinate systems into coordinate systems ap-
propriate for the graphics device. That is, they allow
the programmer to specify how the natural units of
measurement for the data are to be mapped onto the
surface of the graphics device. The lines, markers,
polygons and characters can be specialized by means
of various graphical attributes such as line texture,
width, color and character size, rotation and font.

Dynamic aspects of graphics are provided in the
standards by a mechanism known as segments: a
segment contains descriptions of graphical objects and
also has attributes of its own such as visibility and a
transformation matrix that describes how its coordi-
nate system is to be mapped onto the screen. Graphic
input is handled by a number of symbolic input types:
button, valuator, locator, stroke and pick. Buttons can
be pushed, valuators provide a single (continuously
variable) value, locators provide single (x, ¥) coordi-
nate pairs, strokes give a stream of coordinate pairs
(corresponding, for example, to the positions of a
mouse over time) and a pick identifies a particular
segment that is visible on the display.

Data analysts should not think of graphics stand-
ards as a panacea, for there are many issues in data
graphics that are not addressed by any of the proposed
standards. In order to have a well defined scope, the
current graphics standards have decided that they will
not include applications software. This means that
there is no explicit recognition of an applications area,
such as data display, within the graphics standards,
although the standards provide a foundation upon
which good data graphics can be built. Much of the
impetus for graphics standards comes from high visi-
bility, high demand applications such as computer-
aided design. Therefore, most of the effort of the
computer graphics community is directed toward the
realistic display of three-dimensional objects and
scenes. The graphics standards contain many hooks
for the display of such objects (three-dimensional
perspective display of shaded surfaces, hidden surface
elimination, etc). These are nontrivial problems and
having good solutions in standard graphics software
is quite valuable for typical applications, but the value
of these features for data display applications is often
much less.

Earlier we discussed how rotation could be imple-
mented on a bitmapped display device using raster-op
as the primary graphical operation. Let us try to see
how graphics standards could help us to implement
rotation. Using the CORE system (GKS does yet not
have three-dimensional primitives), this is easy. We
create a segment that uses a three-dimensional poly-
marker (points in three-space) subroutine to display
our points, and then, in a loop, we change the trans-
formation matrix to give different views of our points.
That is all there is to it.

On present hardware, the results range from beau-
tiful to disastrous. The beautiful results come on de-
vices where the hardware provides assistance in
rotating objects. On these machines, the rotation is
convincing even with a large number of data points.
The disappointing results come on lower cost display
devices that do not have special hardware for rotation.
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On these devices, the program may draw the points in
one position, then erase the screen, then redraw the
points in a new position. A cycle like this can take a
second or two for even just a few data points. There
is no illusion of a rotating three-dimensional point
cloud. On the same device, the bitmapped approach
can give very good results; the problem is that the
operations available in the graphics standard do not
map into very efficient operations on the low cost
display devices. Of course, as hardware costs continue
to decline, the performance of inexpensive graphics
devices using standard graphics software will continue
to improve. Nevertheless, it will be several years before
adequate dynamic graphics is commonly available
through the use of standard software.

3.5 Data Analysis Environments:
Windows to the World of Data

Dynamic graphics routines, to be useful, must be
embedded in a data analysis environment, which must
include much more than the dynamic graphics rou-
tines. A data analyst at any time may require data
management, basic graphics, statistical modeling,
computations for transformations and a variety of
other functions. The process of data analysis consists
of jumping rapidly from one task to another as the
patterns revealed in the data by one method suggest
the use of another method. Thus, it is critical that
dynamic methods be fully integrated with the other
tools that the data analyst requires. Anything that
makes it difficult to perform these rapid jumps
impedes the progress of the analysis. In the past, much
of the software for dynamic displays of data was
implemented as standalone packages. This is appro-
priate for research into dynamic displays, but it is
quite inadequate for use by working data analysts.

Multiwindow displays are a relatively recent devel-
opment of the computer science community (Morris,
Satyanarayanan, Conner, Howard, Rosenthal and
Smith, 1986; Pike, 1983) that are particularly useful
as part of a data analysis environment. Windows
divide the surface of the display into rectangular re-
gions, each of which operates independently. Most
often the windows behave like separate terminals con-
nected to the computer. A user can instigate a long
computation in one window and then move to another
window and continue to use the machine even as the
long computation continues. The multiple windows
allow the user to move between various tasks, just as
a multitasking operating system allows the computer
to work on several jobs at the same time.

The window environment is particularly well suited
to data display because each graph can be in a separate
window (Stuetzle, 1987). The collection of windows

can be moved around on the screen, much as one
would organize graphs on pieces of paper on a desk.
But unlike paper graphs on a desk, the shape of
windows can be changed, so a graph can be made small
for temporary storage in an out-of-the-way place (or
made to disappear until recalled) or a graph can have
its aspect ratio changed (see Section 2.5) by changing
the shape of the window. Furthermore, corresponding
points on different graphs can be linked so that op-
erations, such as brushing, performed on points in one
window are reflected in other windows.

4. SUMMARY AND DISCUSSION

The amazing computing power now available to data
analysts carries with it the potential for new graphical
methods—dynamic graphics—that utilize visual input
and achieve virtually instantaneous graphical change.
High interaction methods represent a new frontier in
data analysis and are an important adjunct to conven-
tional static graphics.

Because many early dynamic graphics systems were
based on rotation, they are often thought of as tools
for exploring multivariate data. However, dynamic
graphics methods have the potential to include all
areas of data analysis. This is demonstrated by the
wide range of methods discussed in Section 2.

The chief reason for the advent of dynamic graphics
is the current availability of the hardware and software
tools needed for their implementation. Section 3 gave
an introduction to these tools, illustrating both the
opportunities they afford and the limitations they
impose.

One question that frequently arises about dynamic
methods is how a data analyst can present results that
are based on them. The methods are discovery tools
that enable us to uncover interesting structures in
data, but once having learned about a particular struc-
ture we can almost always design a static display to
show it. This was done in this paper for several data
sets. In fact, dynamic graphics can be viewed as meth-
ods that allow us to move rapidly through a long
sequence of static views until the desired or interesting
static view is found; having found it we can present it
to others.

It is quite easy to invent a dynamic graphical
method. It is very difficult to invent one that is a
better tool than those already available. This paper
presents basic ideas of dynamic methods and com-
puting principles that should allow others to design
new and effective dynamic methods for data analysis.
The challenge is to use the known techniques as a
starting point, to develop new graphical methods
and to evaluate those methods as they are used on
real data.
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Comment

John W. Tukey

The overall impact of this paper is both substantial
and sound. Thus my comments will have to focus on
recommended changes in flavoring or on possibilities
for the future.

1. THE MUD CAN BE DULL

The Murray Hill tradition in data analysis has long
included aspects of “plant your feet firmly on the
ground, even if they do sink deep in the mud.” The
limitation of scatterplot matrices to original coordi-
nates is a case in point. The discussion of (brain
weight)/(body weight)*? in Section 2.1 is another case
in point. A scatter of “log brain weight MINUS 25 log
body weight” against log body weight would be a useful
supplement to the scatter of Figure 2, in part because
it would offer an expanded vertical scale. In Figure 11,
where “abrasion is stated to be the intended response,”
an additional row and an additional column for “abra-
sion loss residual” and “tensile strength” would greatly
clear up the situation—perhaps leaving brushing the
task of finding still subtler behavior.

2. HIGHLIGHTING MAY BE INESCAPABLE—BUT
IS STILL INADEQUATE

Paper representations of screens with highlighted
points are rather weak and wan—and highlighted
screens may be somewhat so. Particularly for paper
versions, we ought to further enhance the contrast
between emphasized and background points. Two easy
ways to do this are: a) median +’s or x’s for emphasis,
with dimensions at least 3 times those of background
circles, or b) filled circles for emphasis and little dots
for background. This sort of improvement is needed
for alternagraphic emphasis as well as for brushed
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Donner Professor of Science, Emeritus, at Princeton
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Washington Road, Princeton, New Jersey 08544.

Techniques and approaches. In Proc. Symp. Information Proc-
essing in Sight Sensory Systems (P. W. Nye, ed.) 7-27. Califor-
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YULE, G. U. (1927). On the method of investigating periodicity in
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numbers. Philos. Trans. Roy. Soc. London Ser. A 226 267-298.

emphasis. (Compare with the last paragraph of Sec-
tion 2.1 in Becker, Cleveland and Wilks.)

3. DO PANELS MAKE UP A TABLE OR A
GRAPH?

To Becker, Cleveland and Wilks, the answer seems
to be “clearly, a table!” because they number rows of
panels from above down (and put the vertical coordi-
nate first!). For some of us, the answer seems to be
“clearly, a graph” so we would number rows of panels
from below upward, and put the horizontal coordinate
first.

Whichever side you take—if one is to write in text
about panel numbers, panel rows and panel columns,
in the pictures, they should be labeled clearly enough
(e.g. (1, =) and (-, 8) or (-, 1) and (3, —)) so it would
be really hard for the reader/viewer to miss the point.

If you do adhere to the graphic paradigm, the dis-
tinctive diagonal of your scatter-plot matrix will run
NE-SW and not NW-SE.

4. RECTANGLES, ANYONE?

It would have been helpful if the account of brushing
had said—if it is true, as I think—that brushes are
rectangular because rectangles can be computed

" faster. How much faster? Are we near the present

boundaries when we include brushing? Or could we
afford other brush shapes?

5. COGNOSTICS, ANYONE?

The paragraph in Section 2.4 on the scatterplot
matrix assumes that scrolling is our only remedy when
p is too large. Another approach would be to use
cognostics (e.g., Tukey and Tukey, 1985) to help
us rearrange our variables so that the initial view
shows the most interesting k of them. Instead of
simple scrolling, then, we might hold the first £ — 2
(or k — 3, or k — 1) fixed and scroll the other 2
(or 3 or1).



