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difficulty. Indeed the reference prior for the ordered
sequence (0, ---, 0,,) is (see Berger and Bernardo,
1989 for details)
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and the corresponding marginal reference distribution
for 6, is
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no matter how many cells are considered.

Comment

C. R. Rao

Geometric ideas do help in suggesting intuitive so-
lutions to some complex problems and also in obtain-
ing explicit solutions to specific problems through
geometric methods. In his paper, “The geometry of
asymptotic inference,” Dr. Kass has demonstrated
these two aspects by providing us with an excellent
review of the past work and presenting some new ideas
on the use of differential geometry in interpreting
and developing statistical methodology. As Dr. Kass
observed, differential geometry is a branch of mathe-
matics “which is largely unfamiliar to most statisti-
cians and may seem rather technical.” I hope his paper
will create some interest and encourage research in
the differential geometric approach to statistical prob-
lems. However, I am tempted to share the caution

expressed by Dr. D. J. Finney, in a similar situation,

referring to some recent papers in multivariate analy-
sis: “Amongst the many papers on statistical science
published today, some appear to find outlets to math-
ematical theory without materially assisting scientific
research.” One may not fully subscribe to Dr. Finney’s
view, but the message is clear that enrichment of
statistical methodology can take place only if its de-
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velopment is motivated by practical problems that are
formulated in statistical terms. In this process, so-
phisticated mathematics could be used. I hope and
believe as Dr. Kass does, that although “no claim can
be made as yet that differential geometric research
has made inroads into a large class of problems that
is otherwise unreachable, the methods are so powerful,
and the connections with statistics so plausible, that
some further developments, of great methodological
importance, might well occur.”

In introducing differential geometric methods in
statistics, I was motivated by the problem of discrim-
ination between “populations” or “probability distri-
butions ” (p.d.’s), which naturally led to the need to
introduce a metric in the space of p.d.’s. With a
distance defined between two p.d.’s, it is possible to
study the configuration of a given set of p.d.’s in terms
of clusters and their hierarchical relationships.

In the case of a parametric family of p.d.’s charac-
terized by a set of densities {f(x, 6): 8 € O}, the
metric was introduced by furnishing the parameter
space O with a Riemannian quadratic differential
metric (QDM)

(1) Y. 8i;do:do;

where 6 = (6,, 02, ---)’, and (g;) is the Fisher infor-
mation matrix (see Rao, 1945).

Using the QDM, one can compute the geodesic
distance between any two p.d.’s represented by any
two parameters 6 and ¢, which we denote by D, (6, ¢).
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Three immediate uses of such a distance were ex-
plored.

(1) Given a sample from a population (p.d.), how to
test the hypothesis that the associated parameter 6
has a given value 6,? A pos§ible test criterion for this
purpose is Dg(ﬁ,-ao) where 6 is an estimate of 6 based
on the sample. If we have two samples from two
populations, then the hypothesis that the associated
parameters 6 and ¢ are equal can be tested by using
the test criterion D, (8, ) where 6 and ¢ are estimated
from the samples. The large sample distribution of
these criteria were briefly discussed in Rao (1945),
although the power functions associated with such
tests were not investigated.

(2) Given a set of populations with parameter values
0, 05, ---, the set of estimated distances based on
samples from each population

(D6, 6),1,j=1,2, -}

could be used in cluster analysis to study the relation-
ships between populations.

(3) Gradual evolutionary changes (in the parameter
) of a population over time can be represented by a
path in the space of p.d.’s. A possible path between
two given states (f and ¢) of a population at two
different points of time is the geodesic between 6 and
¢. Such paths may be of interest in evolutionary
studies of biological populations. (See Rao, 1987, for
further comments on the choice of a metric).

(4) Suppose that we have a sample X from a popu-
lation. The p.d.’s based on X provide a geometry with
the QDM

2)  ZZgjdo;do;

where (gfj{) is the Fisher information matrix based on
the whole sample X. The corresponding geometry
based on a statistic T'= T(X) has the QDM

3) 23gdb,do;

where (g,-f ) is the Fisher information matrix based on -

the statistic 7. How do we compare the informative
geometries derived from (2) and (3)?

The problem of comparing the geometries based on
X and T = T(X) led me to study Fisher’s work on
comparing the information matrices

4) (g;) and (g})

and develop the concepts of first- and second-order
efficiencies of an estimator.

Fisher thought of an estimator T as providing a
summary of data. To what extent can we replace the
sample X by T'? I have shown elsewhere (Rao, 1948),
that in the context of statistical inference in large
samples, the score function [(X, 6), where I(X, 0) is
the log-likelihood based on X, plays a fundamental

role as a pivotal quantity. A comparison between X
and T could then be made by studying the difference

(5) D, = i(X, 6) — I(T, 6)

where (T, 0) is the loglikelihood based on T. The
first-order efficiency refers to the property

(6) n~2D, — 0 in probability
and the second-order efficiency to the quantity
@) lim cov(D,)

n—oo

or the asymptotic covariance matric of D,. It is seen
that (see Rao, 1973, page 330)

()] cov(D,) = i*(6) — i"(6)

where i%(0) and i7() are Fisher information matrices
based on X and T, respectively. Since the expression
D, in (5) together with the properties (6) and (7) are
difficult to study, I have given alternative formulations
of the first-order efficiency as the property

9 |nVAX, 0) —a—nYN(T, —0)| -0
in probability

with a suitable T, as a function T, which is consistent
for 6, and the second-order efficiency as the quantity
defined as the minimum asymptotic covariance matrix
of

(10) (X, 0) — n'?a — n[B(T, — 0) + \(T, — 0)%]

when minimized with respect to A. In the problems I
have examined, both the definitions {(6), (7)} and {(9),
(10)} appeared equivalent, although it is not true in
general. It would therefore be of interest to work out
the conditions under which these definitions give the
same results.

Assuming the possible uses in statistical inference
of geodesic paths, geodesic distances and other in-
duced characteristics of the geometry in the space of
p.d.’s such as the curvature and a-connections intro-
duced by Amari (1985), several questions arise.

(1) What is an appropriate choice of the QDM in a
given statistical problem? Amari (1985) and Kass (in
the present paper) stressed the property of invariance
of the QDM based on the Fisher information matrix
under transformations of the parameters as well as
variables. There are other choices of the QDM such
as those based on a quadratic entropy (see Section 3
in Rao, 1987), which have the same property. Can we
lay down some criteria for the choice of a QDM?

(2) Mathematically speaking, the parameters defin-
ing the affine connections can be arbitrary, and it is
not clear how they could be chosen in a given statis-
tical problem. Dr. Kass has not given an adequate
discussion of this aspect of the geometry. Some further
comments will be useful.
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(3) It would be of interest to obtain an expansion of
the form

iX0) — iT@) =a+ L+ ...
n

We know the expression for « and its geometric inter-
pretation. What about 8?

(4) I believe that the choice of a prior distribution
is governed by the nature of the parameter and pre-
vious knowledge (though vague) about it and should
not depend on what experiment is conducted to have

Comment

N. Reid and D. A. S. Fraser

We congratulate Professor Kass on a very clear and
interesting account of the role of differential geometry
in asymptotic inference. In particular, his discussion
of information loss and recovery through conditioning,
and the geometric interpretation of this, adds substan-
tially to the long-standing discussion initiated in
Fisher’s early work.

The use and implications of conditional analysis are
central to the topics in the paper. In this discussion,
we expand a little on arguments for and justifications
of conditioning, and the use of geometric methods to
motivate this.

In the setting discussed in Section 3.1, we can write

(1) Py(¥10) =pra(t|a, 0)pasla)

where Y = (T, A) is sufficient, A is ancillary, and the
Jacobian has been absorbed into the support differ-
entials. This factorization suggests, as the paper in-
dicates, that inference about § may be based on the
conditional distribution of T given A, without loss of
information about 6. Section 3.1.1 gives formal clarity
to Fisher’s general analysis of information loss and is
valuable in giving a precise interpretation of the
phrase “without loss of information about 6.”

Other arguments can also provide some interpreta-
tion of the phrase above. For example the likelihood
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further information on it. Jeffreys’ invariant prior may
have nice properties but it seems to depend on how
observations are generated, which may not be accept-
able to Bayesians.
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function obtained from the conditional distribution is
the same as the likelihood function from the distri-
bution of the full data Y. Another motivation for
conditioning on A when the factorization in (1) holds
is that the variability in the outcome that is described
by the marginal distribution of A is irrelevant for
inference about 6; this is an underlying theme in
Fisher’s early work expanded in Fisher (1961) and is
very clearly presented in the weighing machine ex-
ample of Cox (1958). Fisher frequently used the term
“relevant subset” to refer to the set of sample points
having the observed value for the ancillary statistic.
However, it seems clear that he attached additional
meaning to the term, derived from the physical con-
text from which the statistical problem arose. Indeed,
this additional interpretation may well have been pri-
mary in Fisher’s interpretation of conditioning and
the definition of the correct probabilities to use in
applications. There does seem to be no fully satisfac-
tory formalization of such “relevant subsets” based on

the statistical model alone. The derivation of the

Likelihood Principle from the Conditionality Princi-
ple discussed in Evans, Fraser and Monette (1986)
bears on this.

Most discussions of conditioning are motivated by
a few very compelling examples. Subsequent attempts
to formalize the operating principle to enable exten-
sion to more realistic settings are widely divergent.
One development, primarily initiated by Birnbaum
(1962, 1972) and Basu (1959, 1964) (see also Buehler,
1982), isolates ancillarity as the essential feature; the
discussion of this approach and its relation to Baye-
sian inference and the likelihood principle is well
summarized in Berger and Wolpert (1985).

Another development of conditioning in Fraser
(1968, 1979) extends and formalizes one aspect of



