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Rejoinder

Guido del Pino

My primary objective in writing this paper was
just to illustrate the wide applicability of iterative
generalized least squares and its special case IRLS as
algorithms for parameter estimation. A secondary ob-
jective was to show the simplicity of the geometric
concepts underlying the algorithm. I am indebted to
the discussants for their contributions, which greatly
enhance the value of the paper. Their comments point
to interesting extensions and open new problems.

I must apologize to Professor Jgrgensen for over-
looking his important 1984 paper. The delta method
essentially coincides with the IGLS algorithm (3.1),
although he stressed the application to likelihood
maximization. The score and deviance weights are, in
fact, based on a quadratic approximation to the func-
tion g being minimized (in this case, the negative of
the log-likelihood). If g and its gradient are computed
for n + 1 points, and the quadratic approximation
holds globally in a region containing this point, there
are several ways of approximating the Hessian of g at
one of these points. In the separable case, the Hessian
is diagonal and it may be estimated using just two
points. The score and deviance weights are based on
the current point and the point that minimizes g
without restrictions. These considerations, and the
examples in Jgrgensen (1984) show that one must
keep in mind the possibility of employing alternative
weights in IWLS.

I agree that the gain in simplicity obtained by
neglecting the curvature of the manifold M will be-
come in time less important than the corresponding
loss of efficiency. Even in that case, IGLS will provide
good starting points for the more refined algorithms
that take into account higher order properties of the
likelihood.

Professor McCullagh rightly points out that the
quasilikelihood estimator may be obtained as a solu-
tion to a minimization problem. In fact, any vector
equation G(B, y) = 0 may be translated into the
minimization of the function

G’ (B, »)AB)G(B, ¥),

where A(B) is a positive definite matrix with the
smallest eigenvalue bounded away from zero. Equation
(2) of McCullagh is the special case

AB) = VX (u(B)), G(B, y) = U(B, ).

It seems worthwhile to explore the connections be-
tween estimating equations and GGM in further detail
and I now address this point. Assume an iterative

estimation procedure for estimating the unrestricted
parameter 6 is given and that we want to estimate 6
under the restriction § = h(8). For this purpose write
the iterations in the unrestricted case as

(1) g9 = 97 + SUY)

and assume the following approximate equality holds
for 67 close to 6:
2) ESU«Y) =6 — 04
Regarding 6 as fixed and writing

Var(S9(Y)) = V(@0 + 0 — 9),
we are led to a GGM setup for the “working parame-
ter” 6 — 07 and the “working dependent variable”
S9(Y). This suggests using (7.4) with V9(69) and
S?(Y) substituted for V(0?) and Y — 09, respectively.

In the original GGM formulation, the natural esti-
mator of the mean vector 6 is the data vector Y. This
corresponds to S?%(Y) = Y — 609 so that (2) holds
exactly and V4(0) = Var(Y).

An important special case of (1) is SUY) =
S04, Y), with S continuous in its first argument. Any
limit point of (1) is then a solution of the estimating
equation

3) S0, y) =0

and any limit point of the corresponding sequence (3¢
is a limit point of

S(6(8), y) = 0.
The scoring method corresponds to the choice
S@,Y)=I10)"T®,Y).

Under some regularity conditions, condition (1) will

. be satisfied for standardized unbiased estimating

equations (Godambe, 1976).

Let me now comment on the meaning of Q(8; v).
For notational simplicity I will keep the dependence
on y implicit. Let T'() be the gradient of the log-
likelihood L(#) and let U(6) = I(6)~1T(6). In del Pino
(1987), I considered the orthogonal projection,
U@, M), of U(6) onto the tangent subspace to M at
6. The square norm of U(6, M), evaluated at 6 = 6,, is
then the score test statistic for § = 6, versus 6 # 6,,
subject to § € M. Orthogonality and norm must be
understood with respect to the inner product {, )¢
For an exponential family, parametrized in terms of
the mean parameter u, I(z) = V™'(x), and U(u, M)
coincides with Py(y — u) (McCullagh’s notation).
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Hence Q(B,; ) is the score test statistic for 8 = B,
versus 3 # B, (where 6, = u(Gy)). From

Var(U(9)) = I1(6)™", Var((y — u)) = V(u),

it is clear that substituting y — p and (, )y-1(,) for
V(0) and 1(0), respectively, keeps the geometric struc-
ture intact. Extension to composite hypothesis must
be done in terms of C,-tests (Neyman, 1959; Breusch
and Pagan, 1980; Engle, 1981), since maximum like-
lihood estimators are not available from second order
information alone.

Dr. Hill’s comments deal with related topics that
fall quite a bit outside the scope of this paper. I am
afraid I cannot do justice to his interesting questions
and will limit myself to a few remarks. From the point
of view of quasilikelihood estimation, the mixture
model is only used to provide the variance function of
the marginal distribution. The key issue is then the
dependence of this variance function on unknown
parameters (like # in the example given by him).
Although its properties are not yet completely under-
stood, the extended quasilikelihood method of esti-
mation is, to my knowledge, the only general method
that is based on just the variance function. Empirical
comparisons of this method with alternatives like
MLE would improve our understanding of its behav-
ior. That kind of comparions has been done by Hill
and Tsai (1988), although the emphasis there is on
estimation of the regression parameters. From a the-
oretical point of view, the efficiency loss due to the

restriction to first- and second-order information must
be related to the curvature of the log-likelihood. As
Hill says himself, this is also related to the problem
of properly evaluating the precision of statistical
estimators.

In conclusion, I would once again like to thank the
discussants for their comments. I would particularly
like to thank Professor Morris DeGroot for taking an
active interest in the manuscript and for his encour-
agement through various revisions of this paper.
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