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Asymptotics via Empirical Processes

David Pollard

Abstract. This paper offers a glimpse into the theory of empirical processes.
Two asymptotic problems are sketched as motivation for the study of
maximal inequalities for stochastic processes made up of properly standard-
ized sums of random variables—empirical processes. The exposition devel-
ops the technique of Gaussian symmetrization, which is the least technical
of the techniques to have evolved during the last decade of empirical process
research. The resulting maximal inequalities are useful because they depend
on quantities that can be bounded using simple methods. These methods,
which extend the concept of a Vapnik-Cervonenkis class of sets, are
demonstrated by use of the two motivating asymptotic problems. The paper
is not intended as a complete survey of the state of empirical process theory;
it certainly does not present the whole range of available techniques. It is
written as an attempt to convey the look and feel of a very powerful, very
useful, and tractable tool of contemporary mathematical statistics.
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1. INTRODUCTION

Empirical process theory extends classical results
for empirical distribution functions to multidimen-
sional and abstract settings. At the heart of the theory
lies a collection of refined methods for proving maxi-
mal inequalities. In the empirical process literature,
the simplicity of the basic idea is sometimes lost
amongst the supporting mass of detail needed for
mathematical precision. This paper takes a more
relaxed approach to explain one special version of
one empirical process method.

I make no attempt to obtain the best results possi-
ble, and no attempt to discuss the measure theoretic
precautions needed for a fully rigorous treatment. A
dissatisfied reader should consult the references cited
in Section 6 for further details. That section also
mentions some of the other empirical process methods
not covered in the paper.

. As the title suggests, the paper also has something
to say about asymptotics. Stated tersely the message
is: Much asymptotic effort has been devoted to bound-
ing error terms in Taylor expansions; empirical proc-
ess theory provides some effective new tools for doing
this. The discussion in Section 2 concerns two exam-
ples chosen to illustrate the message. My aim is to
convince the reader that all asymptotic subtlety in
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these problems can be captured by two uniform con-
vergence conditions (numbered (2) and (3) in Section
2), which are amenable to the particular empirical
process method described in Section 4. This method
works well for problems involving averages of func-
tions of independent observations. The functions can
depend in a discontinuous fashion upon multidimen-
sional parameters. Instead of smoothness, the required
regularity properties involve combinatorial or geomet-
ric constraints, as catalogued by Section 5.

The empirical process method depends upon two
tricks that at first seem to lead in the wrong direction.
Starting from a family of averages, one introduces
extra randomness to symmetrize and then transform
the process of averages into a conditionally Gaussian
stochastic process. The details appear in Section 4. A

- recursive method, known as chaining, can be applied
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conditionally to the transformed process, taking ad-
vantage of the rapid decrease in Gaussian tails to
bound the process probabilistically by an integral in-
volving a capacity function. Section 3 discusses the
chaining method for Gaussian processes; Section 5
discusses the various ways to obtain the necessary
uniform bounds on the capacity function.

Throughout the paper, I use linear function notation
whenever it can cause no ambiguity. Instead of EX for
the expected value of a random variable I write PX;
instead of [ f(x)Q(dx) or [ f dQ for the integral with
respect to a measure I write Q(f), or just Qf. The
notation is good because it eliminates an unnecessary
distinction between (indicator functions of) sets and
other functions.
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2. TWO ASYMPTOTIC PROBLEMS

Suppose %1, %2, - - - are independent and identically
distributed observations from a distribution P on the
real line. One historically interesting estimator for
the spread in P is the average absolute deviation
from the sample mean,

n
A,=n1 Y |x—x].
i=1

=

If P has a finite variance, what is the large sample

behavior of A,? That is the first of the two problems

to be discussed in this section.

As a first approximation one might replace i by the
population mean, u, which suggests that A, should be
close to an average of independent random variables
| x; — u|. That would give

Anzr=f|x—u|P(dx) for large n.

It would also suggest that n'/2(4,, — 7) has an approx-
imate N(0, ¢%) distribution, with o> equal to the
variance of P minus 72 One should treat the second
suggestion with some suspicion because the difference
% — p, which is of order n™/2, might not be negligible
when magnified by the n'/? scaling factor. To decide
whether it can be ignored, let us approximate A, by
an expression involving % — u explicitly.
For each real t define

n

Gu(t) =n7' 3 |x —t].
i=1
The statistic A, equals G,(%). At each tﬁxed t, the law
of large numbers implies that G, (t) is eventually close
to h

G(t) = f |x — t| P(dx).

If P has a finite variance, the standardized difference
n'2(G,(t) — G(t)) is asymptotically normal, for each
fixed t. Because the asymptotic variance depends con-
tinuously on ¢, the approximating distribution is al-
most unchanged if ¢ varies over a small neighborhood
‘of u. With big probability, the random variable x
selects out index values from a small neighborhood of
. So perhaps n'/2(G, (%) — G(x)) has the same limiting
distribution as n*?(G,(x) — G(r)). That is indeed
what happens.

The argument is clearest when expressed in empir-
ical process notation. Expectations with respect to the
empirical measure P,, which puts mass n™" at each of
X1, ---, Xn, are just sample averages. In particular,
G, (t) equals the expectation of the function f (x, t) =
|x — t| with respect to P,, or in linear functional
notation, G,(t) = P.f(-, t). Similarly, we have

G(t) = Pf(-, t) and
nY*(G,(t) — G(t)) = n"2(P, — P)f(-, t).

The empirical process, v,, denotes the rescaled differ-
ence n/?(P, — P). It may be thought of as an operator
that acts on a function h to produce a properly stand-
ardized sample average. If h has a finite variance with
respect to P,

vah = 02 3 (h(x;) — Ph) ~ N(0, varp(h)),
i=1

where varp(h) = Ph? — (Ph)2. If v, acts on a paramet-
ric family of functions, it produces a parametric family
of approximately normally distributed random vari-
ables. In some asymptotic sense, the process v,f (-, t)
is approximately Gaussian. If the paths of the approx-
imating Gaussian process depended continuously on
the parameter ¢, small perturbations in ¢ would not
have much effect on v,f(-, t). If that were true, and
if the averaging effect of P made G a smooth function
near u, one could argue in the following way. For ¢
near u,

Gn(t) = P.f(-, 1)
= (P +n7",)f(-, t)
= G(t) + n™,f(-, t)
= Gu) + (t — w)G' (1) + n™2uf (-, p).
In particular,
n?(A,— G(n)) =n2(x—p)G' (r) +vaf (-, ).

As a properly standardized average of independent
summands, the righthand side would have an asymp-
totic normal distribution.

Notice that the difference ¥ — u would contribute
to the limiting distribution of A, unless the derivative
G’ (p) vanished. That would happen if G were mini-
mized at p, that is, if 4 were a median of P. The
contribution from % — u could be ignored if P were
symmetric about u, for example. Alternatively, one
could replace % by a sample median, m,, then argue
that

0y

n'?(G.(m,) — G(m)) = vaf (-, m)

with m a population median.

To make the approximation arguments precise, one
needs probabilistic bounds on the oscillations of v, in
shrinking neighborhoods of a point ¢, (either u or m
in the preceding discussion) in the index set. It would
suffice if one could prove, for every sequence of posi-
tive numbers {8,} converging to zero, that

S| [ af (- £) = vaf (-, to) 1 = to| = 80}

@ = 0,(1).
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If G is differentiable at u and if (2) holds, it is easy to
show that n'/?(A, — G(r)) does have the asymptotic
normal distribution suggested by the heuristics.

Empirical process theory offers very efficient meth-
ods for establishing uniformity results for v,. As will
be shown in Example 5.3, assertion (2) is a conse-
quence of the simple fact that, for each « and ¢, the
set

fx ER:f(x, t) — f(x, o) = o}

is an interval. It will also be shown that the analogous
problem in higher dimensions—asymptotic behavior
of the sum of Euclidean distances from a vector esti-
mator of location—can be solved using empirical proc-
ess methods almost as easily as the one-dimensional
problem.

Now for the second problem. A sample median m,
offers a more natural centering than % because it
minimizes G,. Choice of m, for the centering leads to
another measure of spread, inf; G,(t), for the sample.
Many goodness-of-fit and estimation procedures in-
volve a minimization of random functions like G,. In
general, however, there is no simple closed-form so-
lution for the minimizing value, and then one must
argue directly from the consequences of the minimi-
zation.

We could analyze inf, G, (t) directly, using empirical
process methods. Or, more ambitiously, we could con-
sider a multidimensional analogue such as the spatial
median (Pollard, 1984, Example VII.18) or the least
absolute deviations regression estimator (Bloomfield
and Steiger, 1983, Section 2.2). But these examples all
involve minimization of a convex criterion function,
whose analysis can be carried out much more simply
using elementary methods (Pollard, 1989a). For the
second problem, I have instead chosen an estimator
whose study involves several nasty complications:
minimization over a multidimensional parameter of a
nonconvex, random criterion function that is not
everywhere differentiable. To forestall criticism of my
choice of estimator, let me stress that I am interested
in it only for its resistance to traditional methods of
analysis. The reader probably knows of more sensible
estimators whose analyses share some of these com-
‘plicating features. ’

Suppose x;, Xs, --- are independent, identically
distributed observations from a distribution P on RZ
For each ¢ in R? let h(-, t) be defined by

h(x, t) = min{l, |x — ¢|2}.
Suppose 7, is chosen to minimize
H,(t) = P;h(-, ¢t).

As before, for each t, the random variable H,(t) will
settle down to its expected value, H(t) = Ph(-, t). Let

us assume that H has a unique minimum at some 7,
and that the distribution P is sufficiently smooth to
make H twice differentiable at 7,. If we also assume
the second derivative to be nonsingular, we can sim-
plify notational difficulties by reparametrizing to
make 7, equal to 0 and

H(t) = HO) + %|t|2+ o(|t]|*) near zero.

It is necessary to carry the Taylor expansion to quad-
ratic terms, because a linear approximation analogous
to (1) would not suffice to locate the minimizing value
of H,.

A typical analysis would begin by establishing con-
sistency of 7, (that is, by showing that it converges in
probability to zero); then strengthen that to an n™"/?
rate of convergence; and then concentrate on the
behavior of H,, in a O,(n™"/%) neighborhood of zero, to
deduce the limiting behavior of n'/?7,. Let us skip
straight to the third step, which is the most interest-
ing, by assuming that 7, = O,(n""/?). See Pollard
(1984, Section VII.1; 1985) for some discussion of how
to justify such an assumption.

For |t| of order n™'2, the %|¢|? contributed by
H(t) is of order n™!, whereas n"*?v,h(-, t) is of order
n~Y2. If the contribution from the random component
of H, is not to swamp the quadratic, we must decom-
pose v,h(-, t) further, into a part that is linear in ¢
plus an error of smaller order.

To extract a linear contribution from »,, we have to
carry out some sort of pathwise Taylor expansion on
h(-, t), but only to linear terms. If we ignore possible
problems with nondifferentiability at the truncation
point, we are led to regard

Alx) = =2x{|x| < 1}
as the derivative dh/dt evaluated at ¢ = 0. The
remainder term,

_hix, t) - h(x, 0) — t"A(x)

R(x, t) = 2] ,

is small for ¢ close to zero, but only in a pointwise

- sense: R(x, t) — 0 as |t| — 0, except for those x

with | x| = 1. It does not converge uniformly to zero
as |t| — 0, which explains in part why traditional
methods have difficulty with this problem.

The approximation to H, required by the minimi-
zation problem is

H,(t)=H(@t)+n7v,[h(-,0)+t"A() + | t|R(-,t)]
=H(0)+%|t|*+0(| t|?) +n""v,h(-,0)
+n 2t v, A+ n" V2| t|v,R(-, ).

With error terms discarded, and the contributions that
do not depend on t consolidated into a single term,
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the approximation becomes
H,(t) = H,(0) + %|t|? + n "%t p,A.

This suggests that the 7, minimizing H, should be
close to the t that minimizes the quadratic approxi-
mation, or,

1/22

n’*r, = —y,A.

The random variable —v, A has an asymptotic normal
distribution. A rigorous argument to show that n'/?7,
does have the same limit distribution, under the as-
sumptions that we have made about H, can be based
on an analogue of the uniform convergence condition
(2). The main difficulty is to show, for each sequence

of positive numbers {4,} converging to zero, that
(3) sup{| v, R(-, t)|:|t] = 8.} = 0,(1).

This task will be completed in Example 5.4. For the
remaining details in a rigorous proof of asymptotic
normality for n/27, the reader is referred to Theorem
VIL.5 of Pollard (1984) or Theorem 2 of Pollard (1985).

3. MAXIMAL INEQUALITIES FOR GAUSSIAN
PROCESSES

A stochastic process is a collection of random vari-
ables {X;:t € T}. If each finite subcollection of these
random variables has a joint normal distribution the
process is said to be Gaussian. This section describes
an efficient method—a version of the approximation
technique known as chaining—for obtaining proba-
bilistic bounds on sup, | X;|. In its various forms,
chaining has become a basic tool in studies of Gaussian
processes, empirical processes, partial sum processes,
and probabilistic limit theory in Banach spaces.

The method depends on a very simple moment
bound for the maximum absolute value of a finite
collection of normal random variables. Suppose Z; has
a N(0, ¢7) distribution, for i =1, - - -, n. Nothing need
be assumed about their joint distribution; in particu-
lar, they need not be independent. Write ¢ for the

largest ¢;. The crudest bound for max| Z;| is }; | Z;|. -

This gives

P max | Z;| = Con,
i

where C = [P| N(0, 1) |, a universal constant. Clearly
a bound that grows this fast is of little use. If the Z;
were independent N(0, 1) random variables the ex-
pected value would grow like (log n)'?; if the Z; were
as dependent as possible, with all Z; equal to Z,, the
expected value would not even change with n. In the
independent or near independent case, the bound can
be much improved by applying the crude inequality to
a transformation of the Z;. Let H(-) be a nonnegative,
convex, increasing function on the positive half line.

Then, from Jensen’s inequality followed by the crude
inequality,

H(P max |Z,~|> <P max H(|Z|) =3 PH(|Z]).

The idea is to make H increase about as fast as the
tails of | Z;| can bear, keeping the sum of expectations
bounded by a multiple of n. For normal tails, the
function H(x) = exp(Yax?/c?) suffices:

P exp(V4Z?/s?)
=< (2x)7V2 J:: exp(Vax? — Y%x?) dx = 2.
Thus
H(IP max |Z,~|) =< V2n.

To get a tidier inequality, increase V2n to n2, apply
H™(.) to both sides, then increase 2 V2 to 3, giving

(4) P max | Z;| < 3 max s;(log n)"* forn = 2.

If the {Z;} are not too dependent this bound has the
correct order of magnitude. For example, if they have
a joint normal distribution and if P(Z; — Z;)* = Y¢*
for i # j, then an inequality of Sudakov (Section 2.3.1
of Fernique, 1974) shows that

P max | Z;| = co(log n)"?,

for some positive universal constant c.

Repeated application of inequality (4) can lead to
a surprisingly good bound on the supremum of a
Gaussian process.

3.1 Example

Brownian motion on [0, 1] is a Gaussian process
{B(t):0 = t = 1} having continuous sample paths and
independent increments, with B(0) = 0 and B(t) —
B(s) distributed N(0, | £ — s|). A rescaling argument
shows that

P sup |B(t)] = Ké?

0=t=<é

with K a positive constant. As we will see, inequality
(4) gives the same 62 rate of decrease.

The idea is to approximate the supremum by max-
ima taken over a succession of increasingly finely
spaced, finite subsets of [0, 1]. For k=0, 1, - - - define
6, = 6/2* and let T'(k) denote the set of 2* equally
spaced points {0y, 26y, - - -, 2*9,}. Because B has con-
tinuous sample paths, the maximum of | B(t)| over
T(k) increases monotonely to the supremum for each
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path, and hence
P max |B(t)| - P sup |B(t)| as k— .
T(k) 0=<t=<é

Direct application of (4) bounds the lefthand side by
356'2(log 2%)'/2, which increases to +% with k. Appar-
ently there is too much dependence between the values
of B(t) as t runs through T'(k).

One must take a more devious approach, working
towards the maximum a step at a time. Inequality (4)
should be applied to the maximum of the small incre-
ments that enter into the difference between the max-
imum over T'(k) and the maximum over T(k — 1).
Figure 1 represents a systematic way of relating the
maxima over successive T'(k) sets. The name chaining
comes from the picture. To each ¢ in T(k) there
corresponds a t* in T'(k — 1) lying within a distance
dx-1, as indicated by the vertical and sloping lines.
Sometimes t* = ¢, but that does not matter. By the
triangle inequality, for any particular ¢, t* pair,

|B(t)| = [B(t*)| + |B(¢) — B(t*)].

As t runs through T'(k), the first term on the righthand
side runs through the variables involved in the maxi-
mum over T'(k — 1), and the second term runs through
a set of 2* increments of B across index points less
than 6., apart. It follows that

max | B(t)| = max |B(t*)| + max | B(t) —B(t*)].
T(k) T(k—1) T(k)

Take expected values of both sides, applying (4) to the
contribution from the increments, to get

(5) Pmax | B(t)| <P max | B(¢t)| + 38, (log 2%)"/2.
T(k) T(k—1)

The star has been dropped from the ¢* to emphasize
the recursive nature of the inequality. Repeated sub-
stitution for the first term on the righthand side of (5)
eventually replaces it by a maximum over the single-
ton set T'(0), with the addition via (4) of one more

| //\f) T(0)

o T(Q)
t*
t
[ { T
0 )

FiG. 1. Chaining.

error term for each level moved up:
k
Pmax |B(t)| <P|B()| + 3 362 (log 2')Y/?
T(k) i=1
=62P|N(0,1)]

+ 512 2 3((%2) ilog 2)V2.

i=1

The infinite sum converges; the last bound is a con-
stant multiple of 62, as required. O

The construction for Brownian motion on [0, 1] can
easily be carried over to a more general Gaussian
process, {Z(t): t (T}, whose index set T carries a
pseudometric p. (That is, p has all the properties of a
metric except that p(s, t) could be zero for some
distinct pair s, t. Restriction to metric spaces would
unnecessarily complicate the argument for the case
where T is a collection of functions equipped with an
Z?2(P) distance.) Suppose the pseudometric controls
the increments of the process, in the sense that

P|Z(s) — Z(t)|%2 < p(s, t)? foralls,tin T.

For Brownian motion this suggests the metric
p(s, t) = |s — t|Y2, rather than the usual Euclidean
distance. It is no coincidence, as will become apparent
in Section 4, that | s — t | /2 equals the .#?(P) distance
between the indicator functions of the intervals [0, s]
and [0, t], for P equal to Lebesgue measure.

The role of the equally spaced grids of points in
[0, 8] is taken over by an increasing sequence of finite
subsets {T'(k): &k = 0, 1, ---} of T, chosen so that
T(k) is a maximal set of points greater than &, = §/2*
apart. If T'(0) consists of the single point ¢, then é =
sup;p(t, to). Maximality of T'(k) ensures that each
point of T lies within 6, of at least one point in T'(k),
for otherwise the maximal T'(k) could be enlarged by
the addition of at least one more point. In particular,
to each ¢t in T'(k), there must exist a ¢t* in T'(k — 1)

‘with p(t, t*) < 0p-1.

Finiteness of each T'(k) forces T to be totally
bounded, thereby ruling out indexing sets such as the
whole real line under its usual metric. The size of
T(k), as 6, decreases, is measured by the function
D(e) = D(e, T, p), which is defined as the largest
n for which there are points ¢, ---, t, in T with
p(t;, tj) > e for i # j. The logarithm of D(e) is
sometimes called the e-capacity of T. It may be inter-
preted as the largest number of disjoint closed balls of
radius Ye that can be packed into T'. (Closely related
measures for the size of T are the metric entropy and
covering numbers. Dudley (1984, Section 6) has ex-
plained the relationship.)
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Corresponding to (5) one gets a recursive formula
for the expected maximum over T'(k), but with D(5,),
the bound on the size of T'(k), taking over the role
of 2*:

P max | Z(¢)|
(6) TR .
<P max |Z(t)| + 36,1 (log D(5;))"2
T(k—1)

Repeated application of this inequality, followed by a
passage to the limit, leads to a bound on P sup| Z(¢)|,
with the supremum taken over a countable dense
subset of T, involving an infinite sum of the error
terms. It is traditional to treat the sum as a lower
step-function approximation to an integral. Also, it is
neater to have the supremum run over all of T. If Z
has p-continuous sample paths, that will follow with-
out further calculation. (If we write Z(w, t) to show
the dependence of Z on the point in the underlying
probability space, then sample path continuity means
that Z(w, -) is a continuous function on the pseudo-
metric space (T, p). With sample path continuity,
the supremum of | Z(w, t)| over T is the same as the
supremum over a dense subset of T')

3.2 Theorem

Let (T, p) be a pseudometric space, and {Z(t):t €
T} be a Gaussian process with p-continuous sample
paths, for which

P|Z(s) — Z(t)|2 < p(s, t)? foralls,tin T.

Then there exists a universal constant K such that,
for each ty in T,

P sup | Z(t)|
t

o
=P|Z{t)| + Kf (log D(x, T, p))"* dx
0

where 6 = sup,p (¢, to). O

Of course the theorem has content only when the’

bounding integral is finite. In that case, the assump-
tion of sample path continuity could be omitted:
finiteness of the integral actually implies that there
exists a version of the process having continuous
sample paths, for which the stated inequality holds.
(A small improvement of the chaining argument would
show that, with probability one, the restriction of
Z(w, -) to the dense subset of T is uniformly
p-continuous. We could redefine Z(w, t) for ¢ outside
the dense set to give a hew version of the process
with uniformly continuous paths, almost surely. See
Theorem 2.1 of Dudley (1973) for a closely related
construction.)

Theorem 3.2 could be improved in several ways,
only one of which will be discussed here. In the recur-

sive inequality (6), the expected values can be replaced
by .#2(P) norms with only minor adjustment of the
error term. The source of the improvement is a
strengthened form of the basic bound (4): if Z,, ---,
Z, are random variables for which there is a constant
C such that

P exp(#4Z/¢?) =C fori=1, ---, n,
then

1/2
<IP max | Z;| 2) < 20(log Cn)'?,
because
exp(%P max Z?/az) <Pmaxexp(4Z}/c®) < nC.

As before, the factor C can be absorbed into other
constants to give a tidier bound.

3.3 Theorem

Under the assumptions of Theorem 3.2, there exists
a universal constant K such that

1/2
<PSUP|Z(t)|2>

8
= (P|Z(t)|*)"* +Kf (log D(x, T, p))"* dx
0

where 6 = sup;p(¢, t,). A similar inequality holds for
Z*(P) norms, for each « in [1, 2]. O

4. THE SYMMETRIZATION METHOD

Let &, &, - - - be independent observations sampled
from a distribution P on a space 2. Construct P, and
v, from these observations. For applications, 2 is
usually a Euclidean space, but the general theory
would allow it to be any set (equipped with a o-field
on which P is defined).

The two uniform convergence requirements (2) and
(3) call for bounds on the probabilities

P{sup |vuf| > e}
5

for classes of functions . that change with n. In this
section, Theorem 3.3 will give a bound that will be
more than enough to establish the uniform conver-
gence for appropriate & classes.

It is perhaps not surprising that », can be controlled
using Gaussian process inequalities, since v, is in some
sense approximately Gaussian; but it does take a
surprising amount of maneuvering to get from a vague
approximation to a strict inequality. The approach
adopted in this section is based on a symmetrization
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technique from the theory of probability in Banach
spaces, a technique that was very cleverly exploited in
the empirical process context by Giné and Zinn (1984).

The idea is to construct from the {£;} and a new
source of randomness a new process, Z,,, which is more
variable than v, in the sense that P sup|wv,.f|? is
bounded by a constant multiple of P sup| Z,f|2. Con-
ditionally on the {£;}, the Z, process is constructed to
be Gaussian. The bound from Theorem 3.3 can be
applied conditionally on {£;}, and then averaged out
to give the desired unconditional bound.

The extra randomness takes the form of a new
sample {¢;} from P and a sequence of sign variables
{0’,‘} for which P{O‘i = +1} = P{O‘i = —1} = 1. All the
&, £/ and ¢; are chosen to be mutually independent.
The method depends heavily on the independence of
the {£;}, but only notational changes would be required
to generalize beyond the assumption that each §; has
the same distribution (see Pollard, 1989b).

Write P; to denote expectations conditional on the
{&;}. Then, because ¢ has distribution P independ-
ently of the {£;},

2

21) f(&) — Pef(&])

P sup |v.f|2=P sup n*
F F

By Jensen’s inequality,

2 2

=P,

éf(&) C P éf(a-) — D

for each f.

Because
sup P;| --~|%> < P;sup|---|?

the conditional expectation can be moved past the
supremum over %, then combined with the P to
increase the bound to

2

P sup n™ ¥ f(&) — f(&])
7 1

The symmetry here between §; and £/ allows one to

introduce sign variables inside the summation without

changing the expected value: the bound equals

n 2

2 Gi[f(fi) - f(Eil)]

1

1

P sup n~
F

For a deterministic sequence {o;} of signs this is easy
to verify: each ¢; that is —1 interchanges the roles of
& and &/, leaving the expected value unchanged. The
expectation with random {s;} merely averages out over
2" such terms. :

With the {o;} in the bound the auxiliary {¢;} var-
iables can be discarded. Take #?(PP) norms after

applying the triangle inequality,

sup
F

§ ol f (&) — f(& )1‘

n

? o'zf(gz,) ’

n

2 aif (&)

1

< sup + sup
7 F

to the bound, to get

n 2

P sup |v,f|* < 4P sup n7' | o:f (&)
F b4 1

One could work directly with the process Y, o;f (&),
which, conditionally on the {£}, is a sub-Gaussian
process in the sense of Section 2(c) of Giné and Zinn
(1984). The inequality from Theorem 3.3 also applies
to sub-Gaussian processes. But why stop there when
the final step to Gaussian processes is so simple?

Construct the variables {o;} from a sequence {g;} of
independent N (0, 1) random variables by putting ¢; =
g:/| & |. Symmetry of the N (0, 1) distribution implies
that o; is independent of | g;|. Write - for the expected
value P|g;| =P, ,| g, that is, v = (2/7)"2. Then, by
an argument using Jensen’s inequality, similar to the
one for the {¢/},

n 2
P sup 21: oif (E)Peo| gl /v
n 2
< PP, sup | ¥ g:f(&)/v]| -
F 1

If we define
Zn(f’ g) = n_1/2 21: gif(gi),

then the symmetrization inequality may be written as

(7)  Psup|vfl2=4y2Psup | Z.(f, £)|%
F F

~ Theorem 3.3 will bound the right-hand side.

Conditionally on the {{;}, the Z,, process is Gaussian
with increments controlled by the .#2(P,) norm:

Pﬁlzn(fl’ g) - Zn(f23 £)|2
. z 1A — HE) 2 = Palfy — fol®

Notice that, for fixed {£;}, the sample paths of Z, are
continuous in the #2(P,) sense: if P, |f, — f|*— 0 as
k— @, then fk(El) _)f(gt) for each i’ and Zn(fk’ E) -
Z,(f, &) for each realization of the {g;}. It is therefore
natural to equip the set & with its #%(P,) norm
(pseudonorm, actually).

Let us write Dy(e, &, P,) for the corresponding
e-capacity of & : that is, D, (e, &, P,) equals the largest
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N for which there are functions fi, - - -, fy in F with
P.|f;—fi|>>¢% fori#j.

For fixed f, (typically the zero function) in %, Theo-
rem 3.3 provides a universal constant K such that

R 1/2
<IP£ sup |Zn(f3 £)|2)
F

()] < (Pel Z.(fo, £)17)?

A®)
+ Kf (log Dy(x, &, P,))Y? dx
0

where A(£) = sups (P, |f — fo|2)Y% The first term on
the righthand side of (8) equals (P,fZ)*2. The other
term can often be bounded by an integral that depends
on P, in a very simple way.

4.1 Definition

Let % be a class of functions with an envelope F,
that is, F = |f| for each f in ¥. Call ¥ manageable
for the envelope F is there exists a decreasing function
D(-) for which

@) fol (log D(x))"? dx < o,

(ii) for every measure @ with finite support,
D,(e(QF*)Y?, #,Q) < D(e) for0<e=<1.

Call D the capacity bound for #. O

Manageable is a word coined for this paper because,
even though several very similar ideas have appeared
in the literature, this particular combination of con-
ditions has not been given a name. Dudley’s (1987)
concept of a universal Donsker class comes closest,
but it applies only to uniformly bounded classes. A
manageable class for a constant envelope is a universal
Donsker class in Dudley’s sense, but not all Donsker
classes are manageable.

The restrictions to measures with finite support in

(ii) is inessential, but it ensures that QF? is finite.
There is no need to consider more general @, because
the bound will be used only for @ = P,.

. The definition captures a simple regularity property
enjoyed by many useful classes of functions. For ex-
ample, as will be explained in Section 5, the class of
all intervals on the real line is manageable for the
constant envelope 1. In practice, one establishes man-
ageability by starting from the basic criteria of Section
5, and building up more complicated classes by means
of various stability properties derived from elementary
Z? inequalities. Specifically, if # is manageable for
envelope F and £ is manageable for envelope G, then

*theclass # 0% = {flg:feE F, g€ &}is
manageable for the envelope F + G, where the

symbolic operator O can be interpreted as point-
wise addition (+), pointwise maximum (V) or
pointwise minimum (A);

* the class ¥+ = {fg: f € F, g € Z} of pairwise
products is manageable for the envelope FG;

* the closure of ¥ under the topology of pointwise
convergence is manageable for the envelope F.

A sketch of the argument for pairwise products will
illustrate most of the tricks used to generate new
capacity bounds.

Proof of the Stability Property for Products

Let Q be a measure with finite support. Let A be the
measure with density F'2, and u be the measure with
density G?, with respect to Q. Denote the capacity
bounds for the two classes by Dy and Ds. Choose
maximal collections of functions f;, ---, f, in & and
&1, & in &, with m < Ds(¢) and n < D¢ (¢), such
that

plfi = ;12> e*uF? fori#j
and
Mg — g |12> e*\G* for i # j.
For each fin 7, there is an f; with u | f — f;|? < ¢2uF?;
for each g in & there is a g; with \| g — g;|* < £2A\G>
By the triangle inequality for @,
QI fs — figiI*)**
= Qlfs — fig|>)"* + (Q|fig — figi 1)
(mlf = F1)2+ (N g — gj|»)"?
< (82QG2F2)1/2 + (ezQF2G2)1/2.
That is, the product fg lies within .#%(Q) distance
2¢(QF*G?)'2 of f.g;.
There are at most mn different products f; g;. In any
collection of 1 + mn products from ¥ * &, at least one
pair, fgand f’g’, must share the same f;g;. That would

force fg and f’g’ to lie within 4¢(QF2G?)Y? of each
other. Thus

D2(40(QF2G2)1/29 y*g3 Q) = D?(e)D.?(c)’

IA

or
Dgs.5(e) < Ds(¢/4) Dz (c/4).

The product of capacity bounds satisfies the integra-
bility condition of Definition 4.1. O

For a manageable class, inequality (4.2) takes a
neater form. Define

L'(e?) = f (log D(x))"* dx.
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Then, by a change of variable in the integral, one gets

1/2
<P£ Sgp IZn(f; £)|2)
< (Paf8)"? + K(P,F?)'/’T' (A(§)*/P,F?).

Taking .2 2(P) norms of both sides, then invoking (7),
we get

1/2
<P sup |an|2) < (2/7)(Pf§)**

° 1/2
+ (2K/v)[PPnF21‘2<sgp Polf = fol 2/P,,FZ)] .

The factor 2/ in front of (PfZ)? is an artifact of
the symmetrization method. We could reduce it to
1 by applying the preceding argument to the class
{f — fo:f € &} with envelope 2F, and by using the
inequality

1/2
<P sup | vnf| 2)
5

1/2
= Plvafol)V? + (P sup [ va(f = fo)|2) .

Defining J(x) = (4K/v)I'(x/4), to tidy up the con-
stants, we would then have the second of the inequal-
ities asserted by the next theorem. The other
inequality would be obtained by substituting .Z*(PP)
norms for #%(P) norms in the argument leading up
to (7) to get

P sup | v,(f—fo)| = (2/v)Psup | Z.(f = fo, §) 1,
4 F

and then invoking Theorem 3.2.

4.2 Theorem

Let ¥ be a manageable class of functions for an
envelope F. There exists an increasing, continuous,
real function J such that for each f, in F,,

() Psup |v.f| = (Pf§)
F

+ P(P,,Fz)l/zJ(Sgp P.(f — f0)2/P,,F2),
' 1/2
(i) <|P sup | v,,f|2> = (Pf§)*?

1/2
+ <|PP,,F2J 2(8}91}') P.(f— fo)z/P,,F2>> .

The function J satisfies J(0) = 0, and depends on &
only through its capacity bound. O

As a special case of (ii), we get a neater upper bound
by increasing Pf¢ to PF2, increasing the argument of
J?to 4, and then collecting terms.

4.3 Corollary

If & is a manageable class of functions with enve-
lope F, then there exists a constant C, depending only
on the capacity bound for #, for which

P sup | v.f|2 < CPF? for all n. O
F

The corollary ignores any benefit that might be
bestowed by a small sup P, ( f — f,)%. For an application
to the uniform convergence conditions in Section 2,
that would correspond to ignoring the convergence of
{6,} to zero. The next theorem captures the effect of a
shrinking index set by using bound (ii) from Theorem
4.2.

4.4 Theorem

Let . be a manageable class for an envelope F with

PF? < . Let (n), forn =1, 2, ---, be subclasses
for which
i) 0 F(n) for all n;

(ii) sup P|f| >0 asn— oo,
F(n)

Then

P sup |v.f|?—>0 asn— o
F(n)

Proof. Let ¢ > 0 be fixed. Choose a constant M
large enough to ensure that PF*{F > M} < e. By an
application of the stability results for products and
maxima, each of these classes is manageable:

{fIF>M}:feF (n)}
{(fIF=M}:feZ (n)}
{|fIIF=M}:f€EF (n)} withconstantenvelope M.

with envelope F{F> M};

with constant envelope M ;

The constant C from Corollary 4.3 and the continuous
function J(-) from Theorem 4.2, with f, = 0 and &
replaced by each of these classes, do not depend on M
or n. Thus, for all n,

P sup |v.f{F > M}|? = CPF*{F > M} < Ce,
F (n)

and

P sup |v.f{F = M}|®
F(n)

< M2|F"J2<sup P.fiF < M}/Mz).
F(n)

We complete the proof by showing that the last
expression converges to zero. Because J (1) < « and
J(0) = 0, it is enough to show that the argument of J
converges to zero in probability. This follows from the
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inequalities

sup P,|f|{F = M}
F(n)

< sup P|f| + n™sup | v.|fI{F <= M}|
F(n) F(n)

and, from Corollary 4.3,
P sup |v.|f|{F < M}|? = CM> O
F(n)

5. MANAGEABLE CLASSES

It is seldom possible to calculate directly the uni-
form bound on capacities required by Definition 4.1.
The success of the methods in Section 4 rests instead
upon an indirect argument that depends ultimately
upon a beautiful combinatorial result of Vapnik and
Cervonenkis (1971). The theory is largely based on
the concept of a VC class of sets.

Let Z be a class of subsets of 2. It is said to be a
VC class (or a polynomial class, in the terminology of
Pollard, 1984) if there exists a polynomial p(-) such
that, for each finite subset S of 2,

#(C N S: C €7} =< p(#3).

Here, and throughout the section, the # sign indicates
cardinality. The definition requires that the number
of subsets picked out by € from a set of n points grows
like some power of n, which is much slower than 27,
the number of all possible subsets.

Examples of VC classes are the class of all intervals
on the real line (with p(n) = O(n?)) and the class of
all rectangles in the plane (with p(n) = O(n*)). Rec-
ognition of more complicated VC classes is made
possible by a surprising characterization:

« #isa VC class if and only if there exists a positive
integer V such that, for all S with #S =V,

(10) #HCNS:Ceg} =2’ -1

The polynomial p can then be chosen to have
degree V — 1: it suffices to take

o= (o) + () -+ (v

The bound is achieved when & consists of all subsets
of 2 with V — 1 or fewer points. A proof due to Steele,
which reduces the general case to this very special
situation, appears as Theorem I1.16 of Pollard (1984).

Construction of VC classes usually goes as follows.
Start from a finite dimensional vector space, &, of
real-valued functions on 2. Construct the class # of
all sets of the form {g = 0} with g in £. A simple piece
of linear algebra (see Theorem 7.2 of Dudley (1978) or
Lemma I1.18 of Pollard (1984)) shows that # satisfies
the inequality (10) with V one greater than the dimen-
sion of Z. For any fixed k, construct the class &, by

taking all possible Boolean combinations of at most %
sets at a time from #. That is, a typical member of %,
is obtained by choosing & sets Cy, - - -, Cy from %, then
forming any expression involving unions, intersec-
tions and complements of those k sets. These opera-
tions preserve the VC property because a product of a
finite number of polynomials is still a polynomial.

5.1 Example

The class of all closed balls in a finite-dimensional
Euclidean space R? is a VC class. This follows from
the representation of the ball with center t and radius
ras

{g('3_1’2t19 "'3_1’ 2td’r2_t%_ cc _tg)zo}’
where
g(X, o, :81’ tecy Qg Bd’ 7)

= alx% + lel + ...+ adx?, + ded + Y-

The set of all such functions, with the «;, 3; and ¥
ranging over R, is a vector space of dimension
2d + 1. O

The first connection between VC classes and capac-
ities was demonstrated by Dudley (1978). His Lemma
7.13 established a bound for the capacity of a VC class
% under an Z(P) pseudometric. He showed that,
uniformly in the distribution P, the largest m for
which there exist sets Cy, - - -, C,, in € with

P(CiACj)Ec fOI‘l#_]

grows no faster than O(¢™"), for some V. (Actually he
obtained a slightly sharper bound.) In particular, there
is a uniform bound on .Z*(Q) capacities,

sup D, (eQ(Z), %, Q) = 0(™Y),

for measures @ with finite support. Replacing ¢ by ¢?,
one gets the corresponding uniform bound for the
22(Q) capacities.

Dudley’s method provides an interesting example of
a probabilistic existence proof. He proved that each
C; A C; contains at least one out of a particular set of
k =~ 2¢ tlog m points, by showing that there is positive
probability of this happening if the k points are an
independent sample from P. Each C; picks out a
different subset from the set of k points; the class &
picks out at least m different subsets. The inequality
m < p(k) forces a rate of growth slower than some
O(¢™") on m.

Minor modifications of Dudley’s technique extend
the result from VC classes of sets to what Dudley
(1987) has called VC subgraph classes of functions.
The subgraph of a function f is defined as a subset of
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a product space:
subgraph( f)
={x,t) EZOR:0<t<f(x)orf(x)<t<DO0}.

The connection between subgraphs and capacities
appears in Lemma [1.25 of Pollard (1984):

» If # is a class of functions with envelope F such
that
{subgraph(f): f € 7}

is a VC class of subsets of 2 ® R, then
(11) sup D, (eQF, &, @) = 0(c™")
for some V.

Both (2) and (3), and their analogues for vector-valued
t, could be established by checking the VC subgraph
property.

Classes for which a bound like (11) holds were
singled out by Nolan and Pollard (1987) under the
name Euclidean (for the envelope F). As argued in
that paper, and also in Pakes and Pollard (1989),
empirical processes indexed by Euclidean classes of
functions behave like processes smoothly indexed by
bounded subsets of finite dimensional Euclidean
spaces. Euclidean classes enjoy the same sorts of
stability properties as manageable classes.

When & consists of indicator functions of sets in a
class %, a straightforward calculation shows that & is
Euclidean for the envelope 1 if and only if # is a VC
class.

Elementary inequalities involving the #!(P) and
the #%(Q) seminorms, where P has density F with
respect to @, show that the bound in (11) is equivalent
to an analogous bound for .72 capacities. In particular:

* Every Euclidean class is manageable.

The envelope plays a subtle role in the definition of
Euclidean classes (and manageable classes). A VC
subgraph class is Euclidean for every possible choice
of envelope. But, in general, a class might be Euclidean
for certain choices of envelope and not for others.

5.2 Example

Let 2 be the set of non-negative integers and & be
the class of all subsets of 2. Certainly #Z is not a VC
class, but it is Euclidean for the envelope F defined
by F(n) = 2". For suppose that 0 <¢ <1, that Q is a
measure on Z with 0 < QF < o, and that C,, - - -, C,,
satisfy

Q(C;AC;) > eQF fori#].

Find the integer k for which F(k) = 3™ > F(k — 1).
Define C} to be the set C; N {0, 1, ---, k — 1}. Then

Q(C\C}) = Q[k, ®) < Y:¢QF,

which implies that
Q(CFACY) > YseQF for i # j.

In particular, the C¥, - - -, C must be distinct subsets
of {0, 1, - --, B — 1}. That forces m < 2* < 6¢7%, which
establishes the Euclidean property. O

The ploy of choosing a large envelope F to make a
class Euclidean will succeed only if the underlying
distribution puts little mass where F is large. Both
Theorem 4.2 and Theorem 4.4 need a sampling distri-
bution for which PF? < o. Looked at another way,
bad behavior of & on parts of the space where P
concentrates little mass should not disturb the empir-
ical process, for samples from P, too greatly.

A decreasing function for which D(¢) = O(¢7VY)
certainly has (log D(e))*? integrable on (0, 1] with
plenty to spare. Dudley (1987) has identified an op-
eration that generates manageable classes with a D (¢)
that comes closer to violating the integrability condi-
tion. The symmetric convex hull of a class & consists
of all finite linear combinations Y, «; f; of functions f;
in & for which Y, | o;| = 1. Denote it by sco(&). His
Theorem 5.3 implies that:

+ If # is Euclidean for the envelope F then
sup Dy (e(QF?)"%, sco(F), Q) =< Crexp(Cae™)
Q

for constants C;, C., and A with A < 2. In partic-
ular, sco(.# ) is manageable.

Dudley’s result establishes another connection be-
tween the VC property and manageability. A class of
functions % is said to be a VC major class if there
exists a VC class of sets & such that {f = a} is a
member of @ for every f in & and every real number
«. Dudley (1987) has shown that:

* Every uniformly bounded VC major class is man-
ageable for a constant envelope.

The proof for the typical case where 0 < f < 1 is easy:

“each f is a pointwise limit of a convex combination

(with equal weights) of indicator functions of the sets
{f=j/n}forj=1, ---,n. Thatis, each f is a pointwise
limit of functions from the convex hull of the Euclid-
ean class of indicators of sets in Z. The result is not
necessarily true for a VC major class whose envelope
is not bounded away from zero.

5.3 Example

The first problem in Section 2 involved the class of
functions of the form

fx, 8) =|x—¢],

indexed by a real parameter ¢. The analysis depended
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upon a uniform convergence condition,
sup{ | va[f (-, t) — f (-, to)]l: [t = to| =< 6n} = 0,(1)

for every sequence {6, } of positive numbers converging
to zero. As already noted, the sets

H,,=1x:f(x, t) — f(x, to) = a}

are intervals on the real line; the class of all such H,
is a VC class; the class of functions

{FC8) = )t = to] < 61}

is a uniformly bounded VC major class; it is manage-
able for the constant envelope §,. Since

Plf('3 t)_f(', tO)I = |t—t0|,

the hypotheses of Theorem 4.4 are satisfied. The
uniform convergence condition (2) holds.

Generalization to higher dimensions requires little
extra work. If ¢t is a d-dimensional parameter and ¢, =
0, the set H,, can be represented as

{lx] = —a}
Uflx|>—a, —2t'x — 2a|x| + |t|? — a® = 0}.

This is a Boolean combination of three sets of the
form {g = 0} with g taken from a vector space with
dimension d + 2. Again we end up with a uniformly
bounded VC major class. The analogue of (2), and the
corresponding limit theory for the measure of spread,
carry through to higher dimensions. O

5.4 Example

The second problem in Section 2 introduced the
functions N

h(x, t) = minfl, |x — t]?},

indexed by ¢ in R2 The uniform convergence require-
ment (3) involved the functions

R(x,t)

_min{l, |x—¢|*} —min{l, | x|*} + 2¢ "x{| x| <1}
B K

I

with ¢ ranging over shrinking neighborhoods of the
origin. It is easy to check that | R(x, t)| < 4 for all x
and ¢, and that

R(x,t) >0 as|t] =0,

except when | x| = 1. If P puts zero mass on the set
{l| x| = 1}, a dominated convergence argument gives
P|R(-,t)| = 0 as | t| — 0. In particular, hypothesis
(ii) of Theorem 4.4 will be satisfied for the classes

{R(-, £):]t] < b,}

if 6, — 0. The manageability can be established by
checking the VC major property. The set {R(-, t) =
a} can be represented as a union of four sets:

flxl <1, |x—t|<1,|t| =a},
flxl=z1,|x—t| <1,

[x|?2—2t'x+ |t|>—1—|t|a=0},
flel <L, |x—¢t|=1,—|x|®?+2t'x+1—|t|a=0},
{flx] =1, |x—¢t]|=1,0=al. |

As in the previous example, with a finite number of
Boolean operations we can build such a union from
sets of the form {g = 0}, with g taken from a finite
dimensional vector space of functions.

The uniform convergence condition (3) holds pro-
vided P puts no mass on the set {| x| = 1}. O

6. REMARKS AND HISTORY

This paper has concentrated on a single empirical
process method and has suppressed numerous tech-
nical details. A reader who would like to explore the
subject further has a number of places to start. There
are several papers, monographs, and sets of lecture
notes that provide a wider coverage. The lecture notes
of Dudley (1984) are particularly useful for their care-
ful treatment of measurability difficulties. They also
bring together some of Dudley’s many contributions
since his landmark 1978 paper, which has inspired
much of the last decade of empirical process activity.
The review paper by Pyke (1984) gives a most readable
introduction to set-indexed processes. The review pa-
per of Gaenssler and Stute (1979), updated by the
monograph of Gaenssler (1983) and the seminar notes
of Gaenssler and Stute (1987), contains an enormous
amount of well organized material. The 1987 notes,
complemented by the impressively detailed volume of
Shorack and Wellner (1986), could easily be turned
into a graduate course on the applications of empirical
process theory. Pollard (1984) devoted several chap-
ters to empirical processes; Pollard (1989b) has devel-
oped the approach of the present paper further,
putting particular emphasis on nontrivial applica-
tions.

One of my main inspirations in the preparation of
the paper has been the very important discussion
paper by Giné and Zinn (1984). Their work bridges
over to the theory of probability in Banach spaces,
making a connection that has provoked much of the
very recent activity in empirical process theory. In
particular, I borrowed the idea of Gaussian symmetri-
zation from them. However, a referee has pointed out
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that the idea has a long history. It was used by Jain
and Marcus (1975) to prove an abstract central limit
theorem; it was even applied by Marcinkiewicz and
Zygmund (1939), to establish an inequality for linear
operators. (I am grateful to J. Michael Steele for
bringing this reference and other related work to my
attention.) .

The chaining inequality of Theorem 3.3 improves
slightly upon the inequality 11.3.5 of Marcus and Pisier
(1981). It can be used to extend the sufficiency part
of Pisier’s (1984) characterization of type 2 operators
(on Banach spaces of bounded signed measures) from
VC classes of sets to manageable classes of functions.
The particular ideas behind inequality (4) and Theo-
rem 3.2 come from Pisier (1983). Credit for the general
idea of applying the chaining technique to Gaussian
processes in the abstract is usually given to Dudley
(1967), or maybe Dudley and Strassen (1969). How-
ever, a knowledgeable referee has pointed out that
Sudakov also deserves credit—for details, see Dudley’s
review (number 4359) of Sudakov’s book in Mathe-
matical Reviews, Volume 55 (1978).

The chaining method used for Theorems 3.2 and
3.3 is but one variation on a general technique. More
commonly it is used to bound tail probabilities instead
of moments. (See, for example, Pollard (1982, 1984)
or any of the other references cited at the start of this
section.) It can also be applied directly to the empirical
process v, although the argument becomes more del-
icate, because the tails of », are not as well behaved
as Gaussian tails. The method is again best thought
of as a recursive procedure, with something like a
Bernstein inequality for tail probabilities taking over
the role of inequality (4)—the approach exposited by
Pollard (1989c). The name bracketing is usually at-
tached to this style of chaining. The nicest of the limit
theorems under bracketing conditions is due to
Ossiander (1987); a simplified version of her argument
appears in Pollard (1989d). Her method has been
brought to a high degree of refinement in the work of
Andersen, Giné, Ossiander and Zinn (1988). Good
places to start for information about bracketing would
be Pyke (1984), Dudley (1984), or Giné and Zinn
(1984). .
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Comment

R. M. Dudley

David Pollard proved perhaps the most useful cen-
tral limit theorem for empirical processes indexed by
families of functions (Pollard, 1982), somewhat ex-
tended and exposited in Dudley (1984, Theorem
11.3.1) and Pollard (1984, Chapter 6). He has also
been a leading worker at the interface of empirical
processes and statistics, as in Pollard (1979) and the
paper under discussion, with its 6 valuable references
to his own work. Readers of Pollard (1985, 1989a), for
example, will not need specifically econometric pre-
requisites, and they will find ideas not necessarily to
be found elsewhere as far as I know.

On the foundations of empirical processes I would

mention, as a step beyond my 1984 course which
Pollard kindly cites, the paper Dudley (1985), which
incorporates the new definition of convergence in
distribution for stochastic processes due to Jgrgen
Hoffmann-Jgrgensen (unpublished). This definition
avoids the need to define any o-algebra on large (non-
separable) spaces of bounded functions. Thus the
process v, on a family of functions can converge in
law without having a law on function space. Hoff-
mann’s convergence in law is strong enough to imply
existence of realizations converging almost surely or

better, almost uniformly (also in Dudley, 1985) and so

seems to be the “right” definition.

Pollard makes a good point that hypotheses on
smoothness of parametrized families of functions
f(-, 0) with respect to 6 can be weakened via empirical
process theory. A related but different viewpoint is
that of von Mises nonlinear, differentiable functionals
of the empirical measure, which are beginning to be
studied from the empirical process viewpoint (Sheehy
and Wellner, 1988; Dudley, 1989). Let a family F of
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functionals be, say, manageable with envelope 1, so
that the supremum of |»,f| over F is bounded in
probability as n — . The supremum norm over F
then provides a norm for which functionals may be
differentiable (Dudley, 1989). The many possible
choices for such norms should help free von Mises
theory from its focus on the real line as sample space
and supremum of absolute differences of distribution
functions as the main norm. It should also then be
possible to make more use of Fréchet differentiability
rather than compact (Hadamard) differentiability.
Instead of least absolute deviations, one can
take an M-estimate of location (in R* for any k),
setting p(x) = (¢ + |x]|»)Y? ¢ > 0, and minimizing
P,p(x — t) with respect to t, where p is smooth but
for small ¢ is close to | x|. To treat laws P with in-
finite mean one can, as in Huber (1981, page 44),
minimize P(p(x — t) — p(x)) in t, where the integrand
is bounded in x for each t. Since p is strictly convex,
the minimization is equivalent to finding the unique
solution of Py(- — t) = 0 where ¢ is the gradient of p.
The components of y, for any ¢, all belong to a uni-
formly bounded class of functions that can be shown
to be manageable in much the same way as in the
paper under discussion, Examples 5.5 and 5.6, even
for ¢ = 0 where the functions are no longer smooth.
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