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Comment

James O. Berger

The article is ‘an extremely lucid discussion of the
variance estimation problem, highlighting the major
intertwining theoretical developments. Numerous in-
teresting conceptual issues are raised in the article
but, before turning to these, the issue of importance
to practitioners needs further elaboration.

The authors finish Section 2 by saying “the
maximum relevant improvement of Rukhin’s esti-
mators . . . is only 4%, suggesting that there would be
very little practical benefit associated with these im-
proved estimators . ... However, as we shall see in
Section 5, there are interesting cases where substantial
improvement is possible.” Turning to Section 5, we
see (in Table 1) only 2%, 3%, at most 5.3%, improve-
ment in confidence interval length. In what way
are these improvements more “substantial” than
Rukhin’s, especially since they are achieved only for
the less realistic generalized linear model with com-
mon unknown ¢2?

The author’s replies will likely be that it is more
difficult to obtain improvement in the “length of con-
fidence set” problem than in the “point estimation”
problem, and to reiterate that any guaranteed im-
provement is useful, no matter how small. I would
agree with these points, but feel it is important to
acknowledge that only small gains are available here.
Careful study of these developments by practitioners
is not very cost effective as compared to, say, careful
study of the more.familiar “shrinkage estimation of
means” literature, in which practical improvements in
excess of 50% are common. Practitioners have the
time to access only a small fraction of the theory and
methodology that is produced, and I have always thus
felt it to be imperative to carefully indicate the likely
practical potential of new developments.

Conceptually, there are many fascinating develop-’

ments in the paper. For instance, starting with the
“hard to take seriously” problem of estimating ¢ with
quadratic loss (which I would say is hard to take
seriously because decision-theoretic estimation of o2
is very sensitive to the loss, and there are many
different reasonable losses), the authors push the de-
velopments toward the easy-to-take-seriously problem
of obtaining reduced length confidence sets. Insisting,
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at the same time, on good conditional performance of
the resulting sets is a further bold step toward realism.
Allin all, the development is an exemplary illustration
of how to turn an originally abstract decision-theoretic
benefit into a clearly concrete inferential gain.

As a Bayesian reading the paper, I naturally got
excited that the most useful confidence sets were
actually generalized Bayes credible sets, and that the
posterior probabilities of the sets appeared plausible.
For instance, a Bayesian might well be very happy
with using (Is, v0(X, S?)) or (I,, v.(X, S?)) (see the
discussion following (4.14) and (4.15)). A frequentist
might also be very happy with these reports, especially
if E, ,2v(X, S?) < Coverage Probability, for all , ¢°,
since then vy has complete frequentist justification as
a report (cf. Berger, 1988). It would be interesting to
know if this is so.

Let me finish by raising a few old pet peeves:

(i) Following (3.4): “The choice of interval
should depend on more than just ease of
calculation, which is the only favorable fac-
tor associated with Igr.” To the contrary, I
would argue that Izr (equal-tailed interval)
is often most favored because (a) it conveys
the uncertainty present in each tail sepa-
rately, and (b) it is invariant under all
monotonic transformations.

(ii) The “betting” approach to evaluating con-
ditional behavior: I tend to view this ap-
proach with suspicion (cf. Berger, 1985a),
feeling that confidence sets are constructed
to communicate something, not to provide a
basis for betting. If one really takes betting
on confidence sets seriously, one is quickly
led, via usual axiomatics, to Bayesianism
(which is the only thing that makes me at
all sympathetic to the betting framework).
“Positive bias” in conditional coverage is, in
several places, stated to be of lesser concern.
I am uncomfortable with this. I can think of
many problems in which it is much more
serious, in the practical context, to underes-
timate coverage than to overestimate cover-
age. We are all taught in our statistical
education that it is okay to err on the con-
servative side, but I am not sure that this is
indeed generally true in practical decision
contexts where statistics is used.

(iii)
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Comment

Lawrence D. Brown

It is a pleasure and an embarrassment to read a
historical story in which one plays an integral role.
From my perspective the story has been accurately
related, but I do have some miscellaneous comments
to make which are related to the general topic.

THE LOSS FUNCTION

The point estimation segment of this article
deals exclusively with the loss function (1.5)—i.e.,
L(6, 6®) = ((6/0?) — 1)% Although this loss is relatively
easy to handle analytically it seems somewhat inap-
propriate for a broad range of applications. Let me
repeat informally some thoughts I tried to convey
formally in Brown (1968).

Strictly from a qualitative point of view, the loss
(1.5) is very skewed. Note that lim; .. L (8, ¢®) = « but
lim;_oL(5, o?) = 1. Hence overestimation of o2 is
much more severely penalized than underestimation.
Furthermore, the best invariant estimator for this loss
is S%/(v + 2), which is smaller than the maximum
likelihood value of S2/(v + 1), or the intuitively ap-
pealing and best unbiased estimator, which is S?/».
One rationalization for this discrepancy could be that
the intuition supporting use of S2?/v is in error; that
(1.5) is the actual loss and that therefore S?/(v + 2) is
to be preferred to S2/v (and Brewster and Zidek’s
(2.20) is then to be preferred to S%/(v + 2)).

However, another interpretation is possible. Note
that historically use of S2?/v was proposed and, pre-
‘sumably, found generally satisfactory without elicita-
tion of or reference to a specific loss function. If indeed
S2/v is satisfactory among invariant procedures per-
haps that is because it matches the actual (but sub-
conscious) loss function measuring the experimenters’
preferences. Thus one asks, “For what loss is the best
unbiased estimator, S?%/», also best invariant?”.
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Stein (1964) found a loss function for which S?/» is
best invariant. It is

(1) Ls(5, ¢2) = 6/¢% — In(8/0?) — 1.

Note that Lg(5, ¢2) = 0 and attains the value 0
uniquely at & = 2. Also, Ls(6, o2) is strictly convex in
6 and lim;_oLs(8, ¢2) = lim;_.(Ls(d, 02) = . Thus
Lg has a number of pleasing qualitative properties.

In Brown (1968) more was established about Ls. It
was shown that for virtually any problem of estimating
a single scale parameter the best unbiased estimator
is also best invariant for this loss, and the loss function
Lg is the only loss function possessing this global prop-
erty (up to affine transformations, which do not affect
admissibility). Thus a belief in the suitability among
invariant estimators of the best unbiased estimator is
equivalent to a belief in the suitability of Ls. In sum-
mary, my own feeling is that the loss Lg is the most
appropriate for general studies of estimation of scale
parameters. (Of course, other loss functions may be
appropriate in specific applications.)

The story related for loss (1.5) by Maatta and Ca-
sella applies equally to the loss Ls. The analog of
Stein’s estimator, (2.4), is §(X, S2) = ¢(Z2)S?, where

1+ 22
v+1)/)

D) $(Z7)= min(%,

" Under Ls this estimator dominates the usual S2/».

Loss Lg is explicitly considered in Brown (1968)
where it is shown (as in (2.16)) that the choice

~ 2y 50,1(7'2,) ifZZST'Z,
@ 72 )'{m if 22> r?

yields an estimator better than S?/» when
é01(r?) = 1/Eo1(S?| Z% < r?).

The algorithm of Brewster and Zidek then applies,
and shows the estimator with

(4) (Z**(ZZ) = 50,1(Z2)



