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Commentn

Colleen D. Cutler

As someone who has been working in the area of
chaos and statistics for the past few years, I find it
very gratifying to witness the beginnings of grow-
ing interest among statisticians in this field. As
noted by the authors of both papers, the area of
chaos has grown very rapidly, spilling over into
many different disciplines (notably the physical and
biological sciences) and generating much contro-
versy and a wealth of ad hoc techniques (many
statistical in nature) for the analysis of chaotic
data. The authors of both papers are to be com-
mended for providing stimulating overviews of the
theory, techniques and applications of chaos, a far
from easy task given the explosive growth of litera-
ture in this area.

There is considerable opportunity for statisti-
cians to make an impact in this field (by supplying
practitioners, usually scientists, with appropriate
methodology), as well as to make an impact on
statistics itself (by incorporating features of chaos,
such as nonlinear deterministic models, into data
analysis). Recent statistical work in chaos (on top-
ics ranging from estimation of dimension and Lya-
punov exponents to nonlinear prediction) include
Denker and Keller (1986), Cutler and Dawson
(1989, 1990), Nychka, McCaffrey, Ellner and Gal-
lant (1990), Wolff (1990), Berliner (1991), Bggsted
Hansen (1991), Cheng and Tong (1991), Cutler
(1991) and Smith (1991, 1991b). I hope this issue of
Statistical Science will encourage more statisti-
cians to consider future work in this area.

Numerous topics are addressed by both papers. I
will limit my discussion to a few areas in which I
have experience or special interest.

PROBABILITY DISTRIBUTIONS ASSOCIATED
WITH CHAOS

At least one major source of difficulty in statisti-
cal analyses of chaotic systems is the demand by
practitioners for techniques that are applicable to
an enormous variety of dynamical systems.
Whereas “chaos” itself has certain specific defining
properties (such as sensitive dependence on initial
conditions), the types of prebability distributions
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arising from chaotic models do not. Here, I assume
an ergodic system with probability measure P aris-
ing as the limiting empirical distribution along a
trajectory (corresponding to a particular set of ini-
tial conditions). Specifically

1 n—1
P(B) = lim — L(T*(x
@ P = lm Y (7))
for P-almost all x

where T is the map being iterated. The attractor of
a chaotic system need not be fractal (e.g., the at-
tractor of the logistic map 7T'(x) = 4x(1 — x) is the
unit interval [0, 1]), although a fractal structure is
a frequent feature. (In the next section, I will indi-
cate how the presence or absence of an underlying
fractal structure can affect dimension estimation
procedures.) The distribution P, which is supported
on the attractor, may have very different behaviors
for different systems (indeed, even for different pa-
rameter values of the same system). In the case
where the attractor A is a smooth subset (e.g., a
manifold) of RY, P may be absolutely continuous
with respect to the Lebesgue measure on A, thus
possessing an invariant density g. This density g
may or may not be bounded. For example, in the
logistic case with a = 4, the density g(x) =
7~ x(1 — x)]~ /2 has singularities at both 0 and 1,
whereas the “tent” map (discussed by Chatterjee
and Yilmaz) features the uniform distribution as
invariant measure. The presence of singularities in
the density (or even regions of bounded yet steep
density) can adversely affect estimation proce-
dures. More typically, at least for dissipative sys-

‘tems in higher dimensions, the attractor is a fractal

and, thus, P is necessarily singular with respect to
Lebesgue measure. It is interesting that, in the
area of chaos, continuous singular distributions
arise as natural objects of study, rather than as
examples of mathematical pathology (as frequently
portrayed in mathematical statistics courses). In
fact, due to the possible complexity of attracting
sets and distributions, a strong interplay between
mathematics and statistics is often required to ana-
lyze a chaotic system properly. In practice, the
governing equations of a system are rarely known.
[Even when they are, it is often difficult or impossi-
ble to prove rigorous results about the system
asymptotics. The “simple” two-dimensional Hénon
mapping defied rigorous analysis from 1976 until
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the recent paper of Benedicks and Carleson (1991).]
Thus, statistical analyses may involve a fair amount
of “shooting in the dark.” (The problems of obser-
vational noise, random physical system perturba-
tions and computational errors become important
here. I will elaborate on these in the last section of
my comment.) It will be interesting to see the
extent to which the “parametric”’ nonlinear models
proposed by Berliner (in Section 4.1) will be useful
in the modeling and prediction of physical systems.
In any case, at this point in time, there is a demand
for statistical techniques that are either highly
robust (and, therefore, necessarily inefficient in
various cases) or that enable the experimentalist,
via data analysis, to reliably distinguish between
different types of systems in order that more effi-
cient, specialized techniques can be used.

Of particular interest to physicists and applied
mathematicians are the situations under which the
attracting distribution P may be classified as a
Bowen-Ruelle measure. Such measures, although
usually singular (but not always; the attracting
arcsine distribution of the logistic map is a
Bowen-Ruelle measure), attract initial conditions
from sets of positive Lebesgue measure. [Note this
differs from simple ergodicity as presented in (1).]
This notion is important because such systems may
be considered ‘“physically observable.” Another
characteristic of Bowen-Ruelle measures is that
they usually combine both absolutely continuous
and fractal properties; specifically, whereas being
singular and concentrated on a fractal set, the
measure will have conditional densities along the
unstable manifolds (direction of stretching) of the
attractor. The existence of Bowen-Ruelle measures
has been proven for Axiom A systems (Bowen and
Ruelle, 1975), as well as in certain specific other
cases. A readable introduction to these ideas can be
found in Young (1983), as well as in Ruelle (1989).

ESTIMATION OF DIMENSION

The authors of both papers have.included discus-
sions of various dimension concepts and correspond-
ing estimation techniques. In fact, more work in
this area has already been done, and I will elabo-
rate here on some of the results and problems. The
chief reference here is Cutler (1991), which in-
cludes a summary of the mathematical results in
Cutler (1990a, b, c), as well as some statistical
methods. '

Suppose we have an ergodic system consisting of
amap T, attractor A and invariant distribution P.
Assume we have collected data W,,..., W, (in the
form of a time series) from an orbit of this system.
The geometric dimension of A may be of interest,

as it provides a measure of the complexity or
“fractalness” of A, as well as a rough idea of the
number of degrees of freedom necessary to model
the system. However, as noted by all three authors,
the definition of dimension here is not unique and
is sometimes interpreted as the capacity (or box-
counting) dimension d or as the Hausdorff dimen-
sion dy. A third definition is possible, that of
“packing dimension” dp, based on the relatively
recent work of Tricot and Taylor [for a review see
Taylor (1986)]. Hausdorff and packing dimension
are closely related and, mathematically, both are
more satisfying than capacity dimension. For “rea-
sonable” sets A (including all sorts of irregular
and fractal sets), dy(A) = dp(A), although this
equality need not extend to d,(A). (The distinction
between dy and dp becomes important when con-
sidering the measure P, which I will do shortly.)
Estimation of geometric dimension from time series
can be very difficult. Insufficient data, due to the
high dimensionality of A, is a frequent problem.
Another important problem (although less often
discussed) is the fact that the observations
Wi,..., W, are distributed according to P (rather
than uniformly across A), and if P is highly
nonuniform or singular over A we may get a very
distorted view of the attractor. A study of the effect
of nonuniformity of P on the estimation of d (A)
is provided by Hunt (1990). This is one reason
(among others) motivating the study of dimensions
defined in terms of P.

Geometric dimension is determined by scaling
properties of the set A; measure-dependent dimen-
sions are defined in terms of scaling properties of
P. We may consider local (or pointwise) scaling as
well as global scaling of P. The lower and upper
pointwise dimension maps at x are defined, respec-
tively, as

log P(B(x,r))

(2) o () = lilrllionf log r
) log P(B(x,r))
o*(x) = limsup
r—0 lOg r

where B(x, r) is the ball of radius r centered at x.
Thus, ¢ (x) and ¢%(x) indicate the manner in
which the probability mass scales at x. Cutler
(1990b, c) has shown (for P ergodic and T suffi-
ciently smooth) the existence of unique values «
and B such that

() 6-(x) =« Pas. and o*(x)=pBPas.

This means that there exists a set B< A with
dy(B)=a, dp(B)=8 and P(B)=1. In most
cases, o = (3 [this corresponds to saying that the
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pointwise limit o7 (x) = 0% (x) exists P-a.s.], but
not always. Ledrappier and Misiurewicz (1985) give
examples of smooth maps where equality fails.
When o = 3, we may interpret this common value
as the information dimension of the system (this
can then be shown to be equivalent to the defini-
tion given by Chatterjee, Yilmaz and Berliner) and
estimation of o becomes possible. Note that if P is
absolutely continuous over A, then o = =
dy(A) = dp(A) (and so the information and geo-
metric dimensions coincide) but if P is singular
over A, we will generally obtain a < dy(A). This
clarifies and completes the comments of Chatterjee
and Yilmaz concerning the relationship between
pointwise and geometric dimensions in reference to
Cutler and Dawson (1989).

We may study global scaling properties of P by
considering the function V,.(x) = P(B(x, r)) and
the family of L? norms (q # 0) given by

(4) 1V, = E(V,(x)%)"*

where the average is over all points x in the phase
space. Note that the special case g = 1 reduces to
the spatial correlation integral C(r) = E(P(B(X,
r)), the average mass in a random ball of radius r.
The generalized Rényi dimensions (mentioned
briefly by Berliner) are then obtained by

(5) D(g+1) = limlog—”Vrﬂ—‘1
~0 logr

assuming these limits exist. The correlation dimen-
sion » corresponds to D(2) on this g-scale. In the
case that P is uniform across the attractor, the
Rényi dimensions all coincide and equal the infor-
mation dimension. In the case of nonuniformity of
P, the Rényi dimensions will differ among them-
selves to an extent that reflects the nature of the
singularities of P. The study of singularities has
become important in physics, and the Rényi dimen-
sions play a significant role in the so-called “multi-
fractal” analysis of dynamical systems [see Halsey
et al. (1986)]. It is important te note that the
correlation dimension of a system can be very dif-
ferent from the geometric and information dimen-
sions. [I point this out because the correlation
dimension is frequently misused. A fractal correla-
tion dimension need not imply a fractal attractor
(see Cutler, 1990a, for a detailed example).] It also
remains to be seen how effectively the method of
estimating dimension via time-delay embeddings
can be used to distinguish chaos from true stochas-
tic behavior. Osborne and Provenzale (1989) con-
structed an example of a stochastic system where
the sequence of correlation dimension estimates
converged to a finite value (contrary to the popular

assumption that they must diverge for a stochastic
system). It is possible that information dimension
might prove more useful in this regard.

One problem in dimension estimation that is pe-
culiar to distributions on fractals is that of
“lacunarity,” a topic that was not mentioned by the
authors. Lacunarity refers to the failure of the
mass of P (whether considered pointwise or glob-
ally) to scale exactly as a power law for small
values of the radius r. This phenomenon is most
serious and most prevalent for the pointwise di-
mension, so I will describe it in this case. Typically,
we have

(6) P(B(x,r)) = K(x,r)re,

where o is the pointwise dimension and K(x, r) is
an oscillating function of r. An exception occurs
when P is absolutely continuous over a smooth
subset of R?, in which case there exists a constant
0 < K(x) < o with K(x,r)— K(x). Otherwise, at
most points x, K(x, r) will oscillate or converge to
0 or o as r — 0 (see Preiss, 1987). For many stan-
dard examples, we, in fact, observe liminf, ,, K(x,
r) = 0, whereas limsup, _, K(x, r) = . This be-
havior can lead to inconsistency of dimension esti-
mates. The problem of lacunarity and some coping
techniques (primarily in terms of correlation di-
mension) are considered in Theiler (1988, 1990),
Cutler (1991) and Smith (1991, 1991b). In par-
ticular, Smith uses a method based on mixture
models to increase variability to compensate for
lacunarity.

NOISE, PERTURBATIONS AND NUMERICAL
METHODS

The authors of both papers have briefly men-
tioned the topic of “noise,” which I believe deserves
some comment. There are different ways in which a
dynamical system may be regarded as being con-

‘taminated by noise. The simplest case occurs when

observing the evolution of a physical system; be-
cause measurements can be carried out only to a
limited degree of accuracy, we automatically incur
observational error. This leads to the stochastic
model

(7) Yn+1 = T(Xn) + Zn+1’

where T is the system mapping, Z,,, is a random
error term, X, is the true state of the system after
n iterations and Y,.; is the observed state after
n + 1 iterations. This situation has more ramifica-
tions for chaotic analysis than it does for more
standard data analysis, because here, parameters
of interest (such as dimension) are determined by
the very fine limiting structure of the system (a
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structure that may be obscured by even small
amounts of noise). Smith (1991) has discussed the
problem of dimension éstimation for systems with
this type of observational noise.

A different type of noise results when the system
under evolution undergoes perturbations due to
some external force or change. The perturbations
are then propagated through the system. This also
describes the situation of rounding error in numeri-
cal simulations of chaotic systems; the original
rounding error is repeatedly magnified by the
“stretching” behavior of the map and the computed
numerical trajectory [called a pseudo-orbit by Ham-
mel et al. (1988)] diverges far from the true path.
Hammel, Yorke and Grebogi pointed out that often
pseudo-orbits are in fact true orbits corresponding
to different initial conditions, but even in the er-
godic case, this is not necessarily reassuring. The
dyadic map T'(x) = 2x (mod 1) on the unit interval
is ergodic and chaotic with the uniform distribution
as invariant measure. However, all orbits of this

map quickly iterate to zero on the computer. These
are true orbits of the system; unfortunately, they
correspond to initial conditions (dyadic rationals)
that are attracted to the fixed point at zero and do
not exhibit “typical” system behavior. Thus, in
numerical simulations, it is not always easy to
determine whether observed behavior is “real” or
an artifact of the simulation procedure.

Corless (1991) has looked at the related problem
of approximating solutions to differential equations
by numerical methods (here again the computed
solution may not resemble the intended system; see
Hockett, 1990 and Corless, Essex and Nerenberg,
1991) and has proposed an ‘“‘operational” definition
of chaos. He suggests that a system should be
considered chaotic if all “nearby” solutions are
chaotic (regardless of the actual properties of the
system itself). The reasoning here is that perturba-
tions will cause any physical system to be pushed
into neighboring states and these should be the
real objects of study.

Comment: Inference and Prediction in the
Presence of Uncertainty and Determinism

John Geweke

1. INTRODUCTION

The discovery of nonlinear determinism and chaos
in physical systems, the study of these phenom-
ena by physicists and mathematicians and their
consideration by investigators in a wide array of
disciplines have been ably surveyed from the
perspective of statistics and probability in these
two articles. The authors have indicated clearly
that the contributions and relevance of statistical
science are still unresolved, and some basic ques-
tions are open. Because chaotic dynamics generate
realizations that can be characterized as purely
random, what is role of stochastic modeling? If
observed deterministic nonlinear processes always
interact with stochastic processes, then are the con-
ventional tools of statistical inference any less ade-
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quate here than elsewhere? The resolution of these
issues will take time, and these surveys will con-
tribute to this process by having brought the statis-
tically relevant aspects of nonlinear determinism
and chaos to a wider audience.

Independent of how these questions are an-

'swered, the models discussed bring to the practical

level latent questions about the implications of de-
terminism for the fundamental role that random-
ness seems to play in so much of statistics. Berliner
has discussed these matters in the final section of
his contribution. I have found deterministic models
an enlightening vehicle for taking up these ques-
tions on a practical level, and in these brief re-
marks I will provide a few illustrations. The next
section provides an approach to inference and pre-
diction in the nonstochastic world of the models
these authors have discussed. The likelihood func-
tion is presented for two simple models in Section
3, and the construction of predictive densities (for
the past, as well as the future) is illustrated in
Section 4.



