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Chaos, Fractals and Statistics

Sangit Chatterjee and Mustafa R. Yilmaz

Abstract. We review a wide variety of applications in different branches
of sciences arising from the study of dynamical systems. The emergence
of chaos and fractals from iterations of simple difference equations is
discussed. Notions of phase space, contractive mapping, attractor, in-
variant density and the relevance of ergodic theory for studying dynam-
ical systems are reviewed. Various concepts of dimensions and their
relationships are studied, and their use in the measurement of chaotic
phenomena is investigated. We discuss the implications of the growth of
nonlinear science on paradigms of model building in the tradition of
classical statistics. The role that statistical science can play in future
developments of nonlinear science and its possible impact on the future
development of statistical science itself are addressed.
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... if we conceive of an intelligence which at a

given instant comprehends all the relations of
the entities of the universe, it could state the
respective positions, motions and general af-
fects of all these entities at any time in the past
or future.

Laplace (1776)

... but it is not always so; it may happen that
small differences in the initial conditions pro-
duce very great ones in the final phenomena. A
small error in the former will produce a large
one in the later. Prediction becomes impossible.

Poincaré (1903)

1. INTRODUCTION

The last two decades have witnessed a great
resurgence of interest in the mathematical study of
dynamical systems and chaos. The origins of these
fields go far back to the end of last century to
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Poincaré (1899) and his investigation of planetary
dynamics. Deeply rooted in fluid mechanics, where
fluid flow is modeled by differential equations, the
main purpose of the area of nonlinear dynamics is
to describe complex physical processes in terms of
deterministic models. The renewal of interest in
this area in recent decades is because of the sur-
prising finding that very simple deterministic mod-
els of dynamical systems can yield unpredictable
behavior that exhibits the characteristics of a ran-
dom process. This finding has greatly widened the
interest in the area because of its relevance to the
study of time series data, a pursuit that has long
been of concern to economists and statisticians, as
well as physical scientists.

It should be emphasized at the outset that statis-
tics has always been concerned with the study of

" complex phenomena, and it has been very success-
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ful in building stochastic models that are capable of
describing such phenomena. On the other hand,
these stochastic models use randomness as a basic
concept, so that the process under investigation is
assumed to be at least partially governed by chance
and associated laws of probability. In contrast, the
new area of dynamical systems and chaos offers the
facinating possibility of describing randomness as
the result of a known deterministic process. The
question of being able to identify the circumstances
under which this is possible renders the new area
something more than a subject of mere curiosity.
At the present time, this question is only beginning
to be explored.
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Most of the important early work related to chaos
and fractals occurred in the fields of biology, meteo-
rology, physics, chemistry and computer science.
This work remained relatively obscure until the
early seventies, when an explosion of interest took
place in the ensuing years. Although many re-
searchers in different fields contributed to this ex-
plosion, the work of Lorenz (1963) involving
weather prediction is credited by many for popular-
izing the study of chaos. Lorenz showed that the
trajectory described by a system of simple differen-
tial equations can exhibit strange and chaotic
behavior, depending on the exact initial condi-
tions [also see Berliner (1992) in this issue].
An example from chemistry was provided by the
Belousov-Zhabotinskii (B-Z) reaction in which the
concentration of chemical species do not vary mono-
tonically with time but instead oscillate, sometimes
chaotically, sometimes periodically (Simoyi, Wolf
and Swinney, 1982). The literature is now replete
with many other examples involving turbulence
and chaos covering such diverse fields as physiol-
ogy, geology, epidemiology, theoretical models of
population biology, economics, statistics, logic and
philosophy, and every other branch of scientific
investigation.

The useful models obtained from differential
topology in catastrophe theory (Thom, 1975) ex-
hibit some qualitative properties that are also pre-
sent in models of chaos. Qualitative properties of a
system are invariant under differentiable changes
of coordinates as opposed to quantitative properties
that are invariant only under linear changes of
coordinates. Smale (1967), who generalized the ear-
lier work of Andronov and Pontyagrin, studied
structural instability for differentiable dynamical
systems for flows whose topology changes if the
equations describing the flow are altered slightly.
This idea of structural instability is different from
an unstable solution of a given equation. The latter
is a solution that is sensitive to small changes in
the initial condition and provides a starting point
for the study of chaos and nonlinear theory.

The purpose of this paper is to introduce these
ideas of this relatively new area to a wider audi-
ence in statistics. We believe that access to these
ideas will enrich the arsenal of modeling tools
available to statisticians, generate new develop-
ments in their refinement and, ultimately, facili-
tate a better understanding of the processes being
studied. We provide a broad range of references for
the reader to pursue individual interests in any
particular area. However, this listing is necessarily
incomplete because of the sheer volume of the exist-
ing literature, as well as the ever-increasing amount
of research being reported in diverse fields.

1.1 Chaos Through Dynamical Systems

A dynamical system is one whose status changes
over time. When change can be described in terms
of physical movement, it is possible to distinguish
between two types of dynamical systems, depend-
ing on whether or not the system loses energy due
to friction. The presence of friction characterizes
most physical processes in nature that are called
dissipative dynamical systems, as opposed to con-
servative systems, where there is no loss of energy.
A dissipative system always approaches an asymp-
totic or limiting state of motion over time, and it is
this limiting behavior that has made dissipative
systems the main focus of research. It was discov-
ered in the sixties that the asymptotic movement
can exhibit a rich variety of characteristics, includ-
ing what may appear to be chaotic or random be-
havior. Two simple examples where the system
status is described by a single variable will moti-
vate further discussion. In both examples, the sys-
tem is observed at distinct points in time which, for
the moment, will be designated as ¢ = 0,1,... .

In the first example, the variable x, takes values
in the unit interval [0, 1], and two successive values
of the variable are related by

x, /o, for0 < x, < w,

(1- xt)/(l - ‘*’)’

where w is a constant 0 < w < 1. A graph of this
“tent” or “hut” model and a time path (trajectory)
generated by it with the initial value x, = 0.19
and » = 0.4 is shown in Figure 1. Clearly, the path
appears to be random, as if it were generated by a
stochastic process. It turns out that, in the long
run, the time series originating at almost any ini-
tial point wanders in the open interval (0, 1) accord-
ing to the uniform probability distribution, and the
lag %k autocorrelation coefficients, k = 1,2,... are

1 =
(1) %0 foro=<x,<1,

. the same as those of the first-order autoregressive

process AR(1),
Ye41 = (2"-’ - l)yt + €41s

where {¢,} are i.i.d. random variables (Sakai and
Tokumaru, 1980). Moreover, this is true for any
value of w, 0 < w < 1 and almost all initial values
of x,€(0,1), except for a small set of values having
(Lebesgue) measure zero. Any periodic time path
will be unstable in the sense that even a slightest
change in the initial point will lead to a drastically
different trajectory after some time.

In the second example, the process is described
by the logistic model

(2) Xep1 = th(l - xt)



S. CHATTERJEE AND M. R. YILMAZ 51

xt+l
0 1
X
@
] Al L] 1
1.0 p o
Xt
0.5 p A
0.0 ' 1 (1 1
0 10 20 30 40 : 50
(b)

Fic. 1. (a) Graph of the tent model and (b) time path with
%o = 0.19 and » = 0.40.

for 0<x,<1 and 0 <w < 4. Examples of time
paths generated by this model are shown in Figure
2 for various values of the parameter w. It turns
out that there is a large set of parameter values (in
the sense of having positive measure) for which a
large set of initial values x, will give rise to a
chaotic time path like the one shown in Figure 2d
(May, 1976; Jakobson, 1981; Devaney, 1989; also
see Berliner, 1992).

A common feature of both examples is that x,, ,
is nonlinearly related to x,. A fundamental fact is
that nonlinearity is essential for any deterministic
model to be potentially capable of describing chaotic
behavior. If x, is linearly related to x,,,, then the
time path can only exhibit damped, stable or explo-
sive oscillations, or stable or explosive nonoscilla-
tions. This remains true even if higher order terms
X;_15 X4_g,. .., are added into a linear model. Thus,
the ability to describe the richest possible variety of
behavior necessitates the use of nonlinear models.

An interesting recent finding about (2) is its
similarity to the variation of the altitude of Hyper-
ion, a moon of Saturn, for values of w greater than
3.57 (Stewart, 1989). That the altitude of Hyperion
fluctuates unpredictably was discovered by the
Voyager. Thus, a phenomenon that appears to be

random can possibly be described by means of a
nonlinear deterministic process. This idea was used
by Diaconis (DeGroot, 1986), Thorpe (1979) and
others who have proposed deterministic theories of
coin tosses and roulette wheels to improve predic-
tion of outcomes considerably over pure chance. In
these models, sources of randomness are shown to
lie on the choice of initial conditions and the subse-
quent mechanism of motion. Other examples of this
nature will be discussed later in this paper.

Many important concepts in chaos are intrinsic
to the logistic model (2). For a value of » less than
3, the limiting value x =lim,,, x, is a single
stable point. As w exceeds 3, the time path becomes
periodic, where x varies between two values, one
large and one small. When o is greater than 3.45
but less than 3.57, the number of periods increases
to 4, 8, 16, ..., until the pattern in the number of
periods becomes irregular for « > 3.57 (actually
3.56994 ...), and chaotic oscillations can occur
with many values of w. This process of arriving at
chaos is an example of the cascade of period dou-
bling scenario (Prigogine and Strengers, 1986). In
this scenario, a value of w at which such period
doubling occurs is called a bifurcation point.

If we let w, denote the nth bifurcation with
w; =3, w,=2356994..., and §, as the ratio of
successive differences in w,, given by

W, = wn—'l

8, = ———=,

n
Wpt1 — Wy
Feigenbaum (1978) showed that as n — oo,
8, 6 = 4.669201660910. .. .

This value is now called the universal or the
Feigenbaum number, because one obtains the same
constant 6 in a host of one-parameter nonlinear
models including (2). Feigenbaum universality,
however, does not imply predictability of a process
because different deterministic models may yield

‘similar chaotic paths having the same universal

constant 6. Also, use of the term ‘“universal” is
somewhat unfortunate because Feigenbaum uni-
versality concerns one-parameter families of maps
and only those that exhibit successive bifurcations.

The following explanation may be helpful in un-
derstanding the period doubling phenomenon. Let
w = 4 and x, = sin?6,. Thus, substituting in (2), we
have

sin%0,, , = 4sin%0,cos%0, = (sin26,)’.

Thus, the transformation is simply the square of
the doubling formula for the sine function, and we
get the solution 6,,, = 20, (modulo = /2). If the
initial value is 6,, we get 0, = 2‘9,. This solution
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Fic. 2. Graph of the logistic model and time paths generated by it for several values of v.

also shows that x, sensitively depends on the ini-
tial point 8, so that two initial points that are very
close diverge rapidly as ¢ is increased.

The period doubling scenario is by no means the
only route to chaotic behavior. An example where
chaos occurs without this phenomenon is given by
the tent model (1). A more extreme example is the
completely chaotic model discussed by May (1985)
and Rogers, Yang and Yip (1986) that exhibits
chaotic behavior for all values of some parameter.
An attempt to catalog the various possible routes to
chaotic system behavior and examples of associated
models was given by Bergé, Pomeau and Vidal
(1984). Another good source for dynamical systems
resulting from iterates of maps on a real interval is
Collet and Eckmann (1980).

The term “chaos” was coined by Li and Yorke
(1975), although it was also used by Lorenz (1963)
earlier in his study of a system of differential equa-
tions in modeling turbulence for study of weather
patterns. The popular book by Gleick (1987) gives
an excellent historical account of the development
of the study of physical chaos starting from the
work of Lorenz. The number of more technically
oriented books on dynamical systems and chaos has
been rapidly increasing in recent years, including

Guckenheimer and Holmes (1983); Bergé, Pomeau
and Vidal (1984); Meyer-Kress (1986); Procaccia
and Shapiro (1987); and Rasband (1990). Recent
review articles in different fields include May
(1976), Eckmann and Ruelle (1985), Parker and
Chua (1987), Baumol and Benhabib (1989) and
Bartlett (1990).

The term chaos is usually reserved for dynamical
systems whose state can be described with differen-
tial equations in continuous time or difference

‘equations in discrete time. On the other hand,

basic ideas related to chaos also apply in the con-
text of many states, all of which are simultane-
ously observed at fixed increments of time. The
fundamental idea of using functional iteration to
represent the dynamics of a system remains valid,
as does the conclusion that simple rules and initial
states can lead to very complex systems behavior
after a large number of iterations. Early models of
such systems, and cellular automata in particular,
go back to the works of Ulam and Von Neumann
(Ulam, 1970, 1976), and they are reviewed by
Cooper (1989). Recently, there has been a dramatic
growth in the study of self-organizing systems, neu-
ral networks, distributed processing and their rela-
tionships to chaos and fractals. We shall review
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some of these developments in the penultimate sec-
tion of this paper. It should be noted at this time,
however, that a unified theory of chaos in discrete
and continuous-state systems is not yet available.

1.2 Fractals: A Signature of Chaos

Another approach to chaos is through the study
of fractals. Fractals are sets that exhibit  self-
similarity at all levels of magnification, and they
may have noninteger dimension that is typical of
chaotic attractors. Roughly speaking, self-similar-
ity means that a set remains qualitatively similar
in its spatial characteristics under contraction or
magnification (more precise definitions can be found
in Mandelbrot, 1982, pages 349-350). Transforma-
tions such as rotation and displacement retain ex-
act self-similarity, but fractals may exhibit less
strict forms of self-similarity obtained via bounded
deformations. Mandelbrot (1967, 1977, 1982) first
introduced and then popularized the notion of frac-
tals through his beautiful pictures of the Mandel-
brot set (Figure 3), which is the iterative map of
Z,,,=Z%+ C in the complex plane, where C =
a + ib is a complex number and Z, = 0. Hofstadter
(1981), Barnsley (1988), Barnsley et al. (1988),
Pietgen and Richter (1988), Falconer (1990), among
others, give lucid introductions to the mathematics
of fractals along, with some beautiful pictures of
well-known fractals and their families. Another rich
source of computer graphics for iterates of maps
and other complex algorithms is Pickover (1990).

The Mandelbrot set is obtained for points that do
not go to infinity (in.the extended complex plane)
for n — . These points form the large cardioid in
Figure 3 and many smaller cardioids, such as the
one on the right and others that are even smaller,
all of which afe connected with thin lines. The
boundary, which is also known as a Julia set, dis-

Fic. 3. The Mandelbrot set.

plays extremely complicated shapes that look simi-
lar at all levels of magnification. The Mandelbrot
set is associated with the entire family of iterative
maps, resulting from fixing Z, = 0 and varying C,
whereas a Julia set is obtained from a single itera-
tive map with fixed C, and an initial point near 0.
If the mapping is exponential given by Z,, , =
Aexp(Z,), where M\ is complex, the resulting Julia
set is not the boundary of a cardioid but a beautiful
sea-horse shape. Gaston Julia and Pierre Fatou,
sometimes called the fathers of complex analysis,
were the first to study these phenomena, and the
iteration of complex exponentials has led to a new
field of complex (in the sense of complex numbers)
dynamics. In the domain of real numbers, perhaps
the best-known fractal is the Cantor set that is
obtained by removing the middle third of the real
interval [0, 1], then removing the middle thirds of
the remaining intervals and so on. The relation-
ship between fractals (Mandelbrot set, Julia set,
Cantor set, etc.) and dynamical systems is not well
established, but a fractal is often obtained as the
asymptotic remnant, or the attractor, of a chaotic
dynamical system.

The simplest (first-order) geometric property of a
fractal is usually measured by its fractal dimen-
sion, also called the capacity dimension (to be
discussed in the next section). Higher order geo-
metrical properties of fractals include lacunarity
and nonuniformity, which are related to the exis-
tence of holes and other irregularities in fractals.
Thus, fractals appear in two distinct ways: a de-
scriptive tool for studying irregular sets and forms,
or a mathematical deduction, resulting from an
underlying chaotic dynamic system.

We have organized the paper as follows: in the
next section, the theoretical background is re-
viewed, including the known results concerning the
conditions under which chaos arises, relevance of

_ ergodic theory and the reconstruction of attractors.

Section 3 reviews various concepts of dimension of
an attractor and their estimation in practice. Appli-
cation of these ideas in various fields is reviewed in
Section 4. The last section includes a discussion
and conclusions.

2. BACKGROUND

A complete description of a dynamical system
involves, at a minimum, the ability to describe the
system status at an instant of time as well as its
behavior over any chosen time interval. In the
study of physical systems, it has become customary
to undertake this pursuit in terms of the phase
space of a system, such that points in this space
represent instantaneous descriptions of system
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status at different points in time. Gibbs and Ein-
stein introduced the- concept of phase space into
physics to account for the fact that it is not possible
to “know” the initial states of systems formed by a
large number of particles.

To illustrate, imagine a system consisting of a
single particle that is in motion in the usual three-
dimensional space. An instantaneous description of
the system requires three coordinates showing the
position of the particle and three additional mo-
mentum coordinates showing the rates of change
in position coordinates. The phase space of this
one-particle system is therefore six-dimensional.
A system with %k particles in motion will have 6%
dimensional phase space. It is a fundamental result
in classical quantum mechanics that the behavior
of a dynamical system can be described by a Hamil-
tonian function that depends on the coordinates of
the phase space and possibly on time. All systems
described by a time-independent Hamiltonian are
conservative where there is no net loss of energy,
and the volume is incompressible by the Liouville
theorem. In dissipative systems, energy and vol-
ume must necessarily decrease with time (Nicholis
and Prigogine, 1989).

Instead of describing system behavior in terms of
a function on the phase space, it is customary to
use an evolutionary model relating the position
coordinates to the rates of change in these coordi-
nates. In continuous time, a simple evolution model
may look like

3) i = £,(x(t))

where x shows the instantaneous rate of change in
position x(¢) at time ¢, and » denotes fixed param-
eters such as the intensity of the force driving the
system. A similar equation in discrete time would

be
(4) Xorr = F(%)

~where 7 is some specified increment of time. If x(¢)
or x, is n-dimensional, it is customary to refer to
(3) or (4) as an n-dimensional model, although the
phase space has dimension 2n. Clearly, (3) and (4)
are the deterministic counterparts of stochastic
Markov processes that specify the probability of
transition from one point to another rather than
the points themselves. For example, (4) can be
regarded as a special Markov process with the tran-
sition probability density function P(x,,,|x,) =
8(x,,, — f.(x,) where 8(-) is the Dirac delta func-
tion. '
It turns out that there is no essential difference
between the continuous and discrete-time models of
dynamical systems, as long as we wish to study the

system’s long-term behavior. This is due to the idea
of Poincaré that the system can be studied in terms
of a cross-section of the phase space. Instead of
looking at the trajectory described by (3), which
requires the solution of differential equations,
Poincaré suggested that we can look at the points
at which the trajectory crosses the hyperplane
defining the cross-section. Essential characteristics
of the description of motion in the phase space
(invertibility, differentiability, etc.) are also re-
flected on the relationship of successive points on
the Poincaré section. For this reason, the remain-
der of this discussion will be in terms of discrete
time, with 7 =1 for simplicity. Without loss of
generality in practice, we shall envision x, as a
vector in the n-dimensional Euclidean space R”,
and f, is a function from R” into R".

If the function f, is specified, including the pa-
rameters w, and if x, is observed at some initial
time, say ¢, = 0, then we have

(5) xt=fw(fw ..‘(fw(xO)))=fa€(x0)'
Consideration of limiting behavior of f(x,) for all
possible initial points gives rise to the concept of an
attractor. Before the discussion of attractors, how-
ever, we shall first note that evolution models that
are more complex than (4) can be easily envisioned.
For example, consider the second-order model,

(6) Xip1 = fw(xt’ xt—l)’

which can also be written as

(7) X1 = fw(xt’ yt)’
Yt+1 = %X4-

Conceptually, (7) can be thought of as a transfor-
mation G, from R2" into R%", and one may think
that the increase in complexity is nothing more
than an increase in dimensionality. This would be
deceiving, since the initial time ¢, can no longer be
arbitrarily set to zero and x, can no longer specify
the initial state. Clearly, such higher order models
are capable of describing even more complicated
dynamics, and they are correspondingly more diffi-
cult to investigate. At the present time, very little
is known about the general properties of these
more complex models if £, is nonlinear. We should
note that the idea of using a multivariate state
space representation of a time series is a common
method of analysis, as, for example, in building
econometric models with tools such as Kalman fil-
tering (Aoki, 1987).
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A variation of the model in (6) is
(8) Xy = fw(xt’ t)

where x,_; has been replaced by ¢. This model is
called nonautonomous as opposed to (4), where f,
is time-independent and thus autonomous. Similar
to (6) and (7), a nonautonomous system can be
converted to an autonomous system by augmenting
the state vector with an additional component for
time. The results pertaining to the asymptotic be-
havior of autonomous systems would remain valid
if £, is periodic in time, that is, f (%, t) = f,(x, ¢ +
T) for some fixed T'. If this is not the case, then the
asymptotic behavior may be unbounded and most
results for the autonomous case do not apply.

Turning now to autonomous evolution, let us
imagine that, initially, the possible states of the
system constitute some subset U of R"™ having
positive volume (Lebesgue measure). If the system
is dissipative, the volume must be compressed due
to loss of energy, and U converges asymptotically to
a compact set A. More precisely, A is called an
attracting set with fundamental neighborhood U
if f!(A) = A for any ¢, and for every open set
V O A we have f{(U) C V as if ¢ is large enough.
The union of the inverse images (£?)~1(U) for all ¢
is called the basin of attraction of A. Every trajec-
tory starting at a point in the basin of attraction
enters a neighborhood of the attracting set A as
t - . Frequently, the attracting set is also called
the attractor, as we shall do here, although it is
possible to subtly distinguish between the two
terms. More precisely, attractors are smaller sub-
sets of attracting sets consisting of the points around
which trajectories accumulate. In any case, due to
loss of energy, the volume of A becomes zero but
this does not mean that it contains a single stable
point. There are many subsets of R" having zero
volume, yet they include uncountably many points.
In the usual three-dimensional space, for example,
any two-dimensional surface has zero volume. Thus,
the attractor resulting from long-term behavior of
dissipative systems includes a number of interest-
ing possibilities that can be classified into one of
four categories:

1. Single stable point.

2. Periodic attractor with a fixed period.

3. Quasi-periodic attractor (superimposition of
periodic attractors with different periods).

4. Aperiodic (chaotic) attractor.

In the phase space, the first three types of attrac-
tors have ‘shapes with the qualitative characteris-
tics of a point, circle and torus, respectively. An
aperiodic (chaotic) attractor does not have one of

these classical shapes and cannot be obtained from
them by bounded deformations or diffeomorphisms
(invertible and continuously differentiable transfor-
mations). For this reason, it is called a strange
attractor, a term coined by Ruelle and Takens
(1971).

Geometrically, the creation of a chaotic attractor
in dissipative systems can be explained as follows:
imagine that we begin with a small sphere ini-
tially. The sphere may evolve into an ellipsoid after
a small enough increment of time. Although the
volume of the ellipsoid must be smaller than that of
the sphere, the longer principal axis of the ellipsoid
can actually be larger than the diameter of the
sphere. This means the evolution involves compres-
sion in certain directions and stretching in others.
For the motion to remain bounded, stretching in a
given direction cannot continue forever, and it
would have to be accompanied by folding also. If
this compression-stretching-folding pattern contin-
ues, trajectories that are initially close can diverge
rapidly as time goes on. This situation is called
sensitive dependence on initial conditions. As we
shall investigate in the next section, compression
or stretching in the various directions are indicated
by the so-called Lyapunov exponents of the system.

Classical Fourier analysis of a periodic attractor
would show a power spectrum with a single large
spike at a fundamental frequency and evenly spaced
low-amplitude harmonics. A quasi-periodic attrac-
tor would have several fundamental frequencies
and their lower harmonics. A chaotic attractor
would have a continuous power spectrum with no
obvious spikes or whose component frequencies are
smeared out. Building a linear time series model in
this case would require infinite dimensions, but a
nonlinear model may have a low-dimensional at-
tractor in the phase space. In this sense, nonlinear
models are more parsimonious than linear models
in describing chaotic behavior. Being able to de-

" scribe data with parsimonious models hold great

attraction for statisticians. We discuss this aspect
a little further in the concluding section of this
article.

The fact that nonlinear models are capable of
generating or describing chaotic behavior leads to
several important questions. These questions are
compounded by the fact that the same general
model can have all four types of attractors depend-
ing on the parameter values and initial conditions,
as in the logistic model (2). Among the many rele-
vant questions, the following seem to be fundamen-
tal in theory as well as practice:

1. What are the general properties of f, that
lead to a chaotic attractor, and what set of
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parameter values and initial conditions pro-
duce these properties?

2. What are the characteristics of chaotic attrac-
tors and can they be quantified?

3. Can we observe attractors in practice, and
how can we identify the deterministic models
that generated them?

4. How can we determine if a deterministic or a
probabilistic model would better represent a
given process, especially with limited or noisy
data?

Only partial answers, and some of them only in
specific cases, are available to these questions. They
continue to give impetus for a high level of re-
search activity in nonlinear systems. We shall sur-
vey the currently available results, postponing the
last question until the next section.

In the context of one-dimensional models with f,
defined on a real interval, some answers to the first
two questions were given by Li and Yorke (1975).
Their result, which is a special case of an earlier
result due to Sarkovskii (1964), says that if f, is
continuous and has a periodic point of period 3,
then there is a periodic point with any other period
k=1,2,.... This implies a chaotic trajectory with
arbitrarily large period k. Li and Yorke also showed
that there is an uncountable set of such initial
points that are ultimately chaotic. It was later
asserted (Jakobson, 1981) that, in the logistic model
(2), the set of values of the parameter  that yield a
chaotic attractor has positive measure (although it
may not contain complete intervals). In the tent
model (1), almost all initial points (except for a set
of points of measure zero) have chaotic trajectories
for any value of w between 0 and 1.

With respect to the second question, Li and Yorke
showed that, if f, is unimodal, twice continuously
differentiable everywhere except at one point, and
the absolute value of its slope is greater than 1
everywhere (except at one point), then the limiting
behavior of almost all initial points can be de-
scribed by a time-independent probability density
function called the invariant density. The probabil-
ity that the trajectory of an initial point falls in a
given interval is found by integrating the invariant
density over the given interval.

This result is a special case of ergodic theory that
is concerned with measure preserving transforma-
tions of general measure spaces (e.g., Billingsley,
1965; Walters, 1982). We shall only summarize the
basic results here. In the present context, let p be a
probability measure on-R”. The function f: R"” —
R™ is called measure preserving if o(f '(B)) =
o(B) for any subset B C R”, and p is called an
invariant probability measure. This measure is

called ergodic (or indecomposable or metrically
transitive) if f~!(B) = B implies p(B) =0 or
o(B) = 1 for any B C R™. Here, f~!(B) is the sub-
set of all points that are transformed onto B by the
function f.

If f is a continuous contractive transformation on
R”, then the volume (Lebesgue measure) of any
compact subset of R” is compressed under f. Also,
there is a compact subset A C R” such that f(A) =
A. Under repeated applications of f, the entire
domain of f converges to A, which is the universal
attractor. It is always pessible to find an ergodic
invariant probability measure p with p(A) =
o(f~1(A)) = 1. Given such a measure, we can de-
scribe the probabilities with which various parts of
the attractor are visited in the long run. In an
ergodic system, every state of positive p-measure
can be visited, given a sufficiently long time, al-
though the recurrence times may be large. Histori-
cally, the fundamental assumption that has linked
dynamics and statistical mechanics is the assump-
tion of ergodicity.

The main result in ergodic theory states that if f
is measure preserving, p is ergodic, and g: R" —» R
is any integrable function, then

9) hm — Z g(fi(x)) = /g(x) dp

for almost all xe R™. The “time average” on the
left side of (9) is thus equal almost everywhere to
the “space average” on the right, where p provides
the weights used in the average. This powerful
result has many important consequences in statis-
tics, including the laws of large numbers. For ex-
ample, if E is a subset of the attractor A and g is
the characteristic (indicator) function of E, then (9)
shows that the probability of E is the limit of the
relative frequency that the trajectory f(x) visits

“E. If g maps a vector in R” to one of its compo-

nents, then the mean of the component is given on
the right of (9) as the limit of the time series mean
for that component.

Ergodic theory allows the consideration of the
long-term behavior of a system without worrying
about the transient behavior. On the other hand,
establishment of the ergodic property or the deter-
mination of an invariant measure associated with a
given transformation f are difficult tasks in gen-
eral. The former task requires the verification of
certain “mixing” properties of f which imply er-
godicity, and the latter involves the solution of
integral equations. Most of the available results
pertain to measure-preserving functions on real
intervals and few generalizations to higher dimen-
sional spaces are available. For example, an
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ergodic invariant density associated with the tent
map (1) where w =1/2 is the uniform density
r(x) = 1, and for the logistic map (2) with w = 4, it
is r(x) = 1/(7v/x(1 — x) ). A survey of the general
results in ergodic theory of dynamical systems is
given by Eckmann and Ruelle (1985).

With respect to the third question concerning the
study of strange attractors in practice, the main
tool of analysis is the so-called time-delay recon-
struction (Roux, Simoyi and Swinney, 1983). This
method provides an alternative to observing the
entire vector x,€ R"” for many periods, which can
be difficult or impossible in practice since some
components of x, may be unknown or unobserv-
able. The basic idea of reconstruction is to observe
a single variable y, that is presumed to be a func-
tion of x,; that is, y, = h(x,), where h: R" - R.
The observed variable y, can be one of the compo-
nents of x,, or it could be some other related vari-
able. Then, m successive observations of y, are
treated as a single observation of an m-dimensional
vector w, = (¥, Yer1>- -1 Yexm—1) in the embed-
ding space R™. It has been shown that the succes-
sive m-histories, w,, exhibit similar mathematical
and qualitative properties as x, provided that m =
2D + 1, where D is the Hausdorff dimension de-
fined in the next section (Mafié, 1981; Takens,
1981). For the moment, we shall merely note that
the method can be useful in identifying the lowest
dimension needed to describe an attractor in prac-
tice. The larger question of being able to specify the
particular deterministic model that yields the ob-
served attractor is unresolved. We shall return to
this issue in the last section.

3. DIMENSIONS AND THEIR ESTIMATION

The invariant probability distribution on the at-
tractor, when it exists, provides detailed informa-
tion about the long-term behavior of a dynamical
system. In practice, this distribution is often un-
known, and even if it were fully known, it is still
desirable to obtain invariant summary measures
that provide less detailed but useful information
about the attractor. These measures include vari-
ous concepts of dimension that we will review
briefly.

The simplest type of dimension arises from a
purely geometrical view of the attractor as a subset
of R™. The basic idea is to cover the attractor A
with volume elements of certain size ¢ such as
spheres with diameter ¢, or cubes with side ¢. If
N(e) denotes the smallest number of spheres or
cubes necessary to cover A, then N(¢) is inversely
proportional to £”, the volume of a cube, so that,

N(e) = ce™ " for some constant c. Solving for n and
letting ¢ — 0, we obtain the fractal dimension (or
capacity dimension or an upper bound for the
Hausdorff-Besicovitch dimension)

. InN(e)
(10) D=l /e

when the limit exists. It follows that D < n, but D
need not be an integer. Sets with integer D include
those consisting of a single point or finite number
of points (D = 0), a line or curve segment (D = 1),
a bounded surface (D = 2) and, more generally,
any manifold in R”™. A straightforward application
of (10) yields D=1n2/In3 = 0.6309..., for the
Cantor set described earlier. In general, D may be
interpreted as a measure of how densely a given set
occupies the metric space in which it lies. Thus, the
Cantor set is something less than an interval but
more than a single point.

Fractal dimension is oblivious to the probabili-
ties with which the various parts of the attractor
are visited in the long run. Another dimension,
which is sensitive to these probabilities, called the
correlation dimension, was suggested by Grass-
berger and Procaccia (1983a). This dimension v is
defined as

(11) vy = lim ———
where

1
C(e) = lim — ber of pai is X;
(12) (¢) lim {number of pairs (z,, x;)

such that | x; — x;| < ¢},

and N is the total number of observations on the
attractor. To contrast » with D, consider a covering
of the attractor with N(¢) volume elements as be-
fore, and let %; be the number of points in the ith
volume element that are all within ¢ of each other.
Then, there are k2 pairs of points in the ith volume
element, and consequently,

1 N(e)
- i=1
53]
B i=1 Nl—r'r:o _I-V—
N(e)
= 3 g2
i=1 :

where w; is the probability that an observation
falls in the ith volume element. Then, (11) can be
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written as
(13) » = lim

where the numerator is essentially what is known
as the order-2 Renyi entropy. The version of C(¢) in
terms of probabilities has been used in other con-
texts also, such as the construction of a surprise
index in decision theory (see, e.g., Good, 1952).

A third type of dimension which, like », takes the
probability over the attractor into account is the
Balatoni-Renyi information dimension

. InS(e)
(14) . SNCYE)

where the numerator is the Kolmogorov-Sinai en-
tropy

N(e)
S(e) = - =lnmx,.
i=1

Grassberger and Procaccia (1983b) showed that » <
¢ < D. All three dimensions are invariant under
invertible differentiable transformations on R”.

Still another dimension, called the Lyapunov
dimension, is defined in terms of the Lyapunov
exponents of the process. Lyapunov exponents gen-
eralize the concept of instantaneous rate of change
with respect to the initial state, in that they indi-
cate the average rates of divergence (expansion) or
convergence (contraction) of initially close trajecto-
ries on the attractor. With f,: R" — R", there are
n Lyapunov exponents \, = A\, = -+ = \,, so that
\; < 0 indicates an average rate of contraction and
A; > 0 indicates repeated expansion and folding in a
particular diregtion (the direction of the corre-
sponding eigenvector of the Jacobian matrix of
partical derivatives). Their existence in ergodic dy-
namical systems is due to the multiplicative er-
godic theorem (Oseledec, 1968). Any dissipative
system with n > 1 must have at least one negative
exponent, and the sum of all exponents must be
negative, indicating an overall contraction. A sys-
tem with a chaotic attractor must have at least one
positive Lyapunov exponent.

Lyapunov exponents can be visualized geometri-
cally in the following way: imagine that the initial
state of the system can lie in an infinitesimal n-
dimensional sphere with diameter P°. After N pe-
riods, assume that the sphere becomes an ellipsoid,
with PV being the length of its ith largest princi-
pal axis. Then, P?/P° is the overall proportional
change in the length of the principal axis, and
(1/N)In(P¥/P°) is a measure of the average rate

of change. The limit of this average as N — o is
the ith Lyapunov exponent. Mathematically,
PYN/P° is the determinant of the Jacobian matrix
of partial derivatives evaluated at the initial point
Xg-
Suppose the Lyapunov exponents are placed in
descending order, and let j be the largest integer
such that \; + Ay + -+ +\; = 0. The Lyapunov di-
mension is then defined as

MoF N
|)\j+1|

It was originally conjectured that D; = D (Kaplan
and Yorke, 1979), for which counter examples were
found (see, e.g., Grassberger and Procaccia, 1983b).
The relationship between D; and other dimensions
has not yet been clearly established, but a more
restrictive form of the Kaplan-Yorke conjecture
was proved by Ledrappier and Young (1988).

For systems whose evolution equations are given,
calculation of all Lyapunov exponents is possible,
although it is computationally burdensome. With
experimental data, however, there are no known
methods to estimate all exponents. The best known
of the existing methods (Wolf, Swift, Swinney and
Vastano, 1985) is capable of estimating only the
positive exponents, but more recent progress is
Nychka, McCaffrey, Ellner and Gallant (1990), and
Brown, Bryant and Aberband (1991). Currently,
there are no widely available means to estimate D,
from experimental data.

The algorithm of Wolf, Swift, Swinney and Vas-
tano operates on the basis of normalization, which
is the physicist way of obtaining a finite-sized pic-
ture of an infinitesimal geometry. Any property of
the original that depends only on the infinitesimal
geometry can be read off from the finite geometry
of the normalized object. Mathematically, this nor-
malization is carried out by the Gram-Schmidt

DL=j+

-orthogonalization scheme.

Estimation of other dimensions has been some-
what more fruitful, although significant problems
remain with all available methods. The problems
arise from the basic facts that dimensions are de-
fined as limits whose existence must be ascertained
and estimates obtained on the basis of a finite set
of data. The fact that data may include noise com-
plicates these problems. Thus, the problem boils
down to whether or not the system under study can
be observed long enough and with sufficient preci-
sion to satisfactorily address these issues.

Available methods for dimension estimation can
be classified into two groups, which may be called
fixed-size and fixed-mass methods. In the fixed-size
(box-counting) approach, the space is divided into a
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grid of boxes of fixed side ¢. Then, we can count the
number N(¢) of nonempty boxes, the number k; of
points in the ith box, the fraction k,/N of data
points in each box or the number of pairs of points
that are within ¢ of each other. By varying ¢, and
fitting a line to the plot of In N(¢) versus In(1/¢),
the estimate of D is obtained as the slope of the
fitted line. Estimates of » and ¢ are obtained simi-
larly as the slopes of C,(¢) versus ln ¢, and In Sy(¢)
versus In(1/¢), respectively. Here, C,(¢) and Sy (<)
are the respective sample counterparts of C(¢) and
S(e) with N observations.

In the fixed-mass (nearest neighbor) approach,
one fixes the number & of points to be contained in
each neighborhood and determines the diameter of
the neighborhood accordingly. Generally speaking,
this approach is computationally more efficient than
the fixed-size approach. Discussion of the various
algorithms can be found in Greenside, Wolf, Swift
and Pignatoaro (1982), Meyer-Kress (1986), Somor-
jai (1986), Kostelich and Swinney (1987), Dubuc et
al. (1989), and Taylor and Taylor (1991). For the
estimation of the correlation dimension, recent en-
hancements using singular value decomposition
have been proposed by Albano et al. (1988) and
Broomhead and Jones (1989).

One of the important questions in dimension esti-
mation involves the sampling distributions of the
estimates. Presently, few general results are avail-
able concerning this question. Maximum-likelihood
estimation of the correlation dimension has been
discussed by Takens (1984). Denker and Keller
(1986) showed that, under quite general conditions,
Cy(g) converges in probability C(e), so that the
slope of the linear regression of Cy(¢) on ¢ yields a
consistent and asymptotically unbiased estimate of
v. Cutler and Dawson (1989) show that if the at-
tractor constitutes a smooth D-dimensional subset
of R™ (D an integer), then the local (pointwise)
dimension at any given point is equal to D, with
probability 1. Unfortunately, their results have not
been extended to attractors with noninteger D. It
'seems that distribution of dimension estimates will
be an active research topic for some time to come.

Before concluding the discussion of dimension,
let us return to the time-delay reconstruction of
attractors from experimental data. As noted previ-
ously, if x, = f(x,_,) and y, = h(x,) where f: R" -
R and h: R" — R, then the attractor of x, can be
reconstructed from m-histories of y,. If m = 2D +
1, where D is the fractal dimension of the attractor
of x,, then the reconstructed attractor of the m-his-
tories shares many of the qualitative features of
the original, and the correlation dimension of the
reconstruction is equal to that of the original at-
tractor. When m is unknown, as is usually the

case, it can be estimated in the following ad hoc
fashion: start with m = 1 and obtain the estimate 7
of the correlation dimension of the reconstructed
attractor. Next, increment m by 1 and repeat the
calculation. Continue until 7 does not change sig-
nificantly. The final # is the estimate of the corre-
lation dimension of the attractor and, the lowest m
yielding this estimate is the dimension of the recon-
struction space.

It has been suggested that reconstruction pro-
vides a means for deciding whether a chaotic uni-
variate time series {y,} has been generated by a
deterministic or random process (Takens, 1985;
Brock, 1986). The time series is said to admit a
smooth deterministic explanation if there exist con-
tinuously differentiable functions kA and f, with
y, = h(x,) and x, = f(x,_,). Given that {y,} admits
a smooth deterministic explanation, then the corre-
lation dimension must be low (independent of m for
m = 2D + 1), and the largest Lyapunov exponent
must be positive. In addition, Brock (1986) claims
that if a linear autoregressive model of order L is
fitted to {y,}, then the residuals from this model
should have the same dimension and Lyapunov
exponent as {y,}. Because these assertions are nec-
essary but not sufficient for the existence of a
deterministic explanation, their usefulness is
severely limited in practice. Sufficient conditions
for a low-dimensional deterministic explanation
have not yet been discovered.

4. APPLICATIONS

We discuss various applications of chaos, fractals
and related ideas in different disciplines that have
been reported in the literature. Our emphasis will
be on applications other than in the field of physics
where there are already many good references (e.g.,
Bergé, Pomeau and Vidal, 1984).

. 4.1 Chaos and Fractals in Mathematics

The idea of defining an outer measure to extend
the notion of length of an interval is of relatively
recent origin in mathematics. Measures of sizes of
sets originated with Borel (1895) and continued by
Lebesgue (1904) as an underlying concept in the
construction of an integral. Carathéodory (1914)
introduced the more general concept of outer
measures that is the notion of linear measure in
n-dimensional Euclidean space. Hausdorff (1919)
extended Carathéodory’s measure to nonintegral
dimensions. This was shown by illustrating the
Hausdorff dimension of the Cantor set to be
In2/In3 = 0.6309. [This measure generalizes to
In2/In(1/ k) if the portion removed from the middle
of a unit interval is (1 — 2k).]
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Sets of fractional dimension also occur in diverse
branches of pure mathematics, such as the theory
of numbers and nonlinear differential equations.
Motivated by the theory of Brownian motion, meas-
ures of sets of curves were developed by Weiner in
the 1920s that found widespread application in the
theory of control and communication. An up-to-date
geometric theory of sets with fractional dimension
is given in Falconer (1985, 1990). Good (1941) gives
an early example of an application in number the-
ory. Further technical discussions of fractals,
self-similarity, dimension and dynamics of fractal
recurrent states can be found in Hutchinson (1981)
and Bedford (1986). Investigations into asymptotic
periodic behavior, transition to chaos and other
dynamical consequences for ordinary differential
equations are reported by Gardini, Lupini, Mam-
mana and Messia (1987), Nusse (1987) and Wiggins
(1988).

Use of functional iterates in the theory of branch-
ing processes goes back at least to the work of
Hawkins and Ulam (1944) and Good (1965). Thus,
let f(x) be the Laplace generating function of a
sequence of probabilities { py, p;, Ps> - - - }, then the
probability that an individual has k male descen-
dants in the nth generation is given by the coeffi-
cient of x* in f™(x) where f™(x)= f(f" (x)).
Neutron multiplication in fission and fusion de-
vices are other practical applications of functional
iterations. :

A related area of great interest is the theory of
cellular automata in which a discrete dynamical
system evolves in a space of uniform grid of cells.
In contrast to continuous dynamical systems mod-
eled via differential equations or iterates of maps,
theory of cellular automata specifies the system’s
behavior in terms of a set of local values that apply
to all cells at each discrete increments of time.
Study of cellular automata is a separate area in
itself, with many application areas such as parallel
computing, image processing and pattern recogni-
tion. Toffoli and Margolus (1987) and Preston and
Duff (1984) are good introductions'to this area.

From the viewpoint of our discussion, theory of
cellular automata is relevant for at least two rea-
sons: first, it provides a methodology for approxi-
mating continuous systems and, second, it affords
an alternative model for complex system behavior
in terms of known initial conditions and simple
rules of evolution. Thus, cellular automata are ca-
pable of arbitrarily complex behavior with special
properties of self-replication, efficient energy trans-
duction and so on (Wolfram, 1984, 1986; Nicolis
and Prigogine, 1989). Such systems are examples of
self-organization phenomena, and the field of syner-
getics is an outgrowth of study of such systems

(Haken, 1978). For other applications of cellular
automata and a good account of the theory of func-
tional iterations and nonlinear deterministic mod-
els, see Stein (1989).

Cellular automaton models involve a great many
variables, one for each cell, as opposed to models
with differential equations or iterations of maps
that require very few variables. On the other hand,
many of the ideas and methods associated with
fractals and dynamical systems, such as concepts of
dimension and entropy, are applicable in the con-
text of cellular automata. Another notion that is
especially important in the latter context is algo-
rithmic complexity.

Use of notions of algorithmic complexity and their
measures were first proposed by Kolmogorov (1965,
1983) and later developed by Chaitin (1987). Algo-
rithmic complexity of a string of zeroes and ones is
given by the number of bits of the shortest com-
puter program that can generate this string. Such
measures of complexity are useful for describing
cellular automata and pattern formation. Rissanen
(1986) has used this idea of algorithmic complexity
for order determination in statistical models. The
notion of complexity in a more general context was
discussed in several papers by Good and summa-
rized in Good (1977). Descriptions and characteriza-
tion of complexity in spatiotemporal patterns for
high-dimensional nonlinear systems is discussed by
Kasper and Schuster (1987).

4.2 Chaos in Physiology, Biology and Epidemiology

To begin with, fractal-like structures are found in
networks of blood vessels, nerves and ducts within
much of the human body and other living things.
Work on distinguishing between healthy and un-
healthy systems in the body is currently an inter-
esting and challenging case in dynamical systems.

_For example, does a healthy heart produce physio-

logical data with its fractal dimension and other
characteristics that are different from an un-
healthy heart? It is known, for example, that nor-
mally chaotic oscillations of the densities of the
red and white blood cells become periodic in
some anemias and leukemias. Such questions can
be carefully investigated in laboratory settings.
Physiological variables generated from electro-
cardiogram, immunoreactive insulin and electro-
encephalogram are great data sources, where the
presence of attractors of varying characteristics may
be useful in indicating a state of general health,
onset of disease or measuring its progress. This
would complement the existing mathematical mod-
els of physiology, such as the “integrate and the
fire model,” in which activity rises (integration) to



S. CHATTERJEE AND M. R. YILMAZ 61

a threshold leading to an event (firing). Neuronal
activity is thought to.be a good example of this.

Many physiological rhythms are generated by a
single cell or electrically coupled isopotential cells
that are capable of generating oscillating activity.
From both theoretical and experimental viewpoints
in neurobiology, many pacemakers capable of dis-
playing regular periodic oscillations may also have
irregular dynamics. Such models are known as
Hodgkin and Huxley (1952) models. A detailed
analysis of this viewpoint and its relationship to
chaos can be found in Rapp (1979, 1981) and Glass
and Mackay (1988). In the absence of chaos, either
very dull pacemaker activity or highly explosive
global neural firing patterns might emerge. Chaos
would serve to maintain the functional indepen-
dence of different parts of the nervous system and
thereby make it more adaptable. For applications
of chaos in neurophysiology and neurobiology, see
Baird (1985), Clarke, Rafelski and Winston (1985),
Schmajuk and Moore (1985) and Skarda and Free-
man (1987).

The use of chaos as supporting evidence of the
theory of punctuated evolution has been proposed
by Conrad (1983, 1988). Small events (mutations)
undergo averaging, thereby cancelling any net ef-
fects; but once in a while a single event (mutation)
becomes all important and directs the path of evo-
lution in new directions and patterns that are then
preserved and built on afresh. The final position at
any point in time might as well have been arrived
at by both chance and necessity (Monod, 1973).
Mechanisms of adaptability that involve diversity
generation in which chaotic mechanisms play a key
role are being studied by scholars of evolutionary
biology. Conrad (1988) provides three useful func-
tions for chaos: (i) search (diversity generation),
which can be both genetic and behavioral; (ii) de-
fense (diversity preservation), which can be im-
munological, behavioral or populational; and (iii)
prevention of entrainment, that is, being locked
into a certain phase of existence.

Population biology is an area where the impor-
tahce of nonlinear dynamics was felt even before
the work of Lorenz. There have been many models
of population biology that use simple systems of
differential equations to describe growth behavior
of living species in their natural ecology. An up-to-
date review of these models is provided by May
(1987). Moran (1950), in an entomological context,
discovered stable points, limit cycles and events
that we call chaos today. For example, a second-
order version of the logistic model (2), called the
Verhulst process is given by

X, = wx,(1 —x, ;) for0<x,<1.

This relatively simple model is a special case of
more general models of predator-prey relation-
ships. It has an extremely complicated attractor for
a range of w values, such that there are some
initial values that lead to extinction and other
values lead to cycles or chaotic fluctuations. Tor-
roidal flow (flow on a torus), when the motion is
quasi-periodic, is a model for a predator-prey rela-
tionship in a seasonal environment (Inoue and
Kamifukumoto, 1984), and strange attractors give
rise to chaos in a one-predator, two-species environ-
ment (Shibata and Saito, 1984). The dynamical
properties of models in population biology is re-
viewed in Gauss (1964), Kloeden and Mees (1985)
and May (1973, 1986, 1987). The combination of
population biology with population genetics leads
to a deep study of nonlinear phenomena involving
genetic polymorphisms that may vary cyclically or
chaotically, as discussed by May (1987).

The discovery of mathematical chaos has natu-
rally led biologists in search of observable chaos in
nature. However, observed data are polluted with
environmental (statistical) noise that makes their
detection difficult. Thus, finding examples of time
series data that clearly show period doubling, inter-
mittency, transition to chaos and other behavior of
nonlinear systems is a challenge facing the current
generation of population biologists.

In epidemiology, the study of motions of popula-
tions, including human disease, is also of interest
in models of chaos. If the fluctuations in epidemics
are due to deterministic chaos, then they have
more structure than previously believed. Under-
standing this extra structure may help predict such
things as the proportion of diseased population and
the effects of a vaccination program. The key to
such exploration is matching the complex behavior
with a specific system of differential or difference
equations. Schaffer and Kot (1985) and Schaffer,
Ellner and Kot (1986) have concluded that measles,
mumps and rubella data from Copenhagen behave
chaotically, whereas data on chicken pox show reg-
ular cycles; whereas for still other data sets, the
evidence of the existence of an attractor is inconclu-
sive.

4.3 Chaos in Economics

The theory of chaos and dynamical systems has
been applied in economics from both a theoretical
and empirical perspective. In the theoretical per-
spective, existence and study of multiple equilibria
based on positive feedback is due to Arthur, Yu and
Yu (1987) and Arthur (1990). The classical theory
of Marshall and Adam Smith relies on interaction
or negative feedback of demand and supply that
gives rise to a unique equilibrium value. On the
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other hand, economics based on positive feedback
allow multiple equilibria, and allows chance and
chaos to play a role in the final outcome. These
models of economic activity based on positive feed-
backs are based on urn models of Ehrenfest and
Polya (Kac, 1959) and nonlinear generalizations of
them by Hill, Lane and Suddereth (1980) and
Arthur, Ermoliev and Kaniovski (1983). An up-to-
date account of applications of nonlinear science in
economic theory is given in Anderson, Arrow and
Pines (1988).

The empirical economists are interested in test-
ing hypotheses on the model generating the path of
the economy. Specifically, Brock and Mallaris
(1989), Scheinkman and LeBaron (1989) and others
are interested in hypotheses of the following kind:
is the GNP data generated by a nonlinear deter-
ministic model? Numerical investigations have
been conducted by Brock and others on national
income and stock. market data with inconclusive
results. Whereas this type of research may be inter-
esting, it is difficult to find useful and meaningful
directions for advancement from this strategy with
regard to either understanding of economic forces
or improved methods of forecasting. Critics of using
deterministic models for economic time series in-
clude Sims (1984) and Granger (1987).

4.4 The Role of Chaos in Philosophy and Logic

The role that chaos may play in any philosophi-
cal system is discussed by Conrad (1988), Penrose
(1989) and Rossler (1986). The discovery of chaos
provides evidence that the question of whether a
given random-appearing behavior is probabilistic
or deterministic in reality may be undecidable, since
both types of models may describe the observations
equally well. Undecidability of determinism versus
indeterminism was asserted earlier by Good (1950,
page 15) and others. Some interesting issues of
computability of fractals on universal computers
are of interest to both physicists and logicians.
Penrose (1989) gives the Mandelbrot set as an ex-
‘ample of a recursively enumerable set that is not
recursive. It appears that there is no known algo-
rithm to decide whether a point on the boundary of
the cardioid remains bounded under the map Z —
Z? + C. Thus, strictly speaking, the boundary of
the Mandelbrot set is not computable and the visi-
ble Mandelbrot set is only an approximation. Inter-
estingly enough, it is at the boundary of this set
where intricate structures are born and where
(self-similar) fractals grow.

The existence of chaes at the quantum mechan-
ical level (quantum chaos) also appears to be
elusive. Classical chaos imply fractal attractors
(structures on all scales), but in quantum mechan-

ics structure does not exist on a scale smaller than
Planck’s constant. Some day quantum mechanics
may replace the probabilistic wave function by a
deterministic but chaotic one. Berry (1987) gives
an up-to-date account of this fascinating theory.
Thus, the science of chaos joins a long list of unde-
cidable propositions that includes Godel’s undecid-
able proposition in logic, Heisenberg’s uncertainty
principle in quantum mechanics and Arrow’s im-
possibility theorem in economics concerning how to
define social rationality (Arrow, 1963).

The current popularity of chaos is also of interest
to historians of science and philosophy. We began
our essay with quotes from Laplace and Poincaré
depicting the changing views of nature: from total
regularity to completely irregular and unpre-
dictable behavior of observed nature. This chang-
ing view of nature is consistent with modern
philosophical doctrines (Cohen, 1987).

4.5 Other Applications

This section describes other applications in vari-
ous fields. That these applications are grouped to-
gether is in no way meant to imply any lesser
degree of importance. On the contrary, this group-
ing will emphasize the astounding diversity of ap-
plications that have already been undertaken.

Barnsley et al. (1988) have written rule-based
algorithms that produce realistic-looking images of
pine forests, ferns, human faces and many other
natural objects. Fractal forgery allows storage of
images in a very small amount of space (fractal
shorthand) and easier transmission (Barnsley and
Sloan, 1988; Brammer, 1989), and this has spurred
great advancement in the video image and motion
picture industry.

Pickover (1988) studies pattern formation and
chaos in networks as a result of propagation of
signals through complicated networks. Orbach
(1986) uses the self-similarity property of fractals

" to model percolating networks that describe vari-

ous physical structures, such as gels, polymers and
the transverse force constant of glassy materials.
Orbach’s work is important because he shows how
fractal geometry is not only useful in describing
static structural properties, but also in describing
the dynamic properties of fractal networks (fractal
diffusion).

Goodchild and Mark (1987) summarize the use of
fractal geometry in geography that has an earlier
origin in Mandelbrot’s work (1967). A wide variety
of spatial phenomena have been shown to be statis-
tically self-similar, which shows scale independence
of geographic norm. A fractal dimension provides a
means of characterizing the effects of cartographic
generalizations and predicting the behavior of
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estimates derived from data that is subject to spa-
tial sampling. Fractional Brownian motion
(Mandelbrot and Van Ness, 1968; Mandelbrot, 1971;
Matalas and Wallis, 1971) provides a method of
generating irregular self-similar surfaces that re-
semble topography of fractional dimension.

Study of fractals in modeling patterns of erratic
occurrence of gaps separating two consecutive cache
misses in computer memory is due to Thiébaut
(1988). Investigations into characteristics of large
telecommunications, computer and other networks
using concepts from fractal geometry and graph
theory have appeared in the literature. The ap-
proach is to study global characteristics of
networks, parameterized by a fractal dimension,
without resorting to detailed descriptions (Bedro-
sian and Jaggard, 1986). Applications of fractal
geometry and space-filling curves to combinatorial
problems belonging to the NP-complete class and
other areas of operations research is due to Platz-
man and Bartholdi (1990). NP-complete refers to a
class of discrete optimization problems for which no
polynomial time algorithm is known to exist (any
algorithm that correctly solves an NP-complete
problem will require an exponential time).

Applications in geology include study of relation-
ship between ore grade and tonnage through a
fractal approach where a high-fractal dimension
indicates a strong volumetric concentration of an
element (copper, silver, etc.). Such models provide
a basis for estimating mineral reserves (Turcotte,
1986).

Study of dynamical systems through interactive

computer and expert systems has been proposed
by Abelson et al. (1989), who present automatic
preparation, execution and control of numerical
experiments to discover and interpret qualitative
behavior of dynamical systems. Such programs
study ranges of parameters, state variables to be
explored, and analyze approximations, divergence
characteristics of trajectories and use of minimum
spanning trees for clustering of orbits.
" Applications to nonphysical problems, such as
that of international security through a simplified
procurement model of the Strategic Defense Initia-
tive, is due to Saperstein and Meyer-Kress (1989).
They use the model to explore the outcomes of
various deployment modes and study what they
called “crisis instability’”’ through numerical simu-
lations.

4.6 Chaos and Fractals in Statistics

Although deterministic models have been used
for several decades for generating pseudo random
numbers in simulation experiments, the renewed

interest in them is due to their possible use in
modeling actual real-world processes that have tra-
ditionally been studied through stochastic models.
As yet, however, there are no known methods for
“fitting”” a deterministic model to an actual proc-
ess. Present state of the art is at the initial stages
of studying and cataloging the behavior of various
models, and to use expertise and judgment to see if
a particular model adequately describes an actual
process under investigation.

A potentially important new tool resulting from
the theory of chaos is the method of time-delay
reconstruction of attractors from time series data.
This method can give an idea about the minimum
dimension of the underlying process, as well as its
long-term behavior. On the other hand, the recon-
struction typically requires very long series, and it
is sensitive to noise in the data (Ben-Mizrachi,
Procaccia and Grassberger, 1984). Noise reduction
procedures specifically designed for reconstruction,
such as the method of Kostelich and Yorke (1987),
are of great interest in this regard. These methods
can complement traditional tools, such as factor
and discriminant analyses, nonparametric smooth-
ing methods and projection pursuit.

A different route to model identification was re-
cently suggested by Chatterjee and Yilmaz (1991).
This method does not involve reconstruction, and it
does not seek a deterministic model that generates
an observed time series. Instead, it focuses on resid-
uals resulting from any given stochastic time series
model under consideration, such as ARIMA( p, q),
and tries to determine if the residuals appear to fit
a white noise process. For the latter task, the esti-
mated fractal dimension of the residuals is com-
pared with the fractal dimension of the white noise
process.

Another potentially useful tool for the statisti-
cian is the idea of fractal interpolation (Barnsley,

. 1988). Given a finite number of observations, this

method generates a complete path interpolating
the observations and in a manner consistent with
self-similarity. This idea can be useful in handling
missing values in the data, and it is illustrated by
Chatterjee and Yilmaz (1991). Its usefulness for
prediction purposes remains to be investigated.
Another recent modeling tool that seems to have
been motivated by fractals and fractal dimension is
the notion of fractional differencing in the ARIMA
(p, d, q) models, where d is noninteger. This idea
can be used to model persistence (long memory)
and antipersistence (short memory) behavior. The
process (0, d,0), —1/2 < d < 1/2 has been used by
Mandelbrot and Van Ness (1968), Mandelbrot
(1971) and Matalas and Wallis (1971) for simulat-
ing hydrologic data that show long-term memory.
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An ARIMA(O, d, 0) process x, is defined as
(1 _“B)dxt = &

where ¢, is a white noise process and B is the
backward shift operator. Noting that,

a-8)°=y (¢)-B)

k=0

1
=1-dB - Ed(l—d)BZ

—%d(l_d)(z-d)Ba‘-

it is easy to see the slowly decaying weights on past
observations. Thus, ARIMA(0, d,0) provides long-
term persistence behavior, whereas ARIMA(p, 0, q)
describes short-run persistence. Granger (1980),
Granger and dJoyeux (1980), Hosking (1981),
Geweke and Porter-Hudak (1983) and Carlin and
Dempster (1989) discuss ARIMA( p, d, g) with non-
integer d, thus generalizing the procedures of Box
and Jenkins (1970). These authors have investi-
gated different properties of fractionally differenced
models and estimation procedures, and provided
some sampling theory.

5. DISCUSSION AND CONCLUSIONS

The theory of chaos is fascinating if for no other
reason than the blurring of the long-held distinc-
tion between random and deterministic phenom-
ena. It is potentially capable of “explaining” very
complex processes with simple, parsimonious mod-
els and essentially without error. This would seem
to be sufficient reason for the statistician to pay
attention to the emerging theory and actively par-
ticipate in its development. Such participation re-
quires the statistician to be prepared to think in
terms of iterations of functions rather than stochas-
tic processes, attractors rather than spectra and
embeddings in a phase space rather than time se-
ries. In return, the statistician gets a richer set of
tools at his or her disposal, although the power and
Jlimitations of the new tools will have to be sorted
out.

As we noted throughout, there are many impor-
tant questions about the new theory that are cur-
rently unresolved, and it is likely that some of
these issues will never be resolved. The question of
choosing between deterministic versus stochastic
modeling of a process under study is one such issue,
but stochastic modeling presently has a clear ad-
vantage because of its rich variety of model-fitting
tools. On the other hand, given that we wish to use
a deterministic model, it would be imperative to
have some means for deciding which specific model
to use. Although methods or guidelines for this

purpose are not yet available, we can expect
progress in this direction as a larger variety of
models are studied.

Another immediate problem in the application of
the new theory is the possibility that the observed
data includes a random component of environmen-
tal noise. In experimental settings, it may be possi-
ble to know the sources of noise and minimize it,
but this may not be possible when data pertains to
real world phenomena. Thus, a basic question is
how to recognize the presence of noise and how to
separate it from the deterministic effect. In the
presence of noise, say ¢,, one could contemplate a
model such as

Xip1 = fw( Xgyeoos Xp 1 Et)
and if noise is additive, this would become

Xip1 = fw(xt’ s xt—L) + &

If €, is a stochastic process, then the advantage of
deterministic modeling over the classical stochastic
approach would disappear.

Unlike the deterministic approach, stochastic
modeling involves an attempt to separate structure
(pattern) in the data from lack of structure (nonpat-
tern), and for this reason, it naturally allows for
the presence of noise and other random elements.
Although deterministic modeling can deal with very
small amounts of noise, it provides no means for
recognizing its existence in the first place. Contro-
versy and research in this area are likely to con-
tinue for the foreseeable future.

Present state of the art of dynamical modeling is
such that the ability to make general statements
about the long-term behavior of a dynamic process
requires the assumption that transients have died
out and motion has reached the attractor. In exper-
imental settings, it may be possible to wait until
this happens. In many real-world processes, on the
other hand, we may be perpetually observing tran-

" sient states due to changes in the environment or

even changes in system parameters (bifurcations).
More importantly, we do not yet have methods of
determining if observed data include such changes
or transients.

In summary, then, there are various distinct situ-
ations in which we must currently turn to stochas-
tic models, even if a deterministic model is desired.
These situations include:

1. Initial conditions are unknown.

2. Process cannot be observed without random
error or noise.

3. Process cannot be observed long enough.

4. Inability to fit a deterministic model even
when situations 1 to 3 are not at issue.
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Consequently, stochastic models are likely to con-
tinue to serve as prototypes for nonlinear determin-
istic models. .

The discovery of chaos in mechanical systems
and the subsequent development of mathematical
and physical theories of nonequilibrium physics,
relationship of physical and algorithmic complexity
and mathematical experiments on the computer
(ranging from cellular automata to theorems in
number theory) may yet prove to be events of great
importance. There are those who believe that these
developments are of equal import to Einstein’s
theory of general relativity and Heisenberg’s un-
certainty principle (Gleick, 1987; Cooper, 1989;
Rossler, 1986). Undoubtedly, the quantitative de-
scription of chaos is one of the triumphs of nonlin-
ear science. The twenty-first century should see the
blossoming of this aspect of nonlinear science, in
which statistics and data analysis are likely to play
a major role.
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