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replications before listing several points and references
that I hope are new to some readers.

I enjoyed both papers, but my general preference
remains unchanged: Use a single long replication, ex-
cept in special cases such as parallel computing or
when stratified or antithetic initial states happen to be
easy to determine. This preference for a single repli-
cation is due to its robustness to analyst lack of so-
phistication or time. Fifteen years ago substantial
background, insight and effort were required for simu-
lation and for statistics practitioners to analyze com-
plex problems. Commercial software has blossomed in
- both fields, allowing relatively naive practitioners to
expect something good to happen when they give their
problem to the computer. Similarly, one day we will
expect software to evaluate posterior distributions
with little practitioner insight. The single long replica-
tion makes negligible the initial bias, thereby alleviat-
ing the difficult initial-data-deletion problem.

Glynn and Heidelberger (1992) and Kelton (1989)
are recent additions to the extensive literature that
discusses initial deletion of warm-up data and choice
of initial states.

Glynn (1987), Whitt (1990) and Damerdji (1991) dis-
cuss the choice of number of replications, the extreme
cases being a single long run and many short runs.

Smith (1984) discusses Monte Carlo sampling from
doubly stochastic Markov chains. The motivation is
the need to identify nonredundant constraints in math-
ematical programming. The methods can be used to
sample from a density by sampling uniformly within
the region defined by the density and the zero plane.
The Hit-and-Run sampler (Belisle, Romeijn and Smith
1992) is a generalization to nonuniform distributions.

Since essentially all point estimators are asymptoti-
cally normal, sampling error is well summarized by
point-estimator standard error. The method of nonover-
lapping adjacent batch means (NBM) is extended to
overlapping batch means (OBM) in Meketon and

Schmeiser (1984). OBMs are highly dependent, which .

is acceptable since batches are sufficiently large not
when the batch means are essentially independent but
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Both papers make some interesting contributions to
the discussion of issues related to Markov chain Monte
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(loosely) when each batch subsumes the autocorrelation
structure.

Except for end effects, OBM is the Bartlett-window
spectral estimator with lag-window length equal to the
batch size. Therefore, OBM has the same bias but only
two-thirds the variance of NBM. Both NBM and OBM
estimator are easily computed in O(n) time; therefore
OBM dominates NBM for Markov chain sampling.

For NBM, OBM and some other estimators based on
batching, the mse-optimal batch size is asymptotically

9 2-1/3
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where ¢}, and ¢, are the estimator’s bias and variance
constants, respectively, and y; / y, is the center of grav-
ity of the absolute values of the autocorrelation lags.
For OBM ¢, = 1 and ¢, = 4/3. Geyer’s Theorem 3.1
helps to estimate the autocorrelation center of gravity,
which is problem dependent, but the goal is to estimate
optimal batch size without estimating individual auto-
correlations.

An advantage of batch-means methods is that they
extend directly to point estimators that are not means.
Schmeiser, Avramidis and Hashem (1990) discuss
sufficient assumptions and provide a code for overlap-
ping batch variances and overlapping batch quantiles.

Nelson (1989) quantifies the additional number of
batches needed when estimating optimal weights for
control variates.

For random-number and random-variate generation,
see Fishman and Moore (1986) and Devroye (1986),
respectively.

Glasserman (1991) discusses single-replication meth-
ods for estimating derivatives of performance mea-
sures with respect to system design parameters. Could
similar methods be used to estimate the change, for
example, in the posterior mean caused by a unit change
in the prior mean?

A variety of other simulation-experiment issues are
discussed in Schmeiser (1990).

Carlo. Geyer's variance estimates that take advantage
of the Markov chain structure appear to be particularly
promising and worthy of further investigation. As
these methods require a reversible chain, they are not
directly applicable to the fixed scan Gibbs sampler.
But several simple devices are available for making
Gibbs samplers reversible, including random scans,
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random permutation scans, and paired forward and
reverse scans.

The paper of Gelman and Rubin makes two main
contributions. The first is to propose and motivate a
useful numerical criterion for assessing convergence,
the potential scale reduction factor. The second is an
argument in favor of multiple runs of Markov chain
samplers. I would like to discuss each of these in turn.

1. THE CONVERGENCE CRITERION

For the purposes of this discussion, it may be useful
to give a simplified outline of the motivation for the
‘convergence criterion used by Gelman and Rubin. The
posterior distribution on x is approximately N(u, ¢?).
The posterior mean u is not known exactly, but the
uncertainty about it can be approximated by a N(4, o?)
distribution. Using this uncertainty as a prior distribu-
tion, we get a predictive distribution for x that has
variance g2 + o2 If we could eliminate our uncertainty
about u, then this would reduce the width of our inter-
vals for x by the potential scale reduction factor

2
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In Gelman and Rubin’s development, the uncertainty
about u is due to the fact that u is being determined
by a Markov chain Monte Carlo experiment. But the
argument can also be used with other Monte Carlo
methods and with non-Monte Carlo methods. For ex-
ample, my experience with asymptotic approximations
suggests that in many reasonable problems, perhaps
after some reparameterization, the error in a first-order
approximation to the posterior mean should be on the
order of 0.2¢ or less, and the error in a second-order
approximation should be around 0.1¢ or less, with o
the posterior standard deviation. If I believe that a
particular problem is sufficiently well behaved, then
this allows me to compute the approximate scale reduc-
tions I could get by using more accurate computational
methods as 1.04 and 1.01, respectively.
Turning to Monte Carlo methods, even though it is
" rarely possible to use i.i.d. sampling from the posterior
distribution, it may still be useful to examine the scale
reduction factor to determine the number of i.i.d. obser-
vations that would be needed to give a satisfactory
approximation. In the i.i.d. case with a sample of size
N, we have o2 = ¢%N, and the simplified scale reduc-
tion factor is

1 1
R~ 1+==~1+—.
VR N 2N
Thus to achieve the accliracy of a second-order approxi-
mation in a well-behaved problem would require at
least N = 100 ii.d. observations from the posterior
distribution.

For non-i.i.d. sampling methods using a total of N
observations, o2 is usually larger than ¢%N, though it
could be smaller if good variance reduction methods are
available. Geweke (1989) defines the relative numerical
efficiency of a Monte Carlo method as

a’IN
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RNE =

the fraction of an i.i.d. observation from the posterior
that is equivalent to one observation from the Monte
Carlo method. In terms of the RNE, the scale reduction

factor is
VR = f1 L
N X RNE

A guess for the RNE can thus be used to adjust the
estimate of the sample size needed in a particular
problem. Experience to date seems to suggest that in
well-behaved problems, the RNE for Gibbs samplers
and importance sampling methods may be as large as
20%, but in more difficult problems, it can be well
below 1%. Depending on the nature of the problem,
this suggests sample sizes of N = 500 to N = 10,000
or more.

Once an experiment has been carried out using a
reasonable sample size, more accurate estimates of the
scale reduction factor can be constructed and used
to determine if additional sampling is needed. This
requires estimation of the two variances. With i.i.d.
sampling or importance sampling this is fairly straight-
forward. The dependence structure in Markov chain
methods makes estimating o2 more difficult but by no
means impossible, as Geyer points out. The approach
of Gelman and Rubin, again simplified for the purposes
of this discussion, involves estimating ¢ by W and
o2 by B/n. The use of W seems reasonable, since it is
likely to produce an underestimate if n is too small but
should be accurate once n is large enough. The use of
B seems less satisfactory since it is based on a very
small number of degrees of freedom—9 in the recom-
mendation of the paper. Gelman and Rubin do allow
for this by using an upper percentile of the distribution
of +R, but if n is anywhere close to large enough for
the individual chains to have reached equilibrium, then
it should be possible to do much better by using infor-
mation from within the chains to estimate g2

As in most simulations involving dependent data,
in Markov chain Monte Carlo experiments an initial
burn-in period is needed to bring the series close to
equilibrium, followed by a considerably longer period
to collect enough data on the equilibrium distribution
to produce estimates with acceptable variances. The
scale reduction factor seems like a useful measure for
assessing the adequacy of the length of the equilibrium
period. It is related to the relative numerical efficiency
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criterion, but it has the nice feature of emphasizing
that excessive precision in approximating u is not of
much use if there is reasonable spread in the posterior
distribution itself. The argument for using the scale
reduction factor, with the particular multiple chain
structure and variance estimates proposed in the paper,
for determining whether runs are long enough for n
to represent an adequate burn-in period seems less
persuasive. Given multiple runs, comparing within-
sequence means for the second sequence halves to
pooled within-sequence variance estimates of the kind
outlined by Geyer would seem like a more direct and
powerful approach. Even with single-run samplers, the
literature on detecting initialization bias (Schruben,
1981, 1982) and on variance estimation in simulation
experiments (Goldsman and Schruben, 1990; Golds-
man, Meketon and Schruben, 1990) provides useful
direct approaches to this problem.

2. MULTIPLE RUNS OR ONE LONG RUN

Multiple runs of a Markov chain Monte Carlo experi-
ment are clearly useful in early exploratory stages,
since results from one run can be used for tuning
aspects of the next run. Once initial experimentation
is complete and a larger experiment is to be used to
obtain refined estimates of posterior distributions, the
argument for using multiple chains becomes less clear.
There appear to be three main reasons put forward for
using multiple chains at this stage:

1. To allow easy variance estimation based on inde-
pendent replications;

2. to reduce correlations in the total sample and to
improve the coverage of the parameter space;

3. to aid in detecting problems with the simulation.

The problem with the first argument is that the
resulting variance estimates are very inefficient unless
the number of chains is quite large, which in turn forces
them to be too short. In most problems I would want
at least the equivalent of 100 i.i.d. observations from
the posterior distribution. Using reasonable single-

"sequence variance estimation methods it should be
possible to extract a variance estimate with the equiva-
lent of about 100 degrees of freedom from that amount
of data.

The second point has some merit. Compared to a
single run of length N = mn from a Gibbs sampler,
say, a series of m independently started runs will be
less correlated and produce an overall sample mean
with lower variance. But this comes at a price. The
length of each run is only n, which may introduce bias

if n is too short. To deal with this problem, Gelman
and Rubin propose making each run have length 2n
and discarding the first n observations. Thus the total
effort becomes equivalent to a single Gibbs sampler
run of length 2mn, or (2m — 1)n if n observations are
also discarded from the Gibbs sampler run. It is no
longer clear that the reduction in correlation makes up
for the reduction in sample size, though it is possible
to construct examples where it will.

But a single run of a Gibbs sampler is not the only
single-run alternative to the multiple-run strategy. A
hybrid algorithm can be constructed that produces a
total of mn observations, uses a Gibbs sampler for
most steps, but occasionally, either on a random or a
periodic basis, uses a Metropolis independence step
(Tierney, 1991) with Gelman and Rubin’s ¢ mixture as
the candidate generation density. The acceptance tests
for these Metropolis steps require the same function
evaluations as the SIR algorithm used to select 10
starting points. If the initial density is at all reason-
able, then the Metropolis steps should accept at least
5-10% of the time, thus producing a greater reduction
in correlation than using 10 separate runs. If the Me-
tropolis steps accept less often, then this indicates that
the initial density is not doing a good job and gives a
clear warning that the simulation may be in trouble.
In addition, since any Markov kernel with the posterior
distribution as its invariant distribution will never
move a chain farther away from the invariant distribu-
tion in total variation distance, incorporating the initial
distribution into a single run by such a hybrid method
does not destroy, and will often substantially improve,
the approach of a long Gibbs sampler run to equilib-
rium. In summary, by combining the proposed starting
strategy with a Gibbs or other Markov chain sampling
strategy in a hybrid algorithm, it is possible to build
a single-run strategy that dominates both a simple
single-run Gibbs sampler and the proposed multiple-
run sampler by essentially picking up all the advan-
tages of restarting without any of the disadvantages.

About the only aspect of multiple runs that cannot
be incorporated into a single run is the ability to take
advantage of a parallel computing environment. While
there are pitfalls in running chains on parallel proces-
sors, in particular the difficulty of obtaining reliably
independent random number streams, parallel environ-
ments do offer resources worth exploiting. One ap-
proach, currently under investigation, is to try to take
advantage of embedded renewal processes that can be
found in many Markov chains to produce independent
cycles of random length that can be run sequentially
or in parallel.



