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(2) provides an approximate formula that can be used
to estimate the standard error of 4. As an example, we
consider a series of 1632 average monthly tempera-
tures over the Northern Hemisphere (land and sea)
used by the IPCC (Intergovernmental Panel on Climate
Change) for its global warming analyses. Figure 3a
presents the data, smoothed by applying a 49-month
moving average and centered around the 1950-1979
mean value for each month. It shows a pattern of
steady behavior until about 1920, followed by a sharp
rise between 1920 and 1940, then a gradual decrease
until about 1975, followed by the sharp rise that has
triggered the present alarm about global warming.
Over the whole series, there is a clear rise in tempera-
ture, but whether it is due to the greenhouse effect is
a matter of intense debate among climate scientists.
A linear trend was fitted to this data series (un-
smoothed) and resulted in a estimated trend of 0.40°C
per century, a figure consistent with several other esti-
mates of global warming over the last century and a
half. The first 120 periodogram ordinates of the residu-
als are plotted on log-log scales in Figure 3b. The
pattern is quite similar to the two series quoted by
Beran, and again seems to show evidence of long-range
dependence. This is confirmed by the estimates
H = 0.90 with standard error 0.05, based on no =1,
ni = 120; also 6 = 0.0033. When these figures are in-
serted into (2) (adjusted for the unit of trend) the
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I would like to thank the discussants for their stimu-
lating comments and valuable suggestions. Their com-
ments emphasize once more that long memory is an
important issue to anybody who uses statistical infer-
ence, since it occurs rather frequently in real data and
strongly influences the validity (and power) of standard
tests and confidence intervals. Particularly interesting
are the data examples analyzed by Smith (global warm-
ing —climatological data), Haslett and Raftery (wind
speed —meteorological data) and Dempster and Hwang
(employment series—economic data), since these are
examples that concern everyone (and not just a se-
lected group of scientists). Parzen summarizes the main
message of the paper very clearly by saying that in
data analysis, we always. have to decide whether the
data (either the original measurements or residuals,
e.g., after subtracting a regression function) are white
noise, a short-memory process or a long-memory pro-

standard error of the estimated trend is around 0.1,
which is again consistent with earlier estimates of
standard error including those quoted by Bloomfield
(1992). My main doubt about this conclusion is whether
the series can really be assumed stationary, given the
obvious inconsistencies in methods of measurement
over the last century and a half, but this would take
us into other aspects beyond the scope of the present
discussion.

I believe the message of all three examples is that
the concept of long-range dependence must be taken
seriously. At the same time, exactly how these exam-
ples are to be interpreted could be a matter of consider-
able debate. Jan Beran is to be congratulated on his
very clear and comprehensive review, and I hope it will
act as a springboard for much further research in this
area.
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cess. The same view is expressed in a more general
context by Mosteller and Tukey (1977, p. 119 ff): “even

" in dealing with so simple a statistic as the arithmetic

mean, it is often vital to use as direct an assessment
of its internal uncertainty as possible. Obtaining a
valid measure of uncertainty is not just a matter of
looking up a formula.” In other words, no formula
should be applied without checking its approximate
validity. Naturally, this does not only refer to “classi-
cal” formulas, such as var(X) = a2n71, but also to the
“new” formulas, such as var(X) = L(n)n? 2 (0 < H< 1),
given in the present review paper.

One major reason why the question of long memory
is usually not dealt with in daily statistical practice is
the lack of statistical software packages. Haslett and
Raftery’s program (and its implementation in the next
release of SPLUS) is therefore a welcome contribution.
As already mentioned briefly after formula (12) and
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described in more detail in Raftery’s comment, an effi-
cient algorithm for maximum likelihood estimation for
fractional ARIMA processes can be found in Haslett
and Raftery (1989). Another fast method of fitting
parametric models with long memory to very long-time
series is given in Beran and Terrin (1992). This method
is especially suitable for computers where calculations
can be done on several parallel processors simultane-
ously.

Most of the technical comments and questions in

the discussion are challenging, and mostly unsolved,
research problems.
. Parzen suggests to consider the CUSUM statistic.
This is certainly a direction worth pursuing. He also
suggests to define the spectral density f as the asymp-
totic limit of the expected value of the periodogram.
This has the advantage that the spectral density is
also meaningful for H = 1, although it is not integrable
there. Values of H = 1 are often observed in engi-
neering and physics (some references are given, e.g., in
Percival, 1985). Using the above definition of the spec-
tral density, Solo (1989) derived the asymptotic distri-
bution of the periodogram for a class of nonstationary
processes where f(x) ~ cx*2# (as x > 0) with H = 1
and ¢ > 0. This also partially answers the question by
Dempster and Hwang on whether there are possible
extensions beyond H = 1. However, it is not clear if
the models considered by Solo indeed yield anything
more than the correct spectrum. For example, the non-
stationarity of those processes might contradict at
least the visual impression of observed time series with
H = 1.1 am not aware of any comparisons of simulated
sample paths of these processes with real data. Cer-
tainly, more research needs to be done to obtain useful
stochastic processes with H = 1 and to derive suitable
statistical methods.

Another intriguing point raised by Smith and Parzen
is how to obtain a good estimate of H without knowing,
or without estimating, the entire shape of the spec-
trum. One possibility is to bound the influence of pe-
riodogram ordinates at higher frequencies. This
approach is taken by Graf (1983). Another possibility
is to use periodogram ordinates at low frequencies
only, such as proposed, for example, in Geweke and
Porter-Hudak (1983). Since we are disregarding a part
of the information, we might lose a considerable
amount of efficiency. The difficulty is to choose a cut-off
point such that, on one hand, H is not too biased and,
on the other hand, the variance of H is not too large.
The question of what the “best” cutoff point is, is the
subject of current research, and no definite answer is
known at the present time. Generally speaking, the
hope is that one can exploit the analogy between the
estimation of the tail of a distribution and estimation
of the pole of the spectrum at zero. A complication
arises from the fact pointed out by Smith—for very

low frequencies the approximation of the distribution
of the periodogram by the exponential distribution is
very inaccurate. Results along this line can be found
in Kiinsch (1986a) and Hurvich and Beltrao (1992).
Kiinsch suggests to leave out a few of the lowest
frequencies. How do we decide how many frequencies
we have to leave out? Smith’s calculations illustrate
the difficulty.

Apart from the shape of the distribution, the ex-
pected value of the periodogram I(x) at low frequencies
can be far from the asymptotic value f(x). This is taken
into account in Graf’s method by replacing f(x) by the
exact value of E(I(x)) which can be calculated exactly
for each n.

Smith mentions two estimators, a least squares esti-
mator (LS) and a maximum likelihood type estimator
(ML). The ML estimator is in fact a simplified version
of Graf’'s HUBO0O estimator, in that it uses f(x) instead
of the exact value E (I(x)).

Smith’s questions concerning Graf’s HUBINC esti-
mator can be answered as follows: a theoretical (or at
least heuristic) justification of the HUBINC estimator
is given in Graf’s unpublished PhD thesis (Graf, 1983;
also see Graf et al., 1984). A more thorough mathemati-
cal theory is currently being developed in an ongoing
research project. Some major points are however al-
ready clear at the current stage—deviations from the
model spectrum at high frequencies do not influence
the estimate too much. The HUBINC estimator
bounds the influence of both positive and negative
outliers. Thus, the group of negative outliers in Figure
1 and the extreme negative outlier for the NBS data
do not have any great effect on the result. (One should
mention that Graf also proposed a so-called HUBa
estimator where a chosen percentage a of the most
extreme residuals [largest in absolute value] is huber-
ized.) In contrast to that, LS- and ML-type methods
are very much influenced by outliers. Thus, comparing
the results of LS and ML estimates for different sub-

. sets of the data—with and without certain outliers—

mainly reflects the instability of these estimators. It
does not give us a measure of uncertainty for a robust
estimator.

The strength of good robust methods is their stabil-
ity with respect to inference—small bias and almost
the same distribution (as under the ideal model) under
deviations from the model. In particular, the latter
point implies that confidence intervals for the HUB-
INC estimator derived under the ideal assumption of
fractional Gaussian noise, should give us a realistic
measure of variability, even if the spectral density is
not exactly equal to the spectral density of fractional
Gaussian noise, and most likely this measure of vari-
ability is much more accurate than comparisons of LS
and ML estimates when leaving out certain outliers.
This is at least the case, when we consider outliers at
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frequencies that are not too close to zero. Near the
origin the estimator is not robust, though it at least
uses E(I(x)) instead of f(x), so that deviations from
the exponential distribution might cause a problem.
This point will need to be addressed in future research.
It is in particular a problem of model choice or, when
we are not willing to assume any parametric model,
of nonparametric estimation. For a given parametric
model, one can easily check by simulations how far the
different behaviour of the periodogram at the very low
frequencies influences H. For instance, in the case of
fractional Gaussian noise, H is almost unbiased and
its distribution is already very well approximated by
the central limit theorem [see equation (13)] for fairly
small sample sizes (about n = 200). However, which
minimal sample size is required in order that the effect
of the periodogram ordinates at the lowest frequencies
is negligible, depends on the model.

Another difficulty with LS and ML estimators is
worth mentioning —residuals from a nonrobust fit are
not a reliable diagnostic tool for the detection of outli-
ers. Often the actual outliers have small residuals,
because the fitted curve tends to be pulled towards
them. Therefore, apart from the obvious extreme nega-
tive outlier for the NBS data, it seems difficult to
interpret the residual and probability plots in Figures
1 and 2.

Dempster and Hwang take a Bayesian view. Since
for short series the variability of H is rather high,
as is demonstrated in their comment, the Bayesian
approach can be useful wherever it can be applied in
a reasonable way. Dempster and Hwang show how
repeated measurements can improve the precision of

H dramatically. In real data, we might not expect each
of the single time series (or individual) to have the
same value of H. Instead, we might think of H as an
individual characteristic. We draw a random sample
from the population of individuals so that A becomes a
random variable. It seems natural to consider empirical
Bayes methods in this context.

Dempster and Hwang also illustrate some other in-
teresting features of long-memory processes—the in-
terrelationship between estimating the variance and
estimating H, and a comparison of the sample mean
and optimal prediction. There is nothing to be added
to their illuminating comments.
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