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Backcalculation of HIV Infection Rates

Peter Bacchetti, Mark R. Segal and Nicholas P. Jewell

Abstract. Backcalculation is an important method for reconstructing
past rates of human immunodeficiency virus (HIV) infection and for
estimating current prevalence of HIV infection and future incidence of
acquired immunodeficiency syndrome (AIDS). This paper reviews the
backcalculation technique, focusing on the key assumptions of the
method, including the necessary information regarding incubation, re-
porting delay, and models for the infection curve. A summary is given
of the extent to which the appropriate external information is available
and whether checks of the relevant assumptions are possible through
use of data on AIDS incidence from surveillance systems. A likelihood
approach to backcalculation is described and implemented on AIDS
incidence data in the United States. New features of the approach
include incorporation of seasonal variation in diagnosis rates, smooth
nonparametric estimation of both the HIV infection curve and nonsta-
tionary aspects of the incubation period and reporting delay distributions,
and an analysis of residuals from backcalculation fits. Unexplained lack
of fit is examined and discussed. A fundamental concern is the appro-
priate acknowledgment of uncertainty associated with backcalculation
estimates caused by misspecified assumptions and inaccurate external
estimates of key components of the technique. Such uncertainty limits
the usefulness of backcalculation and highlights the need for complemen-
tary approaches.
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1. INTRODUCTION AND OVERVIEW

Throughout the AIDS epidemic, there has been sub-
stantial interest in understanding its current state and
predicting its future path. Specifically, attention has
focused on estimating the current prevalence of HIV
infection in populations and projecting the number of
AIDS cases that will occur in future time periods,
together with assessment of the uncertainty of such
estimates. These quantities are of substantial concern
to policymakers, health care systems and epidemiolo-
gists. Statisticians have evaluated the data sources
available for prevalence and projection estimates and
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have developed estimation methods based on such
data.

Backcalculation is the main method used to recon-
struct the past pattern of HIV infections in the United
States, and it is also widely used to predict future
numbers of AIDS cases (Brookmeyer and Gail, 1986,
1988; Brookmeyer, 1991; Rosenberg et al., 1991a). The
method uses an assumed known distribution for the
incubation period in a given population to deduce the
numbers of HIV infections that must have occurred
in the past to give rise to the observed pattern of AIDS
cases over time. Because the incubation period is de-
fined as the time between infection and diagnosis, the
distribution of diagnoses is the convolution of the in-
fection and incubation distributions, as described for-
mally in Section 2.1. Backcalculation exploits this
relationship and thus depends on three key compo-
nents: the assumed incubation distribution; the ob-
served counts of AIDS diagnoses over time; and a
model for the distribution of infections.

Backcalculation is known to be sensitive to the incu-
bation period used (Brookmeyer and Gail, 1988), but
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it is usually assumed that adequate data are available
for accurate estimation and that incubation does not
vary across populations (Brookmeyer, 1991; Rosenberg
et al., 1991a). In fact, incubation data are limited by
the fact that exact infection times are usually unknown
or are known only for highly selected groups of in-
dividuals. Many new methods have been developed
specifically to estimate incubation distributions while
accounting for the complex censoring and truncation
patterns often found in AIDS data. In Section 2.2, we
review the data and methods that have been used,
along with methods that allow for lengthening of incu-
bations due to recent introduction of effective pre-
ventive therapies. We also discuss the difficulty of
formulating sensitivity analyses that adequately span
the range of uncertainty.

The observed diagnosis counts are subject to some
incompleteness, which must be accounted for if back-
calculation is to produce sensible estimates. Section
2.3 discusses AIDS surveillance in the United States
and its two sources of incompleteness: cases who are
never reported to the system; and reporting delays,
which affect recent counts. Section 2.4 discusses the
final component, models for the infection distribution
and reviews the parametric and nonparametric ap-
proaches that have been used. We conclude the review
of backcalculation by briefly discussing other ap-
proaches that have been tried or proposed for estimat-
ing past HIV infection rates and projecting future
AIDS counts.

To examine further some key aspects of backcalcula-
tion, we develop a specific implementation of the back-
calculation strategy, as described in Section 3. Our
method has the same basic structure as those used
extensively before, and-we use maximum penalized
likelihood to obtain smooth estimates of the HIV infec-
tion curve. New features of the method include model-
ing seasonal patterns in diagnoses and smooth secular
trends in incubation or reporting delay. We also discuss
methods for choosing the amount of smoothness of the
nonparametric components and for estimating confi-
dence intervals. Section 4 summarizes the results of
applying the methods to U.S. AIDS counts. These
analyses confirm the strong influence of incubation on
estimated infections and show that uncertainty about
underreporting is also potentially important. These
influences swamp the small amount of inherent sto-
chastic uncertainty that would be present even if the
inputs were known perfectly, as reflected by relatively
narrow estimated confidence intervals. Greatly im-
proved fits to the observed counts are obtained by
modeling seasonal patterns and secular trends. Analy-
sis of residuals shows that modeling seasonal effects
also produces more homoscedasticity and reduced cor-
relations between different subgroups’ residuals. Sec-
tion 5 discusses the implications of our findings, em-

phasizing backcalculation’s large uncertainty and the
need for complementary methods.

2. REVIEW OF THE BACKCALCULATION
TECHNIQUE

2.1 The Basic Idea

We begin by briefly describing the convolution equa-
tion that forms the basis of the backcalculation
method. Suppose that Y; cases of AIDS occur in a
given population between times T;-; and 7. Now, sup-
pose infections are occurring in chronological time ac-
cording to some form of arrival process that yields an
infection curve, denoted by I(-); that is, the expected
total number of infections that have occurred by chro-
nological time s is given by [ S_m I(u)du. Further, let the
incubation distribution be F(-), so that F(t) is the proba-
bility that an AIDS diagnosis occurs within ¢ time
units after infection. To allow for the possibility that
the incubation distribution may depend on the chrono-
logical time of infection, we let F(-|s) denote the incuba-
tion distribution for individuals infected at chronological
time s. Then, the expected number of AIDS cases
occurring in [T}j-1, Tj] is given by

(1) E(Y) = f_T ) {(F(T, — s |s) — F(Ty — s |s)}ds,

where we set F(t|s) = 0 for ¢ < 0 and all s. In practice,
the time —o can be replaced by the time of the begin-
ning of the epidemic; we will use the time origin, s =
0, to denote this time, If AIDS diagnosis counts are
available for a series of n (nonoverlapping) intervals,
then we have a vector (Y3, ..., Y;) of observations
to analyze, where the expectation of each component
satisfies (1). The basic idea of backcalculation is to use
external information on the incubation distribution, F,
together with the observed (Y3, ..., Y;) to estimate /
through some form of deconvolution. Once an estimate
of the infection curve, I, is obtained, future projections
of AIDS case counts can be estimated using (1). For
example, we can estimate the number of AIDS cases,
Yas, in some future interval [T4, T5] by

Vap = / "8 fi6) (F(T5 — 5 |s) — F(Ta — s |s)}ds.
0

Note that backcalculation of I on the basis of AIDS
cases up to the current time 7' can only yield an esti-
mate of I(s) for s < T. Therefore, the “estimated” values
of I(s) for T < s < T depend on extrapolation. Early
application of backcalculation (Brookmeyer and Gail,
1986, 1988) set I(s) = 0 for T < s < Ts, so that Yas
predicts the number of future cases based only on
individuals infected by time 7. Other options include
extrapolation of the estimated I beyond time 7" under
various scenarios. We note that the quantity estimated
is the expected number of AIDS cases, so interval
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estimates should account for random variation about
this expected number in addition to the likely accuracy
of the estimated number itself (Jewell, 1990).

HIV prevalence esti;nates can also be based on back-
calculated estimates, [__ I(s)ds, of the cumulative num-
ber of infections by time 7. The current number of
HIV-infected persons who are still alive can then be
estimated by reducing this number by the estimated
number of individuals, infected with HIV by time T,
who have died by time 7. The basis of the latter
estimate is the AIDS death surveillance system of the
Centers for Disease Control (CDC), which provides
the number of AIDS-related deaths by calendar time.
Because reporting of deaths is known to be incomplete
and to suffer from reporting delay, it may be necessary
to use other information on survival of HIV-infected
individuals to obtain more accurate estimates of the
current number still alive.

2.2 Incubation Estimates

2.2.1 Data sources and methods

Because HIV infection is generally not immediately
detected, good data on incubation times are available
for only a few cohorts whose infections can be traced
to specific blood transfusions or whose times of infec-
tion can be determined (approximately) by tests of
multiple serum specimens that bracket the time of in-
fection. An important limitation of these data sources
is that the cohorts may not be representative of the
more general populations for which backcalculation is
to be performed. In addition, even these “good” data
have some important limitations. The infection times
for transfusion-associated AIDS cases are retrospec-
tively ascertained only after AIDS is diagnosed. This
results in severe right truncation that greatly reduces
the usefulness of the data, allowing estimation of the
distribution only up to a constant of proportionality
(Kalbfleisch and Lawless, 1988, 1989; Lagakos, Barraj
and De Gruttola, 1988).

Repeated serum testing only determines the time of -

seroconversion (which can be a few months later than
the time of infection) to within an interval between the
last negative test and the first positive test, resulting
in what is known as “doubly censored” data, and early
stored serum specimens were available for only a few
cohorts, including the San Francisco City Clinic (SFCC)
Cohort (Hessol et al., 1989), a group of hemophiliacs
from three U.S. cities (Brookmeyer and Goedert, 1989)
and hemophiliacs from two French hospitals (De Grut-
tola and Lagakos, 1989). In addition, seroconverters
from these and other studies have been gathered in an
international registry (Biggar, 1990). The censoring
has been handled by imputing the seroconversion time
as the interval midpoint (Lui, Darrow and Rutherford,
1988; Hessol et al., 1989; Biggar, 1990) and by paramet-

ric (Brookmeyer and Goedert, 1989) and nonparametric
(De Gruttola and Lagakos, 1989; Bacchetti, Segal and
Jewell, 1992a) modeling of both the seroconversion
and incubation distributions. Although it may seem
unnecessary to estimate distributions of seroconver-
sion dates in order to estimate incubation distribu-
tions, it has been demonstrated (De Gruttola and
Lagakos, 1989; Jewell, 1990) that failing to do so can
result in bias. At best, the midpoint approach will only
be appropriate if the seroconversion density is uniform
over the censoring interval. Often, however, the inter-
vals are sufficiently long to make this assumption un-

. reasonable.

Many cohorts of homosexual and bisexual men were
recruited in 1984, by which time most of the subjects
were already infected (seroprevalent). Such prevalent
cohorts include the Multicenter AIDS Cohort Study
(MACS) (Mufloz et al., 1989; Kuo, Taylor and Detels,
1991), the San Francisco General Hospital Cohort and
the San Francisco Men's Health Study (Bacchetti and
Jewell, 1991). Although subjects who are already sero-
positive at recruitment can be regarded as having inter-
val-censored seroconversion times, the extreme width
of the intervals (from the beginning of the epidemic
to recruitment) precludes the fully nonparametric or
midpoint-imputation approaches that are possible with
less extreme, doubly censored data. An additional
difficulty is the fact that the intervals are nearly the
same for all prevalent subjects in a cohort, so that the
intervals are not only wide but also almost completely
overlapping. A number of strategies for overcoming
these difficulties have been attempted. Fully paramet-
ric (Kuo, Taylor and Detels, 1991) and semiparametric
(Taylor, Kuo and Detels, 1991) approaches have been
pursued. Bacchetti and Jewell (1991) use a prior sero-
conversion-density estimate from external data. An-
other approach is to impute a seroconversion time for
each subject based on laboratory markers at recruit-
ment and knowledge of how the markers change with
time since seroconversion (Muifioz et al., 1989).

Bacchetti (1990) used population data on AIDS inci-
dence in gay men in San Francisco to obtain a deconvo-
lution estimate of the incubation distribution. This
relied on cohort-based estimates of seroconversion
rates in the population and so did not escape the
possibility that the cohorts might not be representa-
tive.

2.2.2 Results

There have been numerous estimates of AIDS incu-
bation distributions from many sources. We summa-
rize here only a few estimates from some influential
data sources in the United States.

The first analysis (Lui, Darrow and Rutherford, 1988)
of data from the SFCC cohort utilized the midpoint
between the last negative and first positive specimen



BACKCALCULATION OF HIV INFECTION RATES 85

as an estimated seroconversion date for 84 subjects
for whom this interval was less than 24 months. Sub-
jects were considered to be right censored as of Janu-
ary 1987, and a parametric Weibull model produced
an estimated median incubation time of 7.6 years. A
subsequent analysis (Hessol et al., 1989) used the same
estimated seroconversion dates but used followup
through May 1989 and expanded the sample by also
using a model-based seroconversion estimate (Byers et
al., 1988) for individuals with an interval greater than
24 months. After 9.2 years the cumulative proportion
with AIDS was 39% from a Kaplan-Meier estimate. An
analysis of 1,171 seroconverters from various sources
found significant evidence for heterogeneous incuba-
tion distributions in different groups (Biggar, 1990), as
did an analysis of three cohorts with publicly available
data (Bacchetti et al., 1993).

Bacchetti (1990) and Bacchetti and Jewell (1991)
provide smooth nonparametric estimates of AIDS-
incubation distributions using data from the San Fran-
cisco cohorts. Estimates of the median time to AIDS
are between 10 and 11 years. An important feature of
the nonparametric hazard estimates is that they flatten
after approximately 7 years, contradicting the steadily
increasing hazard assumed by Weibull models. Mufioz
et al. (1989) also observed flattening of the hazard, but
after only 4 years. By projecting the constant hazard
rate, the median incubation time was estimated as 10.7
years.

As part of a joint analysis of covariate effects on
both seroconversion and development of AIDS in a
cohort of hemophiliacs, Brookmeyer and Goedert
(1989) developed a Weibull regression estimate for their
incubation distribution. This estimate has a median
incubation time of 10 years and has been widely used
as an input to backcalculation procedures and as a
starting point for sensitivity analyses.

2.2.3 Lengthening incubation

Estimates of mean or median incubation times have
lengthened steadily since an early estimate of 4.5 years
(Lui et al., 1986). This may be a result of the wide use
of Weibull models, which fit steadily increasing hazard
functions. If the hazard in fact flattens after 4 to 7
years (Muiioz et al., 1989; Bacchetti, 1990), then me-
dian incubation times estimated under a Weibull as-
sumption will lengthen as more followup becomes
available. More recently, however, effective preventive
treatments have truly lengthened incubation times for
people receiving them. Thus, some estimate of the
populationwide influence of this lengthening should be
incorporated into realistic backcalculations (Brook-
meyer, 1991; Rosenberg, Gail and Carroll, 1992).

Ideally, one would like to use available cohort data
to directly estimate the influence of calendar time,
for example, by including it as a time-varying cofactor

in proportional hazards incubation models. Unfortu-
nately, highly concentrated seroconversion densities
for most cohorts mean that changes over time can be
modeled fairly well using only stationary distributions,
so that there is limited information about nonstation-
arity. To date, we are aware of only one attempt to
directly estimate the influence of calendar time (Taylor,
Kuo and Detels, 1991); this found weak evidence of
lengthening. In addition, using nonstationary esti-
mates from cohorts for backcalculation is problematic
for two reasons: (1) cohorts can become less representa-
tive of general populations over time; for example,
none of the San Francisco cohorts now have any sub-
jects under age 30; (2) cohorts are usually carefully
monitored for progression of HIV disease and coun-
seled about treatment options, so they may be more
likely to use preventive therapy and therefore show
more lengthening of incubation times than a wider
population.

The primary strategy to date has been to develop
models of the chronological factors that may cause
lengthening of incubation periods. Typically, this will
involve assumptions or external estimates regarding
the availability of treatment, treatment practices and
the effects of treatment on delaying the onset of AIDS.
Examples of this approach can be found in Solomon
and Wilson (1990), Brookmeyer and Liao (1990b), Gail,
Rosenberg and Goedert (1990), Brookmeyer (1991),
Brookmeyer and Liao (1992) and Rosenberg, Gail and
Carroll (1992). In some ways, this development runs
counter to the original spirit of backcalculation, which
largely avoided the need for assumption-dependent,
explicit modeling. See Section 3.3 for the alternative
approach used here.

Other factors may also influence the length of time
between infection and an AIDS diagnosis. Few at-
tempts have been made to incorporate covariate effects
into backcalculation, although Becker and Marschner
(1993) have used age, which is known to influence
incubation times (Brookmeyer and Goedert, 1989; Big-
gar, 1990) and also clearly influences risk of infection

‘from sexual activity or needle use. Here we allow for

the risk of onset of AIDS to depend explicitly on
calendar month and find considerable evidence of sea-
sonal effects of this type.

2.2.4 Sensitivity analyses

Although backcalculation treats the incubation dis-
tribution as known, the limitations of the available
data and the uncertainties about nonstationarity imply
that it is far from known. Indeed, some investigators
have found that uncertainty about incubation is the
main source of uncertainty in backcalculation (Taylor,
1989; Gail and Rosenberg, 1992). Furthermore, the
evidence for substantially differing incubations in
different populations (Bacchetti et al., 1993; Biggar,
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1990) is an additional source of uncertainty. This espe-
cially adds uncertainty for populations that lack spe-
cific incubation data, such as intravenous drug users,
heterosexuals, and women. Thus, realistic sensitivity
analyses are crucial for accurate assessment of the
uncertainty of backcalculated estimates.

The complexity of the dependence of backcalculated
estimates on the incubation used as an input, along
with the lack of any low-dimensional structure for the
set of possible incubation distributions, make choos-
ing a comprehensive set of alternative incubations for
sensitivity analyses a difficult task. Nevertheless, one
basic insight can be gleaned from examination of Equa-
tion (1). Because the epidemic is less than 15 years old,
the existing data do not involve all of the incubation
distribution, and there is therefore scope for adjusting
the scale of F. From Equation (1), we see that multi-
plying F by a constant will divide the estimate of I
by the same constant, leaving fitted and projected
diagnosis counts unchanged. Thus, varying the scale is
important for assessing the uncertainty in cumulative
infections but useless (or even misleading) for assessing
uncertainty in projections. For example, sensitivity
analyses based mainly on Weibull models with similar
shapes may be too narrow to realistically assess uncer-
tainty in projected diagnosis counts (Gail, Rosenberg
and Goedert, 1990; Segal and Bacchetti, 1990). In addi-
tion, it must be kept in mind that estimates of I are
influenced by the shape and nonstationarity of F, in
addition to its scale. Parameters such as prevalence
and effectiveness of treatment in nonstationary incuba-
tion models can be systematically varied (Brookmeyer,
1991; Rosenberg, Gail and Carroll, 1992), but it is not
clear that such variation fully covers the range of
uncertainty about incubation. In Section 4, we use four
incubation inputs that differ in a number of respects,
but we do not claim that this set of four is comprehen-
sive. This is an area that would benefit from further
development.

2.3 Surveillance Data and Reporting Delays

According to the HIV/AIDS surveillance reports is-
sued by the Centers for Disease Control, “all 50 states,
‘the District of Columbia, U.S. dependencies and pos-
sessions, and independent nations in free association
with the U.S. [Puerto Rico] report AIDS cases to the
CDC using a uniform case definition and case report
form.” The original list of opportunistic infections and
malignancies that qualify as an AIDS diagnosis (CDC,
1982) was broadened slightly in 1985 (CDC, 1985) and
again in 1987 (CDC, 1987a). Information supplied for
each reported AIDS diagnosis includes age at diagno-
sis, geographic location, risk category, and cause or
condition of diagnosis. Completeness of reporting of
diagnosed cases apparently varies across geographic
regions and patient characteristics. Based on mortality

studies, CDC surveillance reports state that 70 to 90%
of HIV-related deaths in men 25 to 44 years of age
are identified through the AIDS diagnosis surveillance
system (Buehler et al., 1990). Many authors use 15%
as an estimate of the extent of underreporting as a
basis for projecting actual AIDS cases rather than
merely reported cases (Rosenberg, Gail and Carroll,
1992). Rosenberg and Gail (1990) also examined a few
possible scenarios in which underreporting changed
over time.

A key aspect of the surveillance system is the delay
between the date of diagnosis and the date that a
report is received at the CDC. Fewer than 10% of cases
are reported in the month of diagnosis; about 50% are
reported within 2 months, 85% within 1 year, and 95%
within 2 years (Karon, Devine and Morgan, 1989).
There is evidence that the length of this reporting
delay varies across geographic region (Brookmeyer and
Damiano, 1989).

Information on the distribution of reporting delays
is available from the data on reported cases, because
both date of diagnosis and date of report are provided
for each case. Note, however, that for a given period
of diagnosis, reporting delay data is right truncated;
for example, diagnoses occurring in the first month of
1991 with a reporting delay of over a year will not be
observed in the surveillance system as of the first
month of 1992. Nevertheless, there has been a substan-
tial statistical methodology developed to estimate a
distribution function based on truncated data (Wang,
Jewell and Tsai, 1986; Lagakos, Barraj and De Grut-
tola, 1988; Kalbfleisch and Lawless, 1989) that has
been successfully applied to estimation of the reporting
delay distribution (Brookmeyer and Damiano, 1989;
Harris, 1990).

We note that reporting delays have been accommo-
dated in backcalculation in different ways. First, knowl-
edge of the reporting delay distribution can be used to
impute “true” AIDS counts from reported counts, and
then the adjusted AIDS counts are used as if there
were no reporting delay. Second, the reporting delay
distribution can be simultaneously estimated along
with the infection curve in the backcalculation tech-
nique through use of the report dates in addition to
diagnosis dates (Harris, 1990; Lawless and Sun, 1992).
This permits an assessment of how uncertainty about
reporting delay adds to uncertainty in backcalculated
estimates. In Sections 3 and 4, we take an intermediate
approach, namely, allowing for variation in reporting
delays (rather than using single imputations) in the
likelihood but assuming that the appropriate reporting
delay distributions are known.

Finally, we note that some authors have allowed for
the possibility that reporting delays may themselves
be changing in magnitude as the epidemic evolves
(Harris, 1990; Brookmeyer and Liao, 1990a; Pagano et
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al., 1992b). There is growing suspicion that reporting
lags are lengthening in comparison to earlier in the
epidemic. The methods described in Section 3 allow for
this possibility by incorporating a nonstationary effect
as part of the modeling of nonstationary incubation
properties.

2.4 Infection Model

Equation (1) only specifies the first moment of the Y;.
Further distributional assumptions will be necessary to
develop a full likelihood approach to estimation and
inference for I. Alternatively, at least second-moment
structure [that is, the covariance structure of (Y7, ...,
Y,)] is necessary for a generalized linear model ap-
proach to estimation of I. A standard assumption is
that the (unobserved) times of infection for different
individuals are independent. This follows from a
stronger assumption (but only slightly stronger) that
infections arrive according to a nonhomogeneous Pois-
son process with intensity function I. This will be
the approach taken in the likelihood development we
describe in Section 3. In fact, both the independence
and Poisson assumptions may be violated. Because
Equation (1) holds even if infection times are depen-
dent, estimates based on independence are likely to
remain consistent even when this assumption is vio-
lated, but model-based estimates of variability may be
underestimated, as in other similar situations (Liang
and Zeger, 1986). It is, however, unlikely that this
phenomenon is a major concern in light of much greater
uncertainties associated with other aspects of the back-
calculation approach. Most researchers have found
substantial extra-Poisson variation or overdispersion.
Some have handled this by estimating overdispersion
in a quasi-likelihood approach (Brookmeyer and Liao,
1990b; Lawless and Sun, 1992), but overdispersion is
often ignored in the estimation process, because it also
does not invalidate Equation (1). Overdispersion must
be taken into account, however, when assessing sto-
chastic variation of backcalculated estimates.

To avoid an ill-posed inverse problem (O’Sullivan,
1986), it is necessary to impose some kind of structure
on the infection curve, I. Some backcalculations used
smooth parametric models for I (Day et al., 1989).
Brookmeyer and Gail (1986, 1988) and Rosenberg et
al. (1991a) used somewhat more flexible parametric
models for I, namely, step functions where I is assumed
to be piecewise constant. Typically, these models for I
had four or five steps with jumps occurring at fixed
known points in time. Later, rapid fitting techniques
(Rosenberg and Gail, 1991) were used to select opti-
mum cutpoints between the four steps. Rosenberg,
Gail and Pee (1991) provide simulation studies sug-
gesting that step-function models are satisfactory in
terms of mean-square error of estimated HIV recon-
structions and AIDS projections. Other investigations

have allowed an arbitrary number of steps but have
constrained the form of I using smoothness assump-
tions. Becker, Watson and Carlin (1991) introduced
smoothness by using the EMS algorithm (Silverman
et al., 1990) whereas Brookmeyer (1991) and Bacchetiti,
Segal and Jewell (1992a) used a penalized likelihood
approach, and Pagano et al. (1992a) employed ridge
regression. Section 3 describes the penalized likelihood
used here.

2.5 Complementary Methods

Several alternative approaches to estimation of the
past HIV infection curve, current HIV prevalence and
future AIDS case counts have been suggested and may
be very useful as comparisons to or corroborations of
the respective estimates produced through backcalcu-
lation. Mathematical epidemic models for HIV trans-
mission have been and continue to be widely studied.
Excellent introductory reviews can be found in Isham
(1988) and Anderson et al. (1986). Such models have
not been broadly effective in providing quantitative
estimates of HIV prevalence or AIDS incidence projec-
tions, largely because there is little accurate data avail-
able for estimates of key parameters. Nevertheless,
they remain valuable tools for assessing the effects of
various potential interventions and for contributing
plausible explanations of observed patterns of AIDS
incidence. For further comments, see Gail and Brook-
meyer (1988) and Jewell (1990).

At the other end of the spectrum, simple extrapola-
tion techniques have often given useful indications of
the short-term prognosis of the epidemic. Statistical
issues concerning the useful implementation of extrap-
olation techniques have been discussed by a variety of
authors including Morgan and Curran (1986), Healy
and Tillet (1988), Zeger, See and Diggle (1989) and
Karon, Devine and Morgan (1989). The advantage of
extrapolation over backcalculation is that it does not
require external information on incubation distribu-
tions, a considerable source of uncertainty. There are
two major disadvantages, however: (1) extrapolation

" does not provide any information on the HIV incidence

curve; and (2) the method uses less information and so
may be less efficient than backcalculation. Regarding
the latter point, it remains to be seen how much bias
the backcalculation method can tolerate (through mis-
specification of incubation properties) before any gains
in efficiency are negated.

Cohorts of seronegatives can be followed to obtain
seroconversion rates, but those who remain in followup
may be more conscientious and less likely to risk infec-
tion than those who drop out or the general population.
Two other strategies are (1) estimation of seropreva-
lence from a populationwide random survey sample;
and (2) estimation of seroprevalence in specified risk
subgroups by a variety of means, and then combination
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of these estimates to provide a population estimate
through weighting by estimates of the size of the risk
groups. Repetition of such surveys over time allows for
estimation of HIV incidence. De Gruttola and Fineberg
(1989) discuss issues surrounding implementation of
large-scale HIV prevalence surveys. A particularly
difficult problem is nonresponse bias (CDC, 1991a). We
discuss in Section 5 a recent proposal to use laboratory
measurements on samples of seropositives to deduce
past infection rates.

3. BACKCALCULATION METHODS

The particular approach to be used here for estima-
tion of the infection rates is based on maximizing a
roughness-penalized likelihood. We make some simpli-
fying assumptions, but we use only observed data with
no imputation. We also generalize the parameterization
to allow for estimation of secular trends (such as the
influence of preventive treatment) and seasonal effects
as part of the backcalculation procedure. We assume
that diagnosis counts are available by month, so that
a discrete monthly time scale is appropriate, in con-
trast to the continuous notation used in Section 2.1.

3.1 Likelihood Formulation

We make the usual assumption that the number of
new infections in month i follows a Poisson distribution
with parameter 6; and that given 6, the numbers of
infections in different months are independent. This
corresponds to assuming that infections arise ac-
cording to a nonhomogeneous Poisson process as de-
scribed in Section 2.4. We consider all cases diagnosed
by some month n and reported by a possibly later
month n*. Thus, we observe

yir = # diagnosed month j and reported month %,
0<j=n,j<k <n¥*
and we wish to estimate # using knowledge of
a;i» = Pr {diagnosed at j and reported
at k | infected at i}.

The numbers a; reflect external knowledge about the
incubation, reporting delay and underreporting distri-
butions. The assumptions concerning the infection
rates 6 imply that the y;; are also independent Poisson.
Letting y; = EZ;J. ¥jr, we write the likelihood of 8 given
a as

L(6la)= L. - L,

where L. is the likelihood of the y;; conditional on the
y; and L, is the marginal likelihood of the y;. We have

j
- 2 aib;
yjk i=0
L, HMH ji» where Ay = 3 =——,
J= =J

PIPILY

m=ji=0

and

1|3 za,,ke] exp[ 22%9]
j=0 [k=ji=0 k=ji=0
Suppose that a;x = D;R;, where Dj; is the probabil-
ity of diagnosis at j given infection at i and R, is the
probability of reporting at % given diagnosis at j. (D;
and R, are assumed to be known from external infor-
mation.) This assumes that the length of incubation
does not influence the subsequent reporting delay or
chance of no report, leading to a useful simplification:

Ry,
so that L. does not depend on §. We therefore estimate
0 using the log-likelihood

Ajk =

n J J
@) TogtLa) = 3 |yl (3 RiDi8) ~ ST RDiA)
j=0 i=0 i=0

where R; = L}~ —; Rjx, the probability that a case diag-
nosed at time j 1s reported by time n*. Note that R;
depends on both reporting delay and underreporting.

Because confidentiality concerns may prevent re-
lease of exact diagnosis and reporting times of early
cases, say those diagnosed up to time g, we may ob-
serve only y* = L¢  y; (For example, the CDC does
not release month of diagnosis for cases diagnosed
before 1982.) In this case, we have

g J
log(L,,,) = y* log <Z ZRjD;j@,) -

Jj=0i=0

j
+ Z [yl log <Z R;D;;6: > 2 R,~D,~,~0,~].
i=0

j=g+1

g J
2 2 RiDyb;
j=0i=0

(2a)

. 3.2 Estimation Method

We estimate 0 by optimizing a penalized-likelihood
criterion:

log (L Z <log — 2log(6i+1)

3) = \
+ 10g(0i+2)> .

Penalizing roughness on the log scale forces 6; > 0 for
any Ay > 0, so that constrained optimization is not
needed. The ultrasmooth case (A, = ) is exponential
growth or decline. Although the criterion (3) can be
optimized directly by the Newton-Raphson method, an
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EM algorithm is useful for reducing the computational
burden and for providing good starting values for fit-
ting the more complicated models described below in
Section 3.3. To define the EM algorithm, consider the
complete data

x; = # infected month i, diagnosed month j
and reported month £,

which are distributed Poisson with means 6,D;Rj.
Simple manipulations show that the complete-data log-
likelihood, up to a constant, is

(4) Z X lOg 91’ Z Dij.Rj y
i=0 j=i
where x; = L;X3x;%. The EM algorithm begins with an

initial guess for 6 and proceeds by calculating the
expectation of the complete-data log-likelihood (E
step), using the formula (see Green, 1990, p. 450):

0: Z D;R; "
= 6.D,
E[x: |y, 0] = _—LJ—_——_"FEI% 7 )
Z 0 ZDrs-R ;;gt Z 0 Dt]

s=r r=0
with the first term appearing only if i < g. The algo-
rithm then continues by finding a new value of 8 that
optimizes the penalized expected log-likelihood (M
step). This optimization can be done quickly by the
Newton-Raphson method, because the log-likelihood
(4) has a diagonal matrix of second derivatives, and the
matrix for the roughness penalty is banded (Bacchetti,
1990).

With an initial guess of constant (and positive) infec-
tion rates, the algorithm defined by alternating the E
and M steps described above, until convergence, is sub-
stantially faster than direct use of Newton-Raphson
optimization on the incomplete-data criterion (3).

3.3 Modeling the Influence of Calendar Time

The formulation in Section 3.1 allows for the D;’s
and Rj’s to depend on more than just the elapsed time,
j — iork — j. Thus, external estimates of the influence
of calendar time itself, such as secular trends and
seasonal effects, can be incorporated, if available. This
is particularly important because it is widely believed
that the incubation distribution is nonstationary, that
is, that it has been changing over time due to preven-
tive treatment and other factors (Section 2.2.3). Good
external estimates of such nonstationarity, however,
are generally not available as of this writing, and it is
useful in any case to be able to estimate calendar time
effects as part of the backcalculation to correct for
possibly inaccurate or inappropriate external esti-
mates. We allow for multiplicative time effects by re-

placing the known terms R;D; in (2) or (2a) by
R;D;e/i*SY and by adding another roughness penalty
to the overall criterion (3) to ensure that the g; are
smooth. Here the nonstationarity factors g are un-
known and model smooth secular trends (see Section
5 concerning the handling of jumps), and the S(j) are
unknown seasonal effects such that, for monthly data,
S(j + 12) = S(j) for all j and S(1) = 0. The seasonal
effects thus consist of 11 parameters unless the S(j)’s
are further restricted. Note that g; and S(j) can be
thought of as modifying R}, as modifying the D;; for all
i, or both, because these terms only appear multiplied
together in (2) and (2a). Thus, with this model, lengthen-
ing incubation times, longer reporting delays, and in-
creased underreporting cannot be separately estimated
from the y;; only their combined effect on diagnosis
counts contributes to the likelihood.

We use a roughness penalty for # equal to the sum
of squared second differences, so the criterion opti-
mized is

lOg 2 (log(B,) - 210g(0i+1\) + log(0,~+2) )2

—2/1 i = 2B + /3]+2) .
j=0

Because incubation times are thought to have been
influenced mainly by recent use of preventive treat-
ment and recent changes in the AIDS case definition,
we set f; equal to zero for j before January 1986, noting
that the penalty includes terms to ensure that the
Bis diverge from zero gradually after that date. In
particular, the ultrasmooth case (1; = ) is § = 0. The
joint optimization in 6, # and the S(j)’s does not appear
to be amenable to an EM approach, so we instead use
the Newton-Raphson method. For a starting value, we
find the optimal # with § and the S(j)'s set to zero,
using the EM algorithm described in the preceding
section.

3.4 Diagnosis Counts, Reporting Delay, Fitted Values

and Incubation

We apply our backcalculation methods to diagnosis
counts from the AIDS Public Information Data Set
provided by the CDC. We use data for all adult or
adolescent cases diagnosed by December 1990 (which
is n in the notation of Section 3) and reported by June
1991 (n* in Section 3). (These cases all meet the 1987
case definition of AIDS.) For some analyses, we also
apply our methods to the following specific risk group-
ings: homosexual and bisexual men who did not use
intravenous drugs; heterosexual or female intravenous
drug users; homosexual or bisexual male intravenous
drug users; and all others. The data set includes esti-
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mates of reporting delay corrections, which we combine
with assumptions about underreporting in order to
calculate the reporting completeness factors R;. (We
note that the nonstationarity estimation described in
Section 3.3 can correct for some inaccuracy in the
reporting delay distribution used.) The fitted values
for the observed y* and yjs are

g Jj
9* = 215 3 RiDy6;
j=0 i=0

J
9; = ei*0 3 R;D;6,

=0
and the standardized residuals are (y; — 9;)/y,%. For
some purposes, it is more natural to consider the actual
number of diagnoses, whether reported or not, so we
impute these numbers as y;/R;. By using the a priori
Rj’s, we make the optimistic assumption that the g/’s
modify only the D;’s and not the R;’s. Fitted values
for these imputed counts (and predicted future counts)
are calculated by the same formula given above for 7;
but without the factor of R;, that is, by 9;/R;. For future
counts, we extrapolate the f;s linearly. Goodness of
fit is measured by the Poisson deviance

_2 *lo y_a‘.:.—("* - *)
yHlog 5 —(9*
+ 2 <y,-log3ﬁ— (9j—yj)>]~
j=g+1 Yi

Note that the y’s, and hence the deviance, depend on
the externally estimated D;’s and R;'s, in addition to
the backcalculated estimates.

We use D;’s corresponding to four different incuba-
tion distributions that have been previously described.
Briefly, these are: a nonstationary model that attempts
to reflect the influence of preventive treatment begin-
ning in mid-1987 (Brookmeyer, 1991), a stationary Wei-
bull model fitted to data from a random sample of
the San Francisco City Clinic Cohort, and stationary
three-parameter generalizations of the Weibull fitted
to data from the San Francisco Hepatitis B Vaccine
Trial Cohort and the Multicenter Hemophilia Cohort
(Bacchetti et al., 1993). A deterministic seasonal effect
reflecting variation in the lengths of calendar months
is incorporated a priori into the D;’s for each of the
distributions. (Thus, the estimated S(j)’s reflect sea-
sonal effects beyond, e.g., the effect caused by Febru-
ary’s having fewer days than January.) We feel that
all of these distributions are reasonable, since they
are based on either actual cohort data or plausible
assumptions (the treatment rhodel). They differ in
scale, shape and stationarity and so provide some in-
sight into backcalculation’s sensitivity to the assumed
Dyjs, although they certainly do not span the entire
range of plausible incubation distributions.

3.5 Choosing the Amount of Smoothness and
Estimating Confidence Intervals

The estimates obtained depend on the values used
for As and 4. The impact of the choice of these smooth-
ness parameters can be explored by plotting the re-
sulting deviance for a range of possible values and
by examining the estimates that result from different
values. In addition, it is useful to have a data-driven
method for choosing the amounts of smoothness. Be-
cause the value of one parameter, say A, can influence
the data-driven choice of the other, say i, we alter-
nately refine the choice of each smoothness parameter
while holding the other fixed, until the parameters
appear to be near their simultaneously optimal values.

The choice of one smoothness parameter, say A,, with
the other fixed, can be based on a method for testing
A¢ = Ag versus Ay = A1, with A; < Ao. The method creates
simulated values of y* and of the y/s based on the
estimates that result from setting 1, = 1. These simu-
lated epidemics are then fitted using both A, = 4, and
A¢ = A1, and the improvement in the deviance from
using 4, instead of A, is calculated. This improvement
is due to the greater flexibility allowed with a smaller
Ag even though the “true” underlying model (the one
used to create the simulated data) is based on the
larger A¢. Thus, the hope is that a large number of
such simulations will define how much improvement
could be expected merely from the greater flexibility
of 1;, even though A, is adequate. This knowledge is
then used to decide if the actual improvement (using
the real y* and y,’s) from 1, is likely to reflect a genu-
inely better fit to the data, for example, if it is more
than twice the average of the simulated improvements
(analogous to the Akaike Information Criterion) or if
fewer than 10% of the simulated improvements are as
large.

To select a value for A, we begin with a value that
is too large and test it against an alternative whose
log is 0.5 smaller. The logs of the test values A, are
decreased by 0.5 until one is found where 100 simula-

‘tions produce no strong evidence that the improvement

from the next smaller value is genuine. The same ap-
proach is then used to choose a value for 4; and is then
repeated for A, and so on until the choices no longer
change.

Realistic simulations are needed for this approach
to produce good choices of A and A;. In particular,
simulations that do not reflect overdispersion (see Sec-
tion 2.4) are likely to allow improvements that result
from overfitting the actual data to appear to be better
than random, because the overfitting produces bigger
improvements than it would for simulated data that
were not overdispersed. We therefore generate simula-
tions that reflect overdispersion by generating nor-
mally distributed random deviates with the means
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from our model and variances equal to the means times
the estimated overdispersion, and then rounding to the
nearest integer. We estimate the overdispersion as the
deviance divided by the approximate error degrees
of freedom [number of data points minus number of
parameters estimated (McCullagh and Nelder, 1989)].
The nonparametric estimation methods for # and g
make the effective number of parameters for these
estimates difficult to ascertain, but because there are
over 100 data points, some inaccuracy in this number
does not change the estimated overdispersion much.
Once A’s have been chosen, we use simulations as
described above, with fixed A’s, to produce pointwise
confidence intervals using the percentile method
(Efron, 1982). We do not use these simulations to
correct for bias (Efron, 1985) because we want the
estimates to be biased toward smoothness (hence the
roughness penalties). This approach accounts for over-
dispersion because the simulations reflect it. We also
produce confidence intervals by using the inverse of
the observed information matrix for (6, g, S(-))—that
is, the second derivatives of the penalized log likeli-
hood —and assuming normality. [See Segal, Bacchetti
and Jewell (1993), for a discussion of the asymptotic
covariance matrix in penalized settings. Although this
matrix is very high-dimensional, it can be efficiently
calculated analytically and inverted by using standard
routines.] This approach ignores overdispersion. An
additional source of variation is the choice of the
smoothness parameters. A preliminary examination of
this issue (Bacchetti, Segal and Jewell, 1992b) finds
that this does not appear to influence the widths of
confidence intervals as much as other factors.
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F16. 1. Estimated numbers of new infections each month from
backcalculations using different assumed incubation periods,
with adaptively chosen smoothness parameters and underre-
porting assumed constant at 10%.’ (Solid line) Treatment model.
(Long dashed line) Weibull model fitted to random sample data.
(Dots) Three-parameter model fitted to hepatitis B vaccine trial
data. (Short dashed line) Three-parameter model fitted to hemo-
philiac data.

4. RESULTS

We present here some analyses that explore a num-
ber of methodological issues in backcalculation. For
the sake of brevity, most analyses are performed using
only the treatment model (Brookmeyer, 1991) of incu-
bation and a constant 10% underreporting rate. The
exception is Section 4.1, where we specifically explore
the importance of these choices.

4.1 Sensitivity Analyses

4.1.1 Choice of incubation distribution

Figures 1 and 2 show the estimates of # and f
that result from using the four different incubation
distributions described in Section 3.4, with underre-
porting assumed constant at 10%. (See Section 4.3 for
details of how 4, and A, are chosen for each incubation.)
The estimated infection rates are similar in that they
all peak in 1984 or early 1985, but they vary quite a
bit in magnitude and shape. In particular, two of the
estimates, those based on incubation distributions
whose hazards eventually decline, have very gradual
declines in infection rates and continuing high rates of
infection. The other two show steeper declines and
lower recent rates. The estimated nonstationarity fac-
tors p also show some overall similarity, with all re-
flecting slowing of reported diagnoses after mid-1987.
For the treatment model, the 8/s are additional nonsta-
tionarity factors that reflect slowing beyond that
caused by the modeled treatment effects. In this case,
an adequate fit to the data can be obtained with

0.2
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0.0
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0.2 ~
-0.3 N
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Fic. 2. Estimated nonstationarity factors for each month, be-
ginning in 1986, from backcalculations using different assumed
incubation periods, with adaptively chosen smoothness parame-
ters and underreporting assumed constant at 10%. (Solid line)
Treatment model. (Long dashed line) Weibull model fitted to
random sample data. (Dots) Three-parameter model fitted to hepa-
titis B vaccine trial data. (Short dashed line) Three-parameter
model fitted to hemophiliac data.
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TaBLE 1
Summary of backcalculations using the different incubation periods from Section 3.4

Cumulative infections

Adaptively chosen I\;I)Z:lihh?f (in thousands by month/year) gj:;ll?z:

Incubation model log(4¢) log(4s) infections 12/84 6/87 12/90 Deviance in 1/95*
Treatment model 10 17 12/84 620 986 1,031 198.8 3,600
Random sample 9 14 10/84 505 781 897 188.8 3,000
Hepatitis B

vaccine trial 10.5 14.5 4/85 522 1,033 1,505 191.3 3,700
Hemophiliac

cohort 10 14.5 3/84 752 1,229 1,742 190.5 3,800

* All cases, whether reported or not, that meet the 1987 case definition.

smoother §/’s that are closer to zero. Use of the Weibull
incubation model from the Random Sample cohort,
which has hazard rates that increase rapidly, requires
very large amounts of estimated slowing in order to
fit the data. Estimated seasonal effects from the four
models are very similar (not shown).

Table 1 summarizes some aspects of the backcalcula-
tion models based on the four incubation distributions.
There is an almost twofold difference in estimated
cumulative infections through 1990, but better agree-
ment earlier, particularly through 1984. The models
show fairly good agreement for the projections of new
AIDS diagnoses in January 1995. This agreement,
however, depends on assuming for all four incubations
that the 8’s modify only diagnosis probabilities and

Seasonally Adjusted
Imputed Diagnoses

oA 1 A AL A AL 11
82 83 84 85 86 87 88 89 90 Of

Month

FiG. 3. Fits to seasonally adjusted, reporting-adjusted diagno-
sis counts for all adult/adolescent U.S. AIDS cases, from backcal-
culations using different assumed incubation periods, with
adaptively chosen smoothness parameters and underreporting
assumed constant at 10%. (Dots) Imputed diagnosis counts calcu-
lated by dividing y; by R;e” and then correcting for the lengths
of calendar months by multiplying by 365.25 and dividing by
twelve times the number of days in the month. (Solid line) Ad-
Jjusted fits using the treatment model of incubation, calculated
by applying the same corrections described above to the raw
fitted 9,. (Dashed line) Adjusted fits using the other three incuba-
tion models (all three visually indistinguishable).

not reporting completeness. If the /s are instead as-
sumed to modify only reporting completeness, then
there would be wider disagreements, with projected
numbers as high as 6,800. The values of A; for each
model are all highly statistically significant when
tested directly against 1; = o (f = 0) by the method
described in Section 3.5. Requiring # = 0 would pro-
duce lower estimated infection rates, particularly for
the Random Sample-based model, leading to cumula-
tive infection estimates that range from 0.5 to 1.5
million by December 1990. All four models produce
excellent fits to the observed diagnosis counts, as
shown in Figure 3. (The counts and fits have been
adjusted for seasonal effects and incomplete reporting
as described in the figure legend to produce a visually
simpler plot.) The differences in the deviances are fairly
small, consistent with the close agreement shown in
Figure 3, and they partly reflect differences in the
effective numbers of parameters.

4.1.2 Choice of underreporting assumptions

For this analysis, we restrict attention to backcalcu-
lations using the treatment model of incubation with
Ao = exp(10) and A; = exp(17). We examine a fairly
narrow set of possibilities that each have underre-

TABLE 2
Influence of underreporting assumptions on estimates of
cumulative HIV infections and projections. Models are
based on the treatment model (Brookmeyer, 1991)
of incubation, with A, = exp(10) and Az = exp(17)

Under-
reporting HIV infections Predi

: edicted
(month/year) (in thousands by month/year) diagnoses
6/87 12/90 12/84 1/85-6/87 17/87-12/90  in 1/95%
10% 10% 620 366 45 3,600
15% 15% 657 387 47 3,800
10% 15% 616 406 61 4,100
15% 10% 661 345 36 3,400

* All cases, whether reported or not, that meet the 1987 case defi-
nition.
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TABLE 3
Deviances and estimated overdispersions from backcalculation models with 1o = exp(8.5)
and Ag; = exp(15), using the treatment model (Brookmeyer, 1991) of incubation

93

Estimated
Deviance overdispersion
No Quarter Month No

seasonal effects effects seasonal Month

Group N effects (3 df) (11 df) effects effects
Homosexual/bisexual men 105,741 306.6 204.9 160.7 3.1 1.8
Intravenous drug users 39,904 203.4 170.8 140.0 2.0 1.6

Homosexual/bisexual male

intravenous drug users 11,823 169.5 154.8 146.8 1.7 1.6
All others 22,226 135.4 98.4 88.0 1.4 1.0
Total adult or adolescent cases 179,694 411.3 255.7 185.6 4.1 2.1

porting constant up to June 1987 and then changing
linearly (or remaining constant) from June 1987 to
December 1990. Table 2 shows that allowing for chang-
ing underreporting rates can have larger impacts than
simply altering an assumed constant level. In particu-
lar, line three of the table shows fewer early infections
than line one and more recent infections and higher
projections than line two. Also, line four shows fewer
recent infections and lower projections than line one
but more early infections than line two. The estimated
nonstationarity factors (not shown) and projections are
influenced fairly directly by changing assumed rates
of underreporting.

4.2 Overdispersion and Seasonal Effects

In this subsection we again restrict attention to
backcalculations that use the treatment model for incu-
bation. We use smaller values for the smoothness pa-
rameters than would be chosen using the method of
Section 3.5 (in particular, we here use i, = exp(8.5)
and i; = exp(1.5)). This is to reduce the influence of
any systematic lack of fit on the residuals that we
wish to analyze. Estimating the overdispersion of the
residuals requires knowing the effective number of pa-
rameters estimated (see Section 3.5). We treat the use
of 1, = exp(8.5) and 1; = exp(1.5) as being equivalent
to estimating 9 parameters, because scatterplot smooths
of the diagnosis counts with approximately 9 degrees
of freedom (Buja, Hastie and Tibshirani, 1989) produce
comparable or slightly better fits to the data. We corre-
spondingly treat models that estimate month effects
as having 20 effective parameters.

Table 3 summarizes the model fits for four subgroups
and overall, both with and without seasonal effects.
With no seasonal effects, the estimated overdispersion
for all cases is large, and Figure 4 shows that there is
also heteroscedasticity in the standardized residuals.
These findings suggest that the Poisson model is some-
what unrealistic, at least when no seasonal effects are

modeled. A further anomaly is the fact that the over-
dispersion is larger for all cases than for any of the
subgroups. Because it estimates the ratio of the vari-
ance to the mean, the overdispersion for all cases would
be a weighted average of the overdispersions in the
subgroups, if the subgroups were independent. Table 4
confirms that the standardized residuals from separate
backcalculations on the subgroups are not indepen-
dent.

Allowing for seasonal effects substantially improves
the fit to the data, resulting in much lower estimates
of the overdispersion (Table 3). (The estimates of § and
p, however, are not changed much.) These improve-
ments appear to be highly statistically significant, be-
cause the improvements in the deviances are much
larger than would be expected for the appropriate null
chi-square distributions. (See Buja, Hastie and Tibshir-
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Fic. 4. Standardized residuals (y; — 9;/9;'* for the fit to all

adult/adolescent U.S. AIDS cases, with the 9; from a backcalcula-
tion model using the treatment model of incubation, As = exp(8.5),
As = exp(15), underreporting assumed constant at 10% and no
monthly seasonal effects (S(j) = O for all j).
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TABLE 4 6
Correlations among monthly standardized residuals for 8 »
different risk groups, from backcalculation models O 4
with the treatment model (Brookmeyer, 1991) of Sm . .
incubation, 1, = exp(8.5), Az = exp(15), and Fo LI ‘. L .. )
underreporting assumed constant at 10% < o L. . e
> . V. .-.. O..o‘. .': L .O.'.Oo
No seasonal effects (=Ug 0 R e T T e
Homosexual or C o -2 ) ) : : ) . L ) )
bisexual male 8 c% :
Correlation Intravenous intravenous All @© += -4 ’
(P-value) drug users drug users others (% 2
-6
Homosexual or 0.369 0.422 0.347 ' " ' " " " " " '
bisexual men  (0.0001) (0.0001) 0.0002) 81é g é 81 4 g é g é 814 g é g é 91 c/) g 4
Intravenous 0.247 0.230
drug users (0.0097) 0.016) Month
H%li’;:;ixa;li;l; (gij)l Fic. 5. Standardized residuals (y; — 9;/9;** for the fit to all
intravenous ’ adult/adolescent U.S. AIDS cases, with the §; from a backcalcula-
drug users tion model using the treatment model of incubation, 1¢ = exp(8.5),
& As = exp(15), underreporting assumed constant at 10% and
Month effects monthly seasonal effects.
Homosexual or
Correlati . bisexual male they are still smaller before 1985 than after. The hetero-
&,r_r:;i:;n ggav:::;s lg:?"f:;:: o tll\ulelrs scedasticity is reduced because the multiplicative form
£ £ of the month effects causes larger improvements for
Homosexual or 0.080 0.342 0.086 larger fitted values, even when standardized by the
bisexual men (0.41) (0.0003) (0.37) square root of the fitted values. We also see from Table
Intravenous 0.156 0.182 4 that the intergroup correlations in standardized resid-
drug users (0.11) (0.058) uals are smaller, although still all positive and still
Hg{“°se’;‘l‘al 01’ 8'239 large enough to make the overall overdisperion larger
il::::“,len;:: © (069) than in the subgroups (Table 3). This reduction in
drug users correlations results from similarity of the estimated

ani, 1989, for a discussion of using chi-squared distri-
butions to compare deviances in nonparametric or
semiparametric settings.) Quarter effects [from requir-
ing that S(1) = S(2) = S(3), S(4) = S(5) = S(6), etc.],
rather than month effects appear to be adequate for
the two smaller groups. Figure 5 shows that the stan-
dardized residuals are less heteroscedastic, although

month effects in the different groups (not shown). In
general, modeling monthly effects brings us substan-
tially closer to meeting the Poisson assumption con-
cerning infection rates, although it requires estimation
of an uncomfortably large number of parameters. (Esti-
mated autocorrelations in the residuals in Figure 5
are small, and modeling them does not produce any
significant further reductions in the overdispersion.)
The seasonal effects are also of some interest in them-
selves. Table 5 gives the standardized residuals from

TABLE 5
Actual reported counts, fitted values and standardized residuals from Figure 4, for three calendar months
January June November
Year ¥i 9 yi—9N9}" Y 9 =99} i 9 (yi—9)19}"”
1982 61 55 0.87 78 87 —0.96 135 135 0.02
1983 177 164 1.05 277 229 3.17 287 319 —-1.79
1984 375 373 0.11 481 482 —0.06 586 631 —-1.79
1985 738 722 0.58 919 893 0.88 1.043 1,123 —2.39
1986 1,333 1,267 1.87 1,597 1,477 3.13 1,565 1,789 —5.30
1987 2,064 1,986 1.74 2,340 2,231 2.31 2,309 2,440 —2.66
1988 2,583 2,607 —0.47 2,952 2,718 4.48 2,707 2,893 —3.47
1989 3,181 3,052 2.34 3,401 3,058 6.19 2,839 3.084 —4.41
1990 3,380 3,170 3.72 2,921 2,922 —0.01 2,559 2,610 —0.99
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Fic. 6. Trade-off between fit to the data, as measured by the
deviance, and the amount of smoothness required for the esti-
mate. Vertical lines mark the values of ¢ and A4 chosen by the
method of Section 3.5 (see Table 6). (a) Trade-off for estimation
of 0. (b) Trade-off for estimation of p.

Figure 4 for three of the months. The generally increas-
ing magnitude of the residuals in later years suggests
that the multiplicative form of the month-effect model
is appropriate for reducing heteroscedasticity. A down-
ward trend over the calendar year is common to all
four risk groups, but it is interrupted by a spike in
June. This spike is fairly consistent across the groups,
and Table 5 shows that the standardized residuals for
June are quite high for five different years, so the spike
appears to be real. We have not yet systematically
examined estimated seasonal effects in subgroups de-
fined by initial diagnosis, geographic area, and primary
risk factor. We are currently developing methods for
gauging the statistical significance of differences in
seasonal effects in different groups in order to facilitate
such a systematic investigation. This may provide fur-
ther insights into possible causes of the month effects.

4.3 Smoothness Selection

The smoothness parameters A, and A, are key ingredi-
ents in the estimation methods of Section 3. The choice
of these parameters determines the fit to the data and
the plausibility of the estimates. Here we examine
the choice of these values for the treatment model of
incubation. Subjective choices can be based on plots
of the deviance as a function of the parameters (Figures
6a and 6b), along with assessments of whether the
resulting estimates of 6 and # are sufficiently smooth.
Because these parameters are so important, however,
it is also desirable to have an automatic, data-driven
method for choosing their values. We therefore use the
methods of Section 3.5 to obtain the results given in
Table 6. If we go to a smaller value only when fewer
than 10 of the 100 simulated improvements are larger
than the observed improvement, then we end up choos-
ing A, = exp(10) and A, = exp(17). This is the method
that produces the choices in Table 1. If we go to a
smaller value when the observed improvement is more

TABLE 6
Summary of simulations used to adaptively choose values for the smoothness parameters Ay and Ag

Observed Average of Proportion
improvement simulated larger than
Comparison in deviance improvements observed
Choice of Ao with Ag fixed at exp(17) (100 simulations each)
As = exp(11) versus 4y = exp(10.5) 6.70 2.53 0.01
As = exp(10.5) versus 1y = exp(10) 5.06 2.47 0.04
As = exp(10) versus 1y = exp(9.5) 3.45 2.18 0.12
As = exp(9.5) versus 1y = exp(9) 2.12 1.76 0.25
Choice of Ag with Ae fixed at exp(10) (100 simulations each)
As = exp(18) versus 15 = exp(17.5) 5.92 2.38 0.03
As = exp(17.5) versus Az = exp(17) 4.50 2.37 0.03
As = exp(17) versus Az = exp(16.5) 3.18 2.21 0.10
Ap = exp(16.5) versus 15 = exp(16) 2.24 1.92 0.29
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Fic. 7. Influence of smoothness parameters on estimates. (a)
Influence of Ag on estimation of 6, with A fixed at exp(17). (Short
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line) Ap = exp(11). (b) Influence of Ap on estimation of P, with Ag
fixed at exp(10). (Short dashed line) A3 = exp(16). (Solid line) Ap
= exp(17). (Long dashed line) 15 = exp(18).

than twice the average of the simulated improvements,
then we would choose 1, = exp(10) and A; = exp(17.5).
These choices seem sensible in relation to the shapes
of the curves shown in Figures 6a and 6b. Figures 7a
and 7b show how the estimates vary depending on the
amount of smoothness. The estimates seem plausible
(and similar) throughout the ranges of A, and 1; exam-
ined in Table 6.

4.4 Confidence Intervals

Backcalculated estimates have some inherent sto-
chastic uncertainty, in addition to the uncertainty re-
sulting from imprecise knowledge of the inputs
discussed in Section 4.1. We assess this uncertainty
using the methods of Section 3.5 for the treatment
model of incubation and 10% constant underreporting,
with 1, = exp(10) and A; = exp(17). These confidence

intervals reflect only the uncertainty that would be
present if we actually knew the incubation and re-
porting inputs and the proper values for A, and A,.
Widths of 95% confidence intervals are not nearly as
large as the uncertainties from the inputs described
in Section 4.1. Using simulations, the intervals for
estimated cumulative infections are about 10% wider
without month effects than with and range from 48,000
wide for infections through 12/84 to 94,000 wide
through 12/90. Those based on the information matrix
are about 10% wider with month effects than without
and range from 44,000 wide by 12/84 to 259,000 wide
by 12/90.

5. DISCUSSION

The methods used here extend previous methods in
some important ways, leading to improved fits to the
observed diagnosis counts. In particular, modeling
nonstationarity and seasonal effects results in signifi-
cantly improved fits for all of the different inputs con-
sidered in Section 4.1. In addition, the methods used
to determine the model complexity (1o and A4) appear
to give sensible results for the situations considered.
There remains, however, substantial overdispersion,
due at least in part to unexplained correlations between
different subgroups. Also, models that include monthly
effects estimate a fairly large number of parameters
relative to the number of data points. The usefulness
of the results is mainly limited by uncertainty about
the AIDS incubation distribution and about how to
allocate the estimated nonstationarity between diagno-
sis and reporting.

Uncertainty about what incubation distribution to
use with the backcalculation method is known to be a
major source of uncertainty in the resulting estimates
(Gail and Rosenberg, 1992; Bacchetti et al., 1993). The
large variations from different incubation inputs shown
in Table 1 and Figures 1 and 2 reflect this fact. Never-
theless, the variations are not as large as in our previ-

. ous report using the same inputs but not modeling

seasonal effects or additional nonstationarity (Bac-
chetti et al., 1993). In this case, adaptively choosing
the amount of nonstationarity, while accounting for
seasonal effects, brings the estimates using the differ-
ent incubation assumptions into better agreement.
This reduction in disparity suggests that the estimates
may also be more accurate and that failure to use
flexible methods to obtain optimal fits to the observed
data may introduce errors beyond those that are inevi-
table due to stochastic variability and uncertainty
about backcalculation’s inputs.

The advantages of modeling nonstationarity as de-
scribed are balanced by a major drawback —its lack of
interpretability. As noted in Section 3.3, the f/s can
be thought of as modifying either or both of the incuba-
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tion and reporting distributions. With a highly concen-
trated infection curve, the ;s could even be interpreted
as correcting a misspecified stationary incubation dis-
tribution. In addition, reductions in the reporting fac-
tors R; can be attributed to either longer delays or
increasing underreporting. We note that using the full
likelihood of Section 3.1 does not solve this problem,
because the factors f; do not appear in L. (they cancel
out), even if they are interpreted as modifying the Rj’s.
Thus, external information is necessary for interpreta-
tion of nonstationarity. L. does provide information
about changes in the shape of the reporting delay
distribution, which can be used with additional as-
sumptions (e.g., that reporting is complete after four
years) to infer lengthening reporting delays (Harris,
1990; Brookmeyer and Liao, 1990a; Pagano et al.,
1992b).

The interpretation of the nonstationarity has alarge
influence on projected numbers of future diagnoses,
particularly because the f's must be extrapolated if
they are interpreted as modifying incubation. If we
were to assume that the fs modified only the R;’s,
then projections would be much higher (up to 6,800)
than shown in Tables 1 and 2, where we assume that
only the diagnosis probabilities are modified. The varia-
tions shown in Table 2 further reinforce the potential
importance of changes in reporting. Although we only
examine very minor variations in underreporting, the
scenarios with changing rates are more extreme for
every estimate than those with constant rates. Larger
variations than those examined, including changing
rates, are probably consistent with what is known
about underreporting (Buehler, Berkelman and Stehr-
Green, 1992).

Even if we ignore the difficulties of interpretation,
the backcalculated estimates of nonstatipnarity vary
substantially depending on the assumed incubation
(Figure 2) and are therefore very uncertain. This re-
flects the fact that diagnosis counts provide relatively
weak information about nonstationarity and highlights
the desirability of obtaining external estimates. De-
spite the difficulties noted in Section 2.2.3, estimates
based on actual incubation data might be more reliable
than either treatment models or estimated f’s from
nonstationary backcalculation models. With accurate
external estimates, the need to estimate f’s could be
eliminated, which would improve the plausibility of
backcalculated estimates while also reducing their sta-
tistical variability.

Estimates of overdispersion previously reported [e.g.,
a value of 5.6 in Rosenberg, Gail and Carroll (1992)]
are large enough to cast doubt on the backcalculation
model. Here, we reduce the estimated overdispersion,
mainly by modeling seasonal effects (Table 3). Model-
ing month effects produces small changes in the esti-
mates of # and B, but failure to recognize seasonal

patterns can influence projections—the pattern of de-
creasing effects over the course of the calendar year with
a substantial spike in June implies that projections
based on case series ending in March or June will be
higher than those based on series ending in December.
For the models considered here, accounting for sea-
sonal effects has the disadvantage of requiring 11 addi-
tional parameters, but more parsimonious models may
be possible. In addition, the causes of the effects are
not yet clear. Examination of such effects for more
subgroups may reveal additional information. For ex-
ample, if the most pronounced increases between No-
vember-December and January-February are found
among cases with Kaposi’'s sarcoma, then year-end
procrastination and new-year initiative might be impli-
cated, since this disease is more often mild enough
to allow postponing diagnosis than are other AIDS
manifestations. Examination of variation in monthly
effects between different regions of the country may
also provide insights.

The four risk groups examined here have similar
estimated month effects, which accounts for much of
the intergroup correlation of residuals from the models
without seasonal effects (T'able 4). Even after modeling
month effects, however, we still see positive correla-
tions in residuals, which make the overall estimate of
overdispersion larger than for any of the subgroups.
The cause of these correlations is also unknown. One
possibility currently being investigated is that fluctu-
ations in the number of workdays per month create
similar fluctuations in different groups. These fluctua-
tions would not be captured by seasonal effects because
the number of workdays in a given month varies from
year to year. Another example of a possible cause
might be sporadic temporary increases in media cover-
age of AIDS issues, causing individuals in different
groups to all seek health care in greater numbers,
leading to temporary increases in diagnoses for all
groups. Such temporary increases, however, would
have to be very short-lived to avoid producing detect-

_able serial correlations (which we do not see here).

The choices of the smoothness parameters 1, and
As directly influence the resulting model. Although a
subjective choice can be based on examination of a
range of possibilities (and such a range should be ex-
amined in any case), it is also desirable to have a
data-driven method for choosing the smoothness. The
method used here produces apparently appropriate
choices, based on subjective assessments of the devi-
ance plots in Figures 6a and 6b, the resulting estimates
of § and B, and the resulting fits to the observed
diagnosis counts. In addition, we can see from Figures
7a and 7b that possible variation in the chosen values
for 1, and 1; would not lead to substantially different
estimates of # and f. We have not, however, systemati-
cally assessed the method’s performance. This would
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require generating simulated data sets for which the
optimal (in some sense) values of 4, and A; are known,
and then employing the method to automatically choose
values of 1 and 15 and comparing the chosen values
to the optimal ones. Because the method itself is so
computationally intensive, this undertaking would re-
quire considerable computing time.

The confidence intervals briefly discussed in Section
4.4 show that backcalculation’s stochastic uncertainty,
when all of its assumptions are met, is much smaller
than the uncertainty from the assumptions examined
in Section 4.1, no matter how the intervals are calcu-
lated. Modeling seasonal effects has some influence on
the widths of the intervals, but the largest influence
on the widths depends on whether the intervals are
based on simulations or on the information matrix.

A frequently used alternative to our likelihood for-
mulation in Section 3.1 is to calculate corrected diagno-
sis counts y; = y;/R; and assume that each ¥; is Poisson
with mean >7,_,D;6;. Our log likelihood (2) can be
rewritten, up to a constant, as

n . j Jj
Z Rj [I%J- log < Z Dij9i> - Z Dija{l,

j=0 ] i=0 i=0

which differs from the Poisson log likelihood for the
imputed §; by downweighting the term for each §; by
its reporting completeness, R;. This downweighting
accounts for the uncertainty in js that are largely
imputed because of small R/’s, for example, very recent
counts. Neglecting the weighting overstates what is
really known and gives too much weight to recent, still
preliminary, data. This, however, would not result in
any large errors for the data considered here. For the
treatment model with Ay, = exp(10) and A; = exp(17),
estimates of cumulative infections are within 0.5%
of the numbers in Table 1 and the asymptotic 95%
confidence intervals are only 0-3% narrower using im-
putation. There is not much more influence on esti-
mates of the §; and S(j), with the magnitude of the f;
about 5% larger with imputation and small differences
in the S(j)’s, along with confidence intervals up to 5%
narrower.

The B’s could be used to capture a nonsmooth impact
of the revision of the AIDS case definition in 1987
(CDC, 1987a), in addition to smooth secular trends.
This would be accomplished by modifying the form of
the roughness penalty for # so that it takes on smaller
values for the terms with j near the time of the change.
[This would be an alternative to the method of Rosen-
berg, Gail and Carroll (1992) that eliminates all new-
definition cases who were diagnosed before the official
time of the change and then estimates a parameter to
account for the jump at the time of the change.] We
have not done this here because there does not appear
to be much systematic lack of fit around the time of

the change, suggesting that retrospective reporting
has substantially smoothed the impact of the revision
on diagnosis counts. Thus, the globally smooth f’s
seem to adequately capture the influence of the change.
Presumably, the estimated #’s would have been more
negative if the revision had not taken place.

A proposed revision of the AIDS case definition to

include HIV seropositive persons with CD4 cell counts
<200 uL would make backcalculation from AIDS diag-
nosis counts much more difficult. This revision would
most likely have a larger impact on diagnosis rates
than previous revisions, making backcalculation meth-
ods based primarily on previous estimates of incuba-
tion distributions questionable. It seems unlikely that
modifications to allow for simple modeling of the
change’s influence as part of the backcalculation model,
such as the nonstationarity estimated here or the sin-
gle-definition change parameter estimated by Rosen-
berg, Gail and Carroll (1992), would be accurate enough
to avoid substantial errors. Very little information
would be gained from the postchange diagnosis counts
if backcalculation were made flexible enough to accu-
rately fit the counts without using external data. In
our framework, AIDS-incidence projections from such
backcalculations would rely on extrapolating large and
rapidly changing f’s and so would essentially be extrap-
olations themselves. Quantification of the impact of
the change from external data, however, would be
difficult, because diagnosis for many people will depend
on how closely CD4 counts are monitored, making
heavily monitored cohorts (that have provided much
previous information on incubation) very unrepresenta-
tive of wider populations. In addition, variations in
monitoring of CD4 counts between different HIV-
positive populations (including variations in the pro-
portions wh@ know that they are positive) could make
incubation distributions more heterogeneous. As we
have argued previously (Bacchetti et al., 1993), hetero-
geneity could substantially increase the already consid-
erable uncertainty about incubation.
. Backcalculation using counts of HIV-related deaths
avoids some of these difficulties. Definitional changes
are not an issue (although ascertainment of HIV relat-
edness could change), and death is an important and
biologically meaningful endpoint. Cohorts are more
likely to be representative in terms of their times from
infection to death than to a detected drop in CD4
count, so more information is available about time to
death. In addition, heterogeneity in time to death may
be less severe, particularly if early treatment increases
AIDS-free survival more than overall survival. Al-
though death surveillance may not currently be as
good as diagnosis surveillance, death certificates are a
valuable resource that could be used to study carefully
the completeness of death surveillance and to improve
it.
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The proposed definition change gives added impor-
tance to alternatives to backcalculation. Brookmeyer
and Liao (1990b) have proposed methods for synthesiz-
ing backcalculation and prevalence estimates from sur-
veys. Unfortunately, direct surveys of HIV prevalence
are hampered by the difficulty of obtaining samples
with representative mixes of HIV positives and nega-
tives, particularly when subjects self-select into the
sample. A recently proposed method avoids this diffi-
culty by focusing only on positives, deducing past
rates of infection from the mix of laboratory-marker
values (Satten and Longini, 1992). This requires sam-
ples of seropositives who are representative of seroposi-
tives generally at the same time. How such samples
could be obtained, however, is not clear. In addition,
the method is, like backcalculation, indirect, and it
depends heavily on detailed knowledge of how marker
values change over time in the population of interest.
Such detailed knowledge is probably even more difficult
to obtain than knowledge of incubation distributions
(Jewell and Kalbfleisch, 1992).

A more direct alternative would be to observe sero-
conversion rates in samples of seronegatives. This
requires that the sampled seronegatives be representa-
tive of seronegatives generally at the same time, but
they can be part of a larger sample that either over-
or underrepresents seronegatives. Obtaining a repre-
sentative sample could be made easier by employing
anonymous, nonvoluntary methods, in which initial
samples are stored untested, with the subject’s identi-
fying information, until an additional later specimen
is obtained, at which time the identifiers are removed
and the pair of specimens is tested. Such an approach
could, for example, be used for many of the anonymous
surveys currently used to assess prevalence (Pappaioa-
nou et al., 1990). This is a more powerful method for
. measuring seroconversion rates than repeated cross-
sectional surveys, and it does not rely on obtaining
samples with representative prevalence. A weakness
of this approach is that the subjects providing repeat
samples may not be representative of those who pro-
vide only one. Nevertheless, this method directly at-
tacks the area where backcalculation is weakest,
estimation of recent infection rates, so it may be a
valuable complement to backcalculation.

The value of the backcalculation technique in the
assessment of the future course of the AIDS epidemic
is evident from its past applications. The method pos-
sesses a clear advantage over simple extrapolation
techniques or complex transmission models in that
with apparently modest assumptions, and some avail-
able incubation input, the pattern of HIV infections
can be reconstructed in a systematic manner that
allows appropriate consideration of stochastic uncer-
tainties. The issues regarding the methodology, there-
fore, center on whether the necessary assumptions hold

up to scrutiny, whether the required external data
are sufficiently valid and the extent to which simple
interpretations of the results of backcalculation are
appropriate. The answer to these questions is necessar-
ily complex, as we have shown. To a great extent,
we do not currently possess the information on the
infection process, incubation period distributions and
aspects of reporting delay and underreporting that
we would like. It is therefore incumbent on users of
backcalculation to allow for these modeling uncertain-
ties in reporting and interpreting backcalculation esti-
mates. This can be done by performing sufficiently
broad sensitivity analyses, possibly including simulta-
neous variation of several uncertain inputs. This, how-
ever, will be computationally demanding, and it may
be difficult to delineate broad alternatives for the in-
puts, as noted in Section 2.2.4 for the case of incu-
bation. Alternatively, detailed Bayesian approaches
might prove fruitful. Acknowledgment of uncertainty
can complicate even the simplest interpretations one
would like to draw from backcalculation. For example,
the evidence for nonstationarity of incubation distri-
butions or quantification of the “treatment effect” is
significantly affected by the assumptions regarding
the underlying incubation and reporting delay distri-
butions and chronological changes in underreporting
rates. Nevertheless, the method of backcalculation will
continue to be useful for AIDS projections and preva-
lence estimation. Further, as the technique is critically
applied, it will continue to raise important questions
about AIDS surveillance and HIV incubation that
might otherwise be missed.

Challenges to the effective use of backcalculation
will continue as our knowledge of the natural history
of HIV infection grows and as factors within the sur-
veillance system change. Further, the nature of the
uncertainties surrounding AIDS projections and HIV
prevalence estimates dictate both continued vigilance
with regard to the quality of the surveillance systems
and the need to collect precise natural history data, as

. well as a careful use of other methods and data sources

to provide validation and context for backcalculation
analyses.
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