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out that the solution yields the constrained empiri-
cal Bayes estimates obtained by Cressie (1986), al-
though no Bayes optimality criterion is invoked by
the authors.

The multivariate version of (10) is

(11) O=A6+b,

where A is an m x m matrix and b is an m x 1 vector.
Upon specifying that E(9) = E(6) and var(d) =var(6),
Cressie (1990b, 1992) obtains a multivariate con-
strained estimator. In the notation of (1), 6 = g,
EO0)=X3,0=y,E(y |0 =0, var(y | ) =%, and
var(y) = ¥ + . Then the multivariate constrained
estimator for model (1), analogous to Spjgtvoll and
Thomsen’s, is given by (11), where

(12) A=TY(T +)"1/2
and
(13) b={I-T2Z+D)"V2}X5.

Notice that § given by (11), (12) and (13) does not
shrink y towards X3 as far as the Bayes estimator
6* does (where A=T(Z +I')"! and b = (I — A)XP).
In an elegant paper, Ghosh (1992) derives a mul-
tivariate constrained Bayes estimator for model (1):

(14) 0% ={a+(1-a)11'/m}6",

where

1/2

)

m -1
a= [trace{([ - 11'/m)V} (Z(e; - ,;*)2) +1

i=1

0" =E@ |y ={TE+ Dy +I -T(E+D)1}X8,

Comment
p. Holt

The paper by Ghosh and Rao is a valuable sum-
mary of recent developments using empirical Bayes
and hierarchical Bayes methods for making small
area estimates. The need for methods which make
provision for local variation while pooling informa-
tion across areas is well established. The review
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V = var(d | y) = T{I - (T + D)~ 1}T.

The vector #® has the property that it minimizes
E(X,(6; — ¢,)? | y) with respect to ¢ and subject to
conditions that match first and second sample mo-
ments of ¢ with those same moments of 6 conditional
on y. Cressie’s proposal given by (11), (12) and (13)
does not invoke any optimality conditions and so
is likely to be less efficient than Ghosh’s estimator
(14).

Constrained Bayes estimation for more general
models, such as GLMs, is presented by Ghosh
(1992), although from an essentially univariate
point of view. Our earlier comment, that we do not
have flexible ways to model lack of independence in
nonlinear, nonnormal models, is equally appropriate
here.

Finally, we agree with the authors’ comment
about the importance of small area estimation in
medical geography. A good source for recent re-
search in this area is the May 1993 Supplement
Issue of the journal Medical Care (Proceedings of
the Fourth Biennial Regenstrief Conference, “Meth-
ods for Comparing Patterns of Care,” October 27—
29, 1991). We are working on incorporating spatial
variation and dependence into statistical methods
for these and other small area estimation problems.
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is a thorough appraisal of the methods and their
properties, and the numerical results reinforce ear-
lier results which demonstrate that these methods
are preferable to others such as synthetic estimation
and sample size dependent estimation.

The value of these approaches is not simply in
their ability to provide point estimates for each
small area which, on average, have better precision.
A very important additional factor is that a measure
of precision (MSE) and an estimator of this can be
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developed for each small area separately. This is ex-
tremely important since the precision of each small
area estimate will depend upon a number of factors
including the sample size and the distribution of the
area specific covariate values as well as the method
of estimation itself. Indeed, no one method of esti-
mation will be necessarily uniformly superior for all
small areas; and any choice of estimator will result
in a loss of precision for some areas as well as gains
for others.

This point leads to the issue of which measures
of precision are appropriate and how to present nu-
merical results. Ghosh and Rao present a single
point estimate for each small area from a single
sample. It is, in effect, a simulation of size one.
There are advantages to this approach since we can
make direct comparisons between the estimates and
true small area means in each case. I will return to
this point, but first let us consider the numerical
results as presented.

The choice of measures, relative absolute error
and squared error for each small area separately,
are both natural. The first represents a measure
analogous to coefficient of variation and the second
represents MSE. However, it is dangerous to sum-
marize these measures into a single average across
all small areas without paying some attention to the
distribution. In Table 3, for example, one notices
that for all four estimators considered the point es-
timates are less than the true values for 13 of the 16
small areas. Also for each estimator the two mea-
sures are extremely variable across the small areas.
To consider the sample dependent estimator, for ex-
ample, Ghosh and Rao comment that in terms of
average relative error it is similar to EBLUP and
HB but in terms of average squared error it is infe-
rior. However, one may derive from the table that
58% of the ASE for this estimator is derived from
the last small area. For each of the estimators, the
distribution of relative absolute error and squared
error is informative and important.

When one considers the distribution of perfor-
mance measures for each small area, then the
reader cannot separate systematic performance
from random error since the results represent a sim-
ulation of size one. Is it the case, for example, that
in small area 4 the tiny deviations for the ratio syn-
thetic and sample size dependent estimators and the
much larger deviations for EBLUP and HB reflect
a true difference in performance or is this random
fluctuation? Would it not have been better to pro-
duce measures which were based upon a set of re-
peated simulations and which could have included
an average bias, average relative absolute error and
mean squared error for each small area separately?
If this had been done then comparisons could have

been made between estimators for each small area
separately (e.g., comparison of average bias, MSE,
etc.). The distribution of these comparative mea-
sures and their overall summary could then have
been considered.

This rather simple comment raises a rather fun-
damental issue about the framework for measures of
performance and how numerical simulations should
be designed. The measures of precision (e.g., MSE)
given in Section 5 of Ghosh and Rao’s paper are es-
sentially model based. To some extent assumptions
of normality are required but the authors comment
about the robustness of the methods. However the
properties within the model framework are condi-
tional on the values of the auxiliary variable (x;)
and the sample size achieved in each small area
(n;). Within the predictive framework many ana-
lysts would prefer measures of precision which con-
dition on the achieved sample in this way. Survey
practitioners, on the other hand, and anyone con-
sidering the choice of estimation method in advance
of the survey being analyzed will want to under-
stand the properties of estimators across of range of
circumstances. This creates a dilemma for the theo-
retician who wishes to demonstrate the comparative
properties of alternative estimation methods, using
simulations.

Should Ghosh and Rao:

(a) Fix the sample values of n;, {x;} and a sin-
gle randomly generated value of the small area
effect v; and carry out repeated simulations to
obtain the properties of each estimator for each
small area?

(b) Fix the sample values of n; and simulate re-
peated sample selections from the population
of each small area?

(c) Draw repeated random samples from the whole
population without restriction?

The model based MSE given in Section 5 will be

- constant under (a) but not under (b) or (c). An ana-

lyst might be more interested in (a) but would want
to be assured that the results did not depend on the
particular choice of the sample configuration. Many
survey practitioners would lean towards (b) or (c).
Perhaps the practical solution is to draw several
samples under (b) or (c); and then for each one se-
lected, carry out repeated simulations under (a). By
presenting the results from one simulation, Ghosh
and Rao effectively avoid all of these issues.
Finally, to turn to a separate issue, the models de-
scribed in Section 4 provide for local differences in
the small area means by introducing a random ef-
fect, v;, for each small area. This is a random term
which is the same for all units in the small area
and essentially introduces a random effect for the
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intercept of the linear model. This approach may be
extended and the two model frameworks for equa-
tions (4.1) and (4.2) essentially integrated. Equa-
tion (4.5) may be generalized to allow all (or any)
of the regression coefficients including the intercept
to be random. Furthermore, small area level vari-
ables (z;) may be used to explain some of the be-
tween small area variation:

¥i = x;B1 +ei,
Bu=ziv+v;

X; is the N; x (p + 1) matrix of unit level covariates
(including an intercept) and z; is the (p+1) xq matrix
of small area level variables. Here v is the vector
of length g of fixed coefficients and v; = (v, . . ., v;p)T
is a vector of length p + 1 of random effects for the
ith small area. In the general form the v; are inde-
pendent between small areas but may have a joint
distribution within each small area with E(y;) = 0
and V(;) = Q:

2
0'0 0’01 .o o'op
2
0’10 0’1 oo a'lp
Q=
0’ a oo 0’2
p0  Cpl P

Comment
Wesley L. Schaible and Robert J. Casady

Professors Ghosh and Rao have provided us with
an excellent, comprehensive review of indirect esti-
mation methods which have been suggested for the
production of estimates for small areas and other do-
mains. They make a timely contribution by review-
ing and comparing a number of new methods which
have recently appeared in the literature as well as
updating previous work on some of the more estab-
lished approaches. Demographic methods, synthetic
and related estimators, empirical Bayes estimators,
hierarchical Bayes estimators and empirical best
linear unbiased prediction methods are thoroughly
discussed; evidence that the Bayes and empirical
prediction methods have advantages over the oth-
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A special case is when the random effects are un-
correlated so that Q is diagonal.

The use of area level variables, Z;, to help ex-
plain the between area variation should help when
the sample size in a small area is small. Also this
more general model effectively integrates the use
of unit level and area level covariates into a single
model. Holt and Moura (1993) provide point esti-
mates and expressions for MSE following the frame-
work of Prasad and Rao (1990).

The use of extra random effects for the regression
coefficients gives greater flexibility. If the unit level
covariate is a set of dummy variables signifying
group membership, for example, then this approach
will allow a set of correlated and heteroscedastic
random effects for the group means in each small
area rather than a single random effect for all sub-
jects.

The introduction of a random effect for the regres-
sion coefficient of a continuous covariate is likely to
have more impact when the individual covariate val-
ues x;; are variable within each small area. Judging
by the values displayed in Table 2 where the values
of x;; vary greatly, it is possible that a more general
model would provide even greater gains in precision
for the empirical example which Ghosh and Rao con-
sider.

ers is presented. Special problems in the applica-
tion of small area estimation methods are also ad-
dressed. This is an extremely important issue and
additional discussion would have been desirable. In
our comments, we will expand on this subject by
discussing some of the characteristics of indirect es-
timators and some specific practical problems asso-
ciated with their use. In addition, we will attempt
to state in general terms what we believe to be the
fundamental problem associated with the applica-
tion of small area estimation methodology.

Very generally speaking, applications of indirect
estimation methods fall into one of three categories:

1. An indirect estimator is used to estimate a pop-
ulation parameter;

2. an indirect procedure is used to modify a direct
estimator of a population parameter (e.g., a di-
rect estimator that incorporates indirectly es-
timated post-stratification controls or seasonal



