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much greater, new idealizations (such as spatial sta-
tistical homogeneity) are needed and so-called theo-
ries appear to require adhoc leaps. Researchers may
prefer to give up and stick with the “old ways,” com-
pensating coarseness of numerical models with ad
hoc eddy viscosities. This is mentioned in the panel’s
report as the “simplest and most commonly used ap-
proach.” It is not purported to be correct; indeed the
panel notes observed eddy fluxes that are countergra-
dient (negative mixing). Regrettably it is profoundly
unclear what to do about the “eddy problem.” For the
most part, modellers await bigger computers which
may permit smaller eddy viscosities.

Theoretical studies from statistical mechanics sug-
gest that “old ways” are systematically incorrect.
The problem with eddy viscosities, diffusivities and
“drags” in general is that they tend to draw mean
fields toward a state of no relative motion. From the-
ory, this appears most improbable. More relevant is
to consider overall entropy of the ocean as a dynam-
ical system, anticipating generalized forces acting
on that system in response to gradients of entropy
with respect to coordinates of the ocean state. Are
these only big words? In fact one can characterize,
if only “roughly,” the higher entropy configuration of
ocean states; then one can anticipate forces which
should arise to drive oceans toward those higher

Comment

Andrew R. Solow _

By necessity, this report, like the ocean itself, is a
good deal broader than it is deep. For this reason,
the report is unlikely to stir up much controversy.
Let me give it a shot anyhow.

While the report provides an admirably panoramic
view of data-rich areas within the field of phys-
ical ‘oceanography, it does seem a little short on
statistics. This is unfortunate, because there is no
reason to believe that it will be harder to teach
statisticians what they need to know about phys-
ical oceanography than to teach physical oceanog-
raphers what they need to know about sound sta-
tistical practice. In particular, the need to think
carefully about a statistical model for data is of-
ten lost on oceanographers (and other scientists) in
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entropy states. Very importantly, such generalized
forces are not like eddy viscous drag; they may rather
be the propelling force behind aspects of observed
ocean circulations.

Despite controversy, a possibility for signifi-
cant improvement on prognostic ocean models has
emerged. The implication also carries over to inverse
or data-assimilative models. Given partial observa-
tion of some aspects of oceans, one employs dynam-
ics to infer other aspects. But then corrupt dynamics
lead to corrupt inferences.

Given the uncertain, preliminary and controver-
sial nature of these comments, it is well that the
panel’s report omits such matters. They appear
here as aside remarks. However, as more atten-
tion is given to statistics as descriptors of oceans,
the more we are moved to consider what dynamics
underlie those descriptors. Tenets of the “old ways,”
even the presumed equations of motion, come up for
fresh review.

Ideas mentioned in these comments are not suffi-
ciently mature to warrant extensive literature. Re-
views of the basic ideas, as applied in geophysi-
cal fluid mechanics, may be read in Salmon (1982),
Holloway (1986) or Lesieur (1990). Examples of
more recent investigations can be seen in Griffa and
Castellari (1991) or Cummins (1992).

their search for methods. Methods are, of course,
a dime a dozen. The trick lies in understanding

. when and why they work and when and why they

do not.

A good example of this is the application of prin-
cipal component analysis to spatial time series.
Briefly, consider a random field Y(x,#) where x is
location within some region R and ¢ is time. In a
typical oceanographic example, Y(x,¢) might repre-
sent mean annual sea surface temperature at loca-
tion x. The field is observed over time at a set of lo-
cations xy, ..., xp. To reveal spatially coherent tem-
poral variations in the field, it is common practice
to extract the first few components from the spatial
covariance (or correlation) matrix of the p stations
estimated from replications over time and to map
the individual station loadings. The oceanographic
and meteorological literature is full of this kind of
application. One example is given by Jolliffe (1986,
page 58).
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Fic. 1. (a) Location of observing locations within the region R; (b)
station loadings in the first component; (c) station loadings in the
second component.

To see what can happen, suppose that the ran-
dom field is stationary with spatial covariance C(h) =
exp(—0.69h). Here, C(h) is the covariance of the ran-
dom field at locations separated by distance 4. The
form of C(h) gives a pretty good idea about the spa-
tial variation of the field: it is continuous, but not
mean square differentiable, with positive correlation
to a range of about 4. Suppose that the observing
stations lie on a regular 3-by-6 grid with unit grid
spacing within a rectangular region R (Figure la).
The station loadings for the first component (which
accounts for 29% of the variance) are shown in Fig-
ure 1b. These loadings suggest a regionwide co-
herent mode of variation (i.e., sea surface temper-
atures tend to fluctuate together across the basin).
This is qualitatively consistent with what one would
expect from the form of C(h). However, Figure 1lc

shows the station loadings for the second component
(which accounts for a further 15% of the variance).
These loadings suggest the existence of an oscilla-
tion along the long dimension of R. The effect of El
Nifio, perhaps, or sunspots. There is, of course noth-
ing mathematically incorrect with decomposing the
spatial variation of the field in this way, but the in-
evitable physical interpretation of the components
can be very misleading.

No sampling was involved in the example outlined
above. In practice, of course, C(h) is unknown and
must be estimated from data. In that case, a deci-
sion must be made about how many of the p compo-
nents to retain for interpretation and analysis. This
is another problem where a lack of careful statisti-
cal thinking has led to the adoption of questionable
methods. This problem is commonly addressed us-
ing the following method, which is also described in
Jolliffe (1986, page 102). Suppose that observations
at the p observing stations are taken in n years. The
distribution of the ordered eigenvalues of the sam-
ple covariance matrix of p independent white noise
series of length n is estimated by simulation. Start-
ing with the first observed component, components
are retained provided the corresponding eigenvalues
exceed, say, the 0.95-quantiles of their marginal sam-
pling distributions under independence. The process
terminates when a component is not retained.

To see why this method is fundamentally incor-
rect, suppose that the first component is determined
to be significant. This is equivalent to a determi-
nation that the station records are not independent.
However, the significance of the second component is
determined by comparing it to its sampling distribu-
tion under independence. In effect, this is a second
test of independence. It is, however, an incorrect test,
because it does not condition on the value of the first
eigenvalue. Thus, this rule consists of a sequence of
incorrect tests of the wrong hypothesis.

Part of the problem here is that insufficient

thought has gone into specifying exactly what it

means for a component to be significant. Under the
approach proposed by Bartlett (1950), the last p — q
components should be discarded if the correspond-
ing eigenvalues are not distinct. One justification for
this approach is that the last p — g components are
not unique in this case. Unfortunately, the distinc-
tiveness of eigenvalues does not capture the notion of
significance in the minds of oceanographers. A dif-
ferent approach would be to discard the last p — q
components if the projection of the original data onto
them is without temporal structure. While this idea
can be formalized, the implicit recognition that the
search is for temporal structure (and not variance)
brings this whole use of principal component analy-
sis into question. Other methods (e.g., Shapiro and
Switzer, 1989) may be more appropriate.
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A final comment. It was disappointing to find no
real mention of Bayesian methods in this report.
There is some irony here, since a number of com-
monly used methods (kriging, for example) have a

Comment

Hans von Storch

1. GENERAL

Being in the process of preparing a monograph on
“statistical analysis in climate research,” I was in-
trigued by the title of the report of the National Re-
search Council on the present use and future need
of statistics in physical oceanography. But after hav-
ing gone through it I became rather disappointed—
apparently these people had a “physical oceanogra-
phy” in mind which had hardly any overlap with the
type of problems which I meet in my own research.
Relevant topics were not mentioned, such as the vari-
ability of the thermohaline circulation (note that the
deep ocean was excluded in Figure 2.1 of the report)
and its implications for the global climate. Influ-
ential names, such as Frankignoul, did not appear.
Fundamental papers, such as that of Hasselmann
(1976) on stochastic climate models, were not cited.
The data assimilation issue related to preoperational
predictions of the oceans were not sufficiently taken
into account (see Derber and Rosati, 1989, or Mellor
and Ezer, 1991). I could not even identify the mem-
bers of the committee who supposedly represent the
community of physical oceanographers.

The solution to this inconsistency is likely that nei-
ther the committee nor I—and my colleagues whom
I have contacted in this matter—represent the full
spectrum of statistical thinking in what is called
physical oceanography. I have to admit that I am
in touch with only a narrow window of the spectrum,
namely, that part with relevance for the dynamics
of climate and for the concept of climate change. In
the following I will go through a number of exam-
ples of statistical thinking in our field. These exam-
ples have been encountered by the Climate Dynam-
ics and Oceanography division of the Max-Planck-
Institut fiir Meteorologie in Hamburg, in the past.
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strong Bayesian flavor. In any case, whatever their
predilections, statisticians must recognize that there
have been enormous advances in practical Bayesian
methods. Some of us actually use them!

2. THE IDENTIFICATION OF DYNAMICAL
SUBSYSTEMS

The dynamics of the ocean operate on a large phase
space with spatial and temporal scales spanning a
wide range. The sheer amount of information, rep-
resenting the state of the ocean during any well-
documented interval of time, inhibits any complete
description of the oceanic dynamics—independently
if we work with observed or simulated data. There-
fore it is advisable, or even required, to split the full
phase space into a “signal” subspace and a “noise”
subspace. The definition of the two subspaces de-
pends, of course, strongly on the considered problem:
The physically significant part of the dynamics span
the “signal” subspace whereas the “noise” subspace
comprises those processes which contribute to the dy-
namics only through their overall statistics and not
through their details. The identification of such dy-
namical subsystems represents a major challenge for
ocean sciences.

2.1 Stochastic Climate Models

In the “stochastic climate model” approach
(Hasselmann, 1976) the separation into signal and
noise subspaces is done by means of time scales.
The “high-frequency” part is considered as “noise”
whereas the “low-frequency” part is understood as
being the dynamical response to the “noise.” To keep
the system stationary, negative feedback must pre-
vail in the “signal” subspace.

This concept has been applied to modeling the
dynamics of sea-ice variability (Lemke, 1977) and
of sea-surface temperature variability (Frankignoul
and Hasselmann, 1977; Ortiz Bévia and Ruiz de
Elvira, 1985; Herterich and Hasselmann, 1987).
More recently the concept has been used in a
“stochastically forced” ocean general circulation
model experiment (Mikolajewciz and Maier-Reimer,
1990). In this run the ocean model was forced with
climatological conditions without any temporal vari-



