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TABLE 2
Percent coverage for nominal 90% confidence interval*
Bootstrap method
o=0.1 o=05
X T1 T1BC T2 T2 BC T1 T1BC T2 T2 BC

0 74 94 50 50 83 88 65 63
1/8 0 7 81 50 39 76 70 67
1/4 100 100 100 94 96 89 90 90
3/8 0 3 74 48 33 76 67 66
1/2 100 100 100 95 97 90 91 90

*T1 means type I percentile bootstrap; T1 BC is type I percentile bias-corrected; T2 is type II
bootstrap; T2 BC is type II bias-corrected as described in text.

To confuse matters further, in using the bootstrap to
pick a bandwidth for a kernel density estimate, the
model generating bootstrap data must be an over-
smoother. Failure to recognize these subtleties will
result in very poor inferences.

Applying the smoother and then the bootstrap is
a breeze (our simulations caused the breeze to blow
1,000 times), and we were able to commit misprac-
tice with practically no effort. There are many other
examples where hidden problems with the bootstrap
will occur unless one is especially knowledgeable and
careful.

Our response to Young’s paper and to our example
is a call to action. The statistical profession needs to
communicate the good news, the bad news and the
“no news yet.” The bootstrap will succeed for a broad
class of models and data structures. It will fail in
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INTRODUCTION

This is a timely article. It is likely to appear in
,print about the same time as first reviews of the ex-
cellent introductory book by Efron and Tibshirani
(Efron and Tibshirani, 1993), a book which should
allay some of the impatience and scepticism that I
sense in the sophisticated user community about the
bootstrap as a practical tool. We are also beginning to
see the first wave of software products which claim to
do bootstrap analysis: some of these are embarrass-
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others; sometimes it can be rescued by modifications
that attend to the structure of the problem. We need
to communicate what we know about the procedure’s
strengths and weaknesses and to identify situations
where we do not yet know the answers. This commu-
nication must reach current and potential users and
thus must appear in a broad array of journals and
other information sources. As we learn more, infor-
mation needs to be updated. Of course, the same
recommendations hold for all statistical procedures,
but the attraction of the bootstrap makes the need
most acute.
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ingly naive. Let us hope for more good applications-
oriented books and better software products.

I think that Alastair Young has done an excellent
job of highlighting the key theoretical developments
and has suggested some sensible steps for further
research. Much of what I have to say will comple-
ment his assessment and will focus on a few practical
points.

WHEN DOES BOOTSTRAP WORK?

This question comes up twice in the paper, in the
context of nonparametric bootstrapping of a point es-
timator. The first time we are given a succinct math-
ematical characterization which is clearly useless to
even the best applied statistician. The second time
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Young suggests that there may be a purely empir-
ical answer, and this is of course what we need—
and what we may not get without a shift in research
emphasis.

What does the question actually mean? Some of
the issues are as follows. Would the particular boot-
strap method work on a very large, clean data set
with infinite simulation? Is there degradation be-
cause of finite simulation? Is the data set too small
for good nonparametric analysis? Is contamination
in the data causing problems? Are there outliers in
the bootstrap output because of outlying bootstrap
samples? Should another statistic be used? Should
a different bootstrap method be used? And so on.

It seems clear that both experience and detailed
assessment of data should be brought to bear. For ex-
ample, it would seem silly to bootstrap a correlation
rather than its z-transform. For regression problems
the usual diagnostics should be run, in part to try
to characterize the nature of random variation: re-
stricted randomization should be considered, so that
certain patterns of simulated data sets are avoided.
(Where is Fisher when we need him?)

One should be a bit cautious about trusting asymp-
totic theory, because it deals with potential rather
than reality. For example, early theoretical work
suggested that the simple bootstrap would work for
the sample median: it gives a consistent estimate of
variance, which the jackknife does not. In fact the
bootstrap is poor at approximating the variance of
the median in small (n = 20) clean data sets, and re-
sults for bootstrap confidence limits are bad. As later
theory has shown, addition of small random pertur-
bations to bootstrap samples is necessary to get good
results for the median, but even now we do not know
for sure exactly what prescription to offer.

To answer the question “When does bootstrap
work?” we need first to answer the question “What
does bootstrap do?” As far as bootstrapping a param-
eter estimate goes, it can be useful to examine how
bootstrap results compare to results from more tra-
ditional analyses such as likelihood analysis. Here 1
should like to look at two small examples in order to
make a rather simple but important point.

ExampPLE 1. The following ordered sample of n =
12 lifetimes, taken from Cox and Snell (1981), is
the ninth of 10 samples which are taken to be from
different gamma distributions; we are interested in
the mean:

3,5,17,18,43, 85,91, 98, 100, 130, 230, 487.

What we shall do is compare parametric likeli-
hood analysis with nonparametric bootstrap anal-
ysis. First the ML estimate of the mean pu is the

sample average y = 108.0833, and the ML estimate
of the gamma index is ¥ = 0.71. However, a like-
lihood confidence interval for the index would easily
include the value « = 1. Inisolation these data would
be thought quite consistent with an exponential dis-
tribution, and on grounds of parsimony this model
might be used in further analysis.

Now in a standard profile likelihood analysis for u
under the full gamma model we use the loglikelihood
ratio LLR = L(&t, k) — L(u, k), where

L =nik(logk —logu) + (k — 1)so — ks1/u —nlog (k)

is the loglikelihood with so = X log(y;), s1 = T y; and
ku denotes ML of « with u fixed. An approximate
95% interval for u is the set of values of u for which
2LLR < 3.84. For our data, this interval for u is
(57.1, 242.8); this is wider than under the best-fitting
gamma model, (59.1, 230.1), and very different from
the interval (64.45, 201.76) obtained under the ex-
ponential model. (I have not used exact methods for
the last two intervals.)

For the nonparametric bootstrap, 999 samples
were generated by random resampling. Figure 1
shows Q—Q plots of the ordered bootstrap sample
means versus quantiles under the exponential and
gamma models; the dotted lines correspond to theo-
retical expectation. The results are clear: nonpara-
metric agrees with fitted gamma, and both are quite
different from exponential. Thisisinteresting, if pre-
dictable. But what about the confidence interval? To
obtain an interval from the bootstrap results we ap-
ply the next-to-simplest method on the log scale, so
the limits are calculated as

exp(2log() — iy,)), r = 25,975,

where if,), r = 1,...,999, are the ordered bootstrap
mean estimates. (This is probably the best nonpara-

‘metric bootstrap method for this problem.) The con-

fidence interval is (61.4, 246.4), more like the profile
gamma likelihood interval than the exponential like-
lihood interval. Virtually the same interval would be
obtained with the same pivot and its distribution un-
der the fitted gamma model.

The lesson drawn from this is that bootstrap re-
sults will tend to mimic parametric model results
under the best-fitting parametric model, not the sim-
plest model which fits the data.

EXAMPLE 2. A more complex application to con-
sider is regression. This is interesting because there
are several bootstrap algorithms, ranging from un-
conditional resampling of cases to unconditional re-
sampling of errors, with several options in between,
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Fic. 1. Q-Q plots of 999 bootstrap sample means: left and right panels correspond to theoretical quantiles under exponential and gamma

model fits.

including stratified resampling of cases and local re-
sampling of errors (wild bootstrap, etc.). It would
seem that a simple protocol could be laid down which
is tied to an initial inspection of the design, the na-
ture of the fitted model and residual-based diagnos-
tics. Thisis what the applied statistician needs. How
do the basic algorithms behave? There is an extended
theoretical treatment of this by Wu (1986), but I know
of no comparably comprehensive empirical study.

A simple example is provided by the data plotted in
the left panel of Figure 2, a double-logarithmic plot
of the body (x) and brain (y) weights of n = 62 mam-
mals.

A fairly standard diagnostic analysis suggests that
the simplest model, straight-line regression with ho-
moscedastic random errors, is adequate. The point
corresponding to humans (labelled) might be viewed
as an outlier and so will be omitted from further
analysis just to be Safe. Then the slope estimate is
b = 0.742 with estimated standard error SE(b) =
0.027 according to the usual formula. The boot-
strap which simulates data by adding random resid-
uals (after suitably standardizing and centring) to
the fitted model produces a nice normal plot of boot-

strap slopes, agreeing with the model-based mean
and standard error, as expected. However, the boot-
strap which simulates data by randomly resampling
cases does not give similar results. The right panel
of Figure 2 shows the normal Q-Q plots of the slope
estimates from 999 bootstrap samples. The solid
line on the plot corresponds to the normal distribu-
tion with the usual standard error, that is, 0.027,
while the dotted line corresponds to the robust stan-
dard error 0.020 obtained from the robust variance
matrix (XTX)"1X7SX (X7 X)~}, in which § is the di-
agonal matrix of squared residuals (adjusted for
leverage).

So the bootstrap sampling algorithm which does
not assume an error model gives results which are
robust against heteroscedasticity. We should really
expect this: it is another version of the phenomenon
of Example 1. But is this the kind of behavior we
want, or would we like the bootstrap to produce re-
sults corresponding to the most parsimonious model
consistent with the data? If the latter, then these
two examples show that we must explicitly inject
that model.
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FIG. 2. Regression example: left panel is log-log plot of data; right panel is normal Q-Q plot of 999 bootstrap slope estimates under
random sampling of cases; solid and dotted lines correspond to usual and robust standard errors.
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DEALING WITH BOOTSTRAP OUTPUT

Accounts of bootstrap methodology are remarkably
short on practical details. By this I mean advice on
such things as the following:

e how to monitor output so as to know when
to stop in a big problem where simulation
is expensive;

e what to do with bootstrap outliers (is it OK to
eliminate very deviant simulated estimates?);

e whether or not it is worth smoothing the boot-
strap simulation output;

e what bootstrap diagnostic plots should be made
and how they should be interpreted.

The area of diagnostic plots seems to me to be of
considerable potential importance. The “jackknife-
after-bootstrap” methodology is a very good start. In
regression it can also be helpful to plot coefficient
estimates against design summaries when whole
cases are resampled.

ITERATED BOOTSTRAP

The reliability of a bootstrap algorithm can be as-
sessed by bootstrapping the bootstrap. This sounds
a bit exotic, but it can work in a variety of ways.
For example, there is some very impressive theory by
Beran, Hall and others to show that it can lead to use-
ful corrections to confidence limits and other forms
of bootstrap output. It is also possible to see how the
distribution of a statistic might change with changes
in parameter value, but I suspect that we need to take
a much wider, method-oriented view of what iterated
bootstrap has to offer. For example, there might be
many useful diagnostic plots, some addressing the
crucial questions “Does bootstrap work?” and “How
should I modify the bootstrap to make it work?” Some
restraint is needed because computation can become
excessive, but there are often shortcuts (computa-
tional or methodological) which enable fast execu-
tion of iterated bootstrap. One shortcut that works
for some problems is the “jackknife-after-bootstrap”
algorithm.

APPLICATIONS

Young is right to refer to time series and stochas-
tic process models as important, because for such
models the bootstrap might be able to provide the
answers that other methodologies cannot. There is
certainly growing interest among econometricians in
applying bootstrap ideas to such things as cointegra-
tion models; but, given the results of the excellent
work done so far on time series problems, we must
not expect miracles in the shape of completely gen-
eral methods.

Another important area where nothing else is
likely to work well is error rate estimation for gen-
eral classification methods (trees, neural networks
etc.) where accurate error rates are needed.

Model selection problems can surely benefit from
bootstrap, although not in its simple form. Some use-
ful work has been done already on subset bootstrap,
a topic which probably deserves more attention.

One large topic to which we know the bootstrap can
contribute much is nonparametric curve and surface
fitting. There is already some excellent theoretical
work on the topic. What I would hope for here is
a portfolio of model-assessment tools which address
questions about curve shape, interaction of effects
and so forth. Such questions are almost impossible
to handle without the bootstrap.

One general point to bear in mind is that one
should know what one is bootstrapping. To me
this means, where possible, expressing quantities in
terms of distributions and estimated distributions,
that is, making a precise theoretical definition of the
problem. I think that Efron illustrates this beauti-
fully in his treatment of missing data problems. I am
not sure that the point has been fully taken on board
in some of the work on stepwise regression fitting
and on nonparametric curve fitting.

PARAMETRIC BOOTSTRAP

I think that I am not alone in sometimes wonder-
ing why there is a parametric bootstrap, except as a
pedagogical device, but clearly there are strong advo-
cates for use of, say, the ABC method of calculating
confidence intervals for parametric models. These
methods do undoubtedly serve a very useful theoret-
ical purpose, not least in giving us the empirical expo-
nential family; perhaps their development has acted
as a spur to the developers of small-sample likelihood
methods, so that use of Barndorff-Nielsen’s famous

‘r* might soon become widely practicable. Then we

shall need to know which of r* and ABC is better for
practical purposes, if indeed they differ much at all.

CONCLUSION

Bootstrap was a wonderful invention and has led to
much fascinating and surprising research. As with
all statistical methodology, a lot of difficult theoret-
ical work has been, and continues to be, necessary
to help validate the methodology. But theory alone
merely gives pointers, and these are only useful if the
right questions were asked. The methodology must
be seen to provide empirically reliable new solutions
and must drive the new theoretical questions.



