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Theorem 2.1), which says that if R(x — y) = R(y)

and
( R(x) 1)
| x: <—1>0

7(x) ~ m

for all m, then ||P(X® = |x®) — #()| tends to
zero in ¢t slower than geometrically. It is straight-
forward to check these conditions in the Gaussian
example, and hence convergence is very slow.

With a random proposal density we can get a
geometrically convergent MCMC: Let R(x — y) =
R(y) be, with probability 1, a multivariate normal
Mpu, 3" 1) and, with probability 3, a multivariate
normal #(—u, 371). To bound the rate of conver-
gence one can use directly the uniform minorization
technique in Roberts and Polson (1994). Since

P(x > y) = m(y)exp| - ulSpu],
it follows that

IP(XD = xD) — 7 ()l < (1 - exp(—%,u,TE,uJ))t,

and convergence is geometric. Hence, randomizing
the proposal density helps. The mixture is somehow
reminiscent of antithetic variables. We get a burn-in
of order O(exp(3u” = w)), which may be quite over-
estimated because the uniform minorization tech-
nique is sometimes poor. Consider again, for in-
stance, the two-dimensional Ising model with 7T
sufficiently large. For a uniform proposal probabil-
ity the best estimate of the burn-in for Metropolis,
based on uniform minorization, is O(exp[(2/T)n)),
while one can show in this case (see Frigessi, Mar-
tinelli and Stander, 1993) that always ¢t* < O(e®/")
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modeling.” We laud the authors’ effective unifica-

Alan E. Gelfand is Professor of Statistics, Depart-
ment of Statistics, University of Connecticut, Box
U-120, Storrs, Connecticut 06269. Bradley P. Carlin
is Assistant Professor of Biostatistics, Division of
Biostatistics, School of Public Health, University of
Minnesota, Box 303 Mayo Building, Minneapolis,
Minnesota 55455.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2
Statistical Science. MINOIN

and under condition (MO) in that paper t* =
O(nlog n). For the Gibbs sampler the bound is
even worse.

The next simple example shows that sometimes
a random proposal density does not speed up con-
vergence w.r.t. a deterministic density. Take 7 to
be the exponential density with parameter A. Let
R(x — y) = R(y) be also exponential with parame-
ter 0 < A’ < A. Then the acceptance probability is

A(x = y) = min(1,exp[ ~ (A = M)y — x)])

and the uniform minimization bound yields

/\/ t
IP(X® = x®) — ()]l < (1 _ 1‘) .

As before, consider now the random proposal den-
sity (again a symmetric mixture)

R(x »y) =R(y) = (XN exp(—A'y)
+(2A — AMexp[ —(2A — A)y]).
Via uniform minimization we obtain

IP(X® = |xD) — 7 ()|

)\/ t )\/ t
<l1-—] >{1-—].
-5 > (-7

Under a prudent policy, that is, trusting only cer-
tain bounds, here in this example randomizing can
slow down convergence. Of course lack of symmetry
plays a role. Summarizing, a blind use of random
proposal densities may not be advantageous. Are

there some guidelines for a successful application of
this potentially powerful idea?

tion of spatial, image-processing and applied
Bayesian literature, with illustrative examples from
each area and a substantial reference list. (As an
aside, one of us pondered the significance of the fact
that roughly one-fourth of the entries in this list
have lead authors whose surname begins with the
letter “G™)

We begin with a few preliminary remarks. First,
with regard to practical implementation, the artifi-
cial “drift” among the variables alluded to in Sec-
tion 2.4.3 is well known to those who fit structured
random effects models and is a manifestation of
weak identification of the parameters in the joint
posterior. Reparametrization and more precise hy-
perprior specification are common tricks to improve
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the behavior of the sample chains in such settings
(Gelfand, Sahu and Carlin, 1994a, b; Vines, Gilks
and Wild, 1994). Also, in Section 2.3.3 we find the
assertion that for single-site updating of variables
on R?!“a simple Metropolis proposal,...that has a
spread similar to that of the marginal posterior for
that variable, is usually effective” (italics ours).
Recent work of Gelman, Roberts and Gilks (1995)
applied to the Metropolis-within-Gibbs setting sug-
gests something potentially quite different, namely,
a spread in the proposal that is 2.38 times the
spread of the full conditional distribution for that
variable. The associated acceptance rate is approxi-
mately 0.44, supporting the ad hoc recommendation
in Section 2.3.3. In practice, “on-the-fly” tuning of
the acceptance rate is usually adopted, since nei-
ther marginal nor conditional spreads are known.
We have some concerns regarding the authors’
treatment of the Gibbs sampler. Their use of prod-
uct set notation, though simplifying, obscures the
valuable application of the sampler to constrained

Algorithm #1 Algorithm #2

G&R 32.83, acf1 0.933 G&R 1, acf1 0.04

Algorithm #3
G&R 3.4, acf1 0.965
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parameter space problems (Gelfand, Smith and Lee,
1992). In such cases, the single-site Gibbs sampler
may provide the only feasible means for analyzing
the associated posterior. Also, the discussion of time
reversibility of the Gibbs sampler near the end of
Section 2.3.2 can be confusing. The customary Gibbs
sampler (i.e., with systematic visitation) is not re-
versible unless implemented with a forward—back-
ward scan, following Section 2.4.3. Componentwise
transitions, x; conditional on a fixed x_j, are
individually time-reversible. They are also margin-
ally reversible, that is, w(x$ D)P(x{P|xf™ D) =
m(xP)P(xf~Plx®p).

Hence the authors’ advice on switching transition
kernels in Section 2.3.4 and Appendix 1 must be
used with care. For instance, Gelfand and Sahu
(1994), fleshing out an example due to Roberts
(1993), show that using the current state of the
chain to choose among transition kernels all having
a common stationary distribution can result in a
chain which does not have this stationary distribu-
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Fic. 1. Monitoring plots for additive two-way ANOVA example: I = J = K = 5, g, = 1, 0, = 10 and oz = 1. Algorithm #5 cycles evenly
and deterministically through the other four.
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tion. Effectively, their example chooses between
running a customary Gibbs sampler under one of
two parametrizations. Thus there is no contradic-
tion to Appendix 1, since the component kernels in
this example do not satisfy detailed balance.

This leads us to the crux of our comment, an
important point regarding selection among MCMC
algorithms. Given a collection of transition kernels
all having the same stationary distribution, an
MCMC algorithm which deterministically cycles
through this collection will achieve convergence
performance which is no worse than that of the best
of them without the user’s having to identify which
kernel is best. Moreover, in practical development
of deterministic cycling schedules, convergence is
often abetted by spending few (perhaps one) consec-
utive iterations with each kernel. Analytic argu-
mentation and challenging exemplification with
hierarchical generalized linear mixed models

Algorithm #1
G&R 32.83 , acf1 0.933

Algorithm #2
G&R 1, acf1 0.037

Algorithm #3
G&R 39.35, acf1 0.674
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(GLMM’s) are the subject of current investigation
by us jointly with W. R. Gilks and G. O. Roberts. In
this Comment we present an illustration for fitting
an elementary linear model where the set of transi-
tion kernels is defined as the set of single-site
Gibbs samplers under a collection of parameteriza-
tions.

In the context of fitting GLMM’s, Gelfand, Sahu
and Carlin (1994a, b) develop the notion of hierar-
chical centering and demonstrate when transforma-
tion to hierarchically centered parameters may be
expected to produce a better-behaved posterior sur-
face, hence more rapid Gibbs sampler convergence.
Unfortunately, their discussion has two limitations.
First, fully hierarchial centering can only be
achieved with models having nested structure; oth-
erwise, only partial centering is available. Second,
the decision to center or not, particularly in
nonnested cases, depends heavily upon the relative

Algorithm #5
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_® _ 8 - _ _ =] T d o
o g o g © d © <
- s -t 5 s °
© 3 © 8 © $ © 9. ‘© 8 . :
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration iteration iteration iteration
G&R 33.42, acf1 0.864 G&R 1, acf1 0.022 G&R 39.32, acf1 0.443 G&R 42.66 , acf1 0.492 G&R 1.01, acf1 0.622
o 8 o~ ¢ o~ o~ s o~ 8 . 1.
4o g ’.m g ¢ g g o W
=3 a =3 s v -3
© 8 ] ] © © g H
' 8 8 ' -
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration h iteration iteration iteration
G&R 56.87 , acf1 0.902 G&R 53.36, acf1 0.911 G&R 1, acf1 0.035 G&R 39.03, acf1 0.973 G&R 1, acf1 0.585
— Q [ g - < |
I (et I (et BT 7. ¥ -
2 R R R s R A 2 L 2 2 . ’
§U—— § = — § § §
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration « iteration iteration iteration
G&R 57.11, acf1 0.662 G&R 53.46 , acf1 0.687 G&R 1, acf1 0.032 G&R 39.09, acf1 0.638 G&R 1, acf1 0.566
2 S e Qe Qe
Y o N oo g ° ) ) Y o § ° . .
£ f £ £, g N o
8 8 ¢ . L 8
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration iteration iteration fteration
G&R 104.67 , acf1 0.819 G&R 10.18 , acf1 0.147 G&R 4.58 , acf1 0.04 G&R 70.28 , acf1 0.872 G&R 1.01, acf1 0.586
Q
S : < i ' Py oy ] € .
LS | it B g o | VRIS : e g
3 8 ¢ I

evenly and deterministically through the other four.

0 100 200 300 400 500
iteration

0 100 200 300 400 500
iteration

0 100 200 300 400 500

iteration

Fic. 2. Monitoring plots for additive two-way ANOVA example: I =J =K =5, o, =1, g, =10 and o5 = 20. Algorithm #5 cycles
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magnitudes of dispersion hyperparameters which
are often unknown. As an example, consider the
simple balanced, additive, two-way ANOVA model,

Yijk =pt+o+ Bt g, i=1,...,1,
j= 1,--~;J,k= 1,...,K,
where ,, ~ N0, 5,2), a; ~ N(0, 0,2, B; ~ N(O, o5°)

and we place a flat prior on u. Let n, = u + «; and
p; = m + Bj, so that x; centers «;, and p; centers B;.
Then we can consider four possible parameteriza-
tions: (1) w-a-B; (2) p-n-B; (3) p-a-p; (4 p-n-p.
Gelfand, Sahu and Carlin (1994b) discuss, under
varying relative magnitudes for g,, o, and o, which
of these parametrizations is best in terms of mixing
(using the diagnostic of Gelman and Rubin, 1992b),
which affects the rate of convergence, and in terms
of within-chain autocorrelation, which affects the
variability of resultant ergodic averages used for
inference.

Each of the four parametrizations produces a
distinct Gibbs sampler. Following our earlier re-
marks, we create a fifth MCMC algorithm, which
consists of cycling through these four parametriza-
tions in sequence, running one complete single-site
updating for each. To keep matters simple, we fix
the values of the variance components, set I = J =
K = 5 and use a sample of data generated from our
assumed likelihood. Two interesting cases are
shown in Figures 1 and 2, which display monitoring
plots, estimated Gelman and Rubin scale reduction
factors (labeled “G & R”) and lag 1 sample autocor-
relations (labeled “acfl”) for five initially overdis-
persed parallel chains of 500 iterations each under
the five algorithms. (To conserve space, we show
results only for «,;, @y, B;, B, and w.) The first
figure sets g, = 1, 0, = 10 and g; = 1, while the
second sets o, = 1, 0, = 10 and o3 = 20. In Figure
1, the algorithm based on parametrization #2 (a’s
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centered) is unequivocally the best of the first four,
as predicted by the theoretical work in Gelfand,
Sahu and Carlin (1994a, b). Matters are less clear
in Figure 2, with each of the individual parametri-
zations having problems with one or more of the
parameters. Notice that in both figures, for each
component of the parameter space, the fifth algo-
rithm achieves mixing which is as good as that of
any of the first four. In fact, in Figure 2, the
behavior of w is satisfactory only for this composite
algorithm. Note also, however, that the lag 1 auto-
correlations for the fifth algorithm are fairly high,
arising as weighted averages of those from the first
four, so the corresponding samples must be used
carefully in computing expectations via Monte Carlo
integration.

Hence with regard to convergence, in using deter-
ministic cycling through a medley of transition ker-
nels, the analyst is able to achieve the benefits of
each (and possibly more) without having to identify
their relative quality. The computational effort in
switching transition kernels in our examples only
requires changing from one linear parametrization
to another, and thus is quite efficient. Lastly, in
situations where Metropolis steps are to be used
within Gibbs samplers, thus necessitating proposal
densities, adaptive adjustment of the dispersion of
these proposals can be implemented concurrently
with the deterministic switching of transition ker-
nels.
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SEPARATION OF CONCERNS

Let me begin my comments with a digression.
Dijkstra (1976) in his seminal book on formal anal-
ysis of the correctness of computer programs intro-
duces the notion of “separation of concerns.” In
computing we have “the mathematical concerns
about correctness [of algorithms and programs im-
plementing them] and the engineering concerns
about execution [speed, memory requirements, user-
friendliness, featurality]” and these should be kept
separate. There is no point in worrying about speed



