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Regression Theory for Categorical
Time Series
Konstantinos Fokianos and Benjamin Kedem

Abstract. Categorical—or qualitative—time series data with random time-
dependent covariates are frequently encountered in diverse applications as
the list of examples shows. As with “ordinary” time series, the data analyst
is faced with the same problems of modeling, estimation, model checking,
diagnostics and prediction. The present work shows that these questions can
be attacked by means of regression theory for categorical time series whose
foundation is based on generalized linear models and partial likelihood
inference. A variety of models are provided to illustrate the selection of
the link function and recent large sample results are reviewed. The theory
is developed without resorting to the Markov assumption and to the notion of
stationarity. Moreover, regression methods for categorical time series allow
for parsimonious modeling and incorporation of random time-dependent
covariates as opposed to other procedures. In particular, nominal and ordinal
time series are analyzed and compared empirically to Markov chains and
mixture transition distribution models.

Key words and phrases: Random time-dependent covariates, partial like-
lihood, martingale, multinomial logits, proportional odds, link function, de-
viance, residuals, Markov chain, mixture transition distribution model.

1. INTRODUCTION

Figure 1 displays the first 300 records of EEG sleep
state scores, typical of newborn infants, classified or
quantized in four categories as follows:

(1) quiet sleep,
(2) indeterminate sleep,
(3) active sleep,
(4) awake.

Here the sleep state categories or levels are assigned
integer values. This is an example of a categori-
cal time series {Yt}, t = 1, . . . ,N , taking the values
1, . . . ,4. These data are accompanied by random time-
dependent covariates, that is, measurements of heart
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rate and temperature—see Section 6.3. The plot raises
several questions. Is there an apparent “periodic” ten-
dency in the data? What is the best way to predict a
future sleep state? Do lagged values of sleep state de-
termine future states? Can the covariates be used to
predict sleep states? These questions and others show
that “ordinary” and categorical time series pose the
same basic problems. The present article offers some
answers to these problems by considering regression
models for categorical time series.

The long list of references at the end of the arti-
cle shows that a number of different strategies have
been proposed for modeling of categorical time se-
ries over the last 20 years or so. Different models
include Markov chain models, integer autoregressive
processes, discrete ARMA models and so on. How-
ever, a successful and versatile approach to the prob-
lem of regression modeling for categorical time se-
ries utilizes the simple and elegant theory of general-
ized linear models. Accordingly, it is sufficient to ex-
press the conditional expectation of the response as
a function of autoregressive components, past obser-
vations and, more generally, random time-dependent
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FIG. 1. First 300 observations of the sleep data.

covariates. A gained advantage is that neither the
Markov property nor stationarity is assumed. Further-
more, experience shows that both positive and negative
association can be taken into account by a suitable
parametrization of the model. Sections 2 and 3 take up
the issues of modeling and link selection for regres-
sion models of categorical time series. In particular, a
detailed exposition of models for nominal and ordinal
time series is offered.

Estimation theory appeals to the methodology of
partial likelihood—an important inferential method for
dependent data. As it turns out, partial likelihood al-
lows for sequential inference with respect to a filtration
generated by all the information available to the data
analyst at the time of observation. Estimation, diag-
nostics, forecasting and model checking are carried out
easily where the computations are implemented by a
number of existing software packages. The problem of
estimation and testing is discussed in Section 4 where
recent progress in this area is reported—see Theorems
4.1 and 4.2—showing that standard results of likeli-
hood analysis are carried over to the dependent data
case.

The reader should recognize that Markov chains
provide a simple but important example of categorical
time series where lagged values of the response are
instrumental in determining its future states. The topic
of Markov chains has been studied by many authors
(see, e.g., Karlin and Taylor, 1975; Meyn and Tweedie,
1993). The texts by Billingsley (1961), Basawa and
Prakasa Rao (1980, Chapter 4) and Guttorp (1995,
Chapter 2) present statistical inference theory for
Markov chains.

Recall that a process {Yt }, t = 1, . . . ,N , defined on
{1,2, . . . ,m}, is called a Markov chain of order p if it

satisfies

P[Yt = k|Yt−1, Yt−2, . . . ]
= P[Yt = k|Yt−1, Yt−2, . . . , Yt−p],(1)

k = 1, . . . ,m.

Thus, given the past values of Yt−1, . . . , Yt−p , (1) pro-
vides the conditional probabilities of a future state or
category k. Markov modeling in the context of cat-
egorical time series can be problematic for two rea-
sons. First, as the order of the Markov chain increases
so does the number of free parameters. Indeed, for a
Markov chain of order p, the total number of para-
meters needed to be estimated is equal to mp(m − 1).
Second, the insistence on using the Markov property
requires the specification of the joint dynamics of the
response and the covariates. This, however, may not al-
ways be possible.

An alternative approach, among others, to Markov
chain models has been the mixture transition distribu-
tion model—a topic presented in Section 5.1. Although
the problem of exponentially increasing parameters is
cleverly bypassed, the issue of incorporating covariates
still remains unresolved for the mixture transition dis-
tribution model.

The examples of Section 6 show the flexibility of
regression theory for categorical time series especially
when compared to the Markov models. The first
example in Section 6.1 refers to explanatory analysis
of DNA sequence data. Viewing the sequence of
DNA letters as a nominal time series, the regression
methodology can discover dependencies in the data
which cannot be assessed by a Markov model. The
next example in Section 6.2 shows how the regression
theory is employed in discovering independence, while
the last example in Section 6.3—discussed briefly
above—shows how random time-dependent covariates
can be taken into account. The presentation concludes
with some other topics related to categorical time
series.

2. MODELING

Assume that we observe a categorical time series
{Yt }, t = 1, . . . ,N , and let m be the number of cate-
gories. In other words, for each t , the possible values
of Yt are 1,2, . . . ,m − 1,m, where the “first” category
is assigned the integer value of 1, the “second” cate-
gory is assigned the integer value of 2 and so on. In
general, the assignment of integer values to the cate-
gories is a matter of convenience and hence it is not
unique.
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To reduce the amount of arbitrariness incurred by
integer assignment to categories, it is helpful to note
that the t th observation of any categorical time series—
regardless of the measurement scale—can be expressed
by the vector Yt = (Yt1, . . . , Ytq)′ of length q = m− 1,
with elements

Ytj =



1, if the j th category
is observed at time t ,

0, otherwise,
(2)

for t = 1, . . . ,N and j = 1, . . . , q . Denote by π t =
(πt1, . . . , πtq)′ the vector of conditional probabilities
given Ft−1, where

πtj = E[Ytj |Ft−1] = P(Ytj = 1|Ft−1), j = 1, . . . , q,

for every t = 1, . . . ,N . At times, we refer to the πtj as
“transition probabilities.” Define

Ytm = 1 −
q∑

j=1

Ytj

and

πtm = 1 −
q∑

j=1

πtj .

The σ -field Ft−1 is generated by Yt−1,Yt−2, . . . ,

Zt−1,Zt−2, . . . , that is,

Ft−1 = σ {Yt−1,Yt−2, . . . ,Zt−1,Zt−2, . . . },
where {Zt−1}, t = 1, . . . ,N , stands for a p × q matrix
that represents a covariate process. In other words, each
response Ytj corresponds to a vector of length p of
random time-dependent covariates which forms the j th
column of Zt−1. The covariate matrix may consist of
lagged values of the response process and of any other
auxiliary process known to the observer at time t .

Following the theory of generalized linear models,
McCullagh and Nelder (1989) assume that the vector
of transition probabilities—that is, the conditional
expectation of the response vector—is linked to the
covariate process through the equation

π t (β) = h(Z′
t−1β),(3)

with β a p-dimensional vector of time-invariant para-
meters. Equation (3) gives the general form of a mul-
tivariate generalized linear model for categorical time
series

π t (β) =




πt1(β)

πt2(β)
...

πtq (β)


 =




h1(Z′
t−1β)

h2(Z′
t−1β)
...

hq(Z′
t−1β)


 = h(Z′

t−1β),

where the inverse link function h is defined on R
q and

takes values in R
q as well. To guarantee that the transi-

tion probabilities fall between 0 and 1, we impose the
condition that h maps a subset H ⊆ R

q one to one onto
{(w1, . . . ,wq)′ :wj > 0, j = 1, . . . , q,

∑q
j=1 wj < 1}.

Model (3) has been considered by a number of
authors, including Fahrmeir and Kaufmann (1987),
Kaufmann (1987), Pruscha (1993) and Fokianos and
Kedem (1998), where the past probability vector π t−1
is included as a covariate. Some further work can be
found in Brillinger (1996) and Fokianos, Kedem and
Short (1996). In addition, recent work by Brillinger,
Morettin, Irizarry and Chiann (2000) develops a wave-
let-based method for the analysis of categorical time
series.

3. LINK FUNCTIONS FOR CATEGORICAL
TIME SERIES

We now turn to the problem of what constitutes
a reasonable choice for the inverse link function h
in the context of regression models for categorical
time series. We introduce some widely used models
for the analysis of categorical time series, including
the so-called multinomial logit and cumulative odds
models. In general, the choice of model depends on
one of three measurement scales: nominal, ordinal and
interval. We shall only examine nominal and ordinal
time series since interval (e.g., quantized) time series
can be handled by methods designed for ordinal data.

3.1 Models for Nominal Time Series

By nominal categorical variables, we mean variables
whose scale of measurement lacks any natural order-
ing. For instance, the daily choice of transportation is
an example of a nominal time series. The multinomial
logit model defined by Agresti (1990, Section 9.2),

πtj (β) = exp(β ′
jzt−1)

1 + ∑q
l=1 exp(β ′

lzt−1)
,

j = 1, . . . , q,

(4)

is frequently employed in the analysis of nominal
time series. Here βj , j = 1, . . . , q , are d-dimensional
regression parameters and zt−1 is a corresponding
d-dimensional vector of stochastic time-dependent co-
variates independent of j . Obviously,

πtm(β) = 1

1 + ∑q
l=1 exp(β ′

lzt−1)
.

Typical examples of zt−1 include

zt−1 = (
1,Wt, Yt−1, log(Wt−1)

)′
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or, when interactions are entertained,

zt−1 = (1,Wt−1, Yt−1, Yt−1Wt−1)
′

and so on given an auxiliary process {Wt}.
The multinomial logit model (4) is derived either by

a straightforward extension of the logistic model or by
maximizing a random utility. The first approach defines
log-odds ratios relative to πtm:

log
πtj

πtm

= β ′
jzt−1, j = 1, . . . , q.

Then (4) follows from the fact that
∑m

j=1 πtj = 1. The
second line of argument uses the maximization of a
random utility function along the lines of McFadden
(1973).

An essential observation is that (4) implies

log
πtj

πti

= (β ′
j − β ′

i )zt−1.

Thus, the ratio πtj /πti for the j th and ith categories
is the same regardless of the total number of cate-
gories m. This property is referred to as independence
of irrelevant alternatives (Luce, 1959).

Model (4) is a special case of (3). Indeed, define β to
be the qd vector

β = (β ′
1, . . . , β

′
q)

′,

and Zt−1 the qd × q matrix

Zt−1 =




zt−1 0 · · · 0
0 zt−1 · · · 0
...

...
. . .

...

0 0 · · · zt−1


 .

Let h stand for the vector-valued function whose
components hj , j = 1, . . . , q , are given by

πtj (β) = hj (ηt )

= exp(ηtj )

1 + ∑q
l=1 exp(ηtl)

, j = 1, . . . , q,

with

ηt = (ηt1, . . . , ηtq )′ = Z′
t−1β.

With this notation, (3) reduces to (4) when p = qd .

3.1.1 Example: multinomial logit model with a pe-
riodic component. It is instructive to examine closely
a simple example by means of simulated data. Fig-
ure 2(a) displays a typical realization of a categor-
ical time series with m = 3 categories and length
N = 200. Since m = 3, Yt has q = 2 components:
Yt = (Yt1, Yt2)

′. The data have been generated accord-

FIG. 2. Typical realization of the multinomial logit model (4) with three categories. Here β1 = (0.30,1.25,0.50,1.00)′ ,
β2 = (−0.20,−2.00,−0.75,−1.00)′ , zt−1 = (1, cos(2πt/12),Y′

t−1)′ and N = 200. (a) Yt , (b) πt1, (c) πt2, (d) πt3.
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ing to the model

log
(

πt1

πt3

)
= β ′

1zt−1

= β10 + β11 cos
(

2πt

12

)

+ β12Y(t−1)1 + β13Y(t−1)2,
(5)

log
(

πt2

πt3

)
= β ′

2zt−1

= β20 + β21 cos
(

2πt

12

)

+ β22Y(t−1)1 + β23Y(t−1)2,

with β1 = (0.30,1.25,0.50,1.00)′, β2 = (−0.20,

−2.00,−0.75,−1.00)′ and zt−1 = (1, cos(2πt/12),

Y′
t−1)

′. In other words, the simulated model incorpo-
rates a sinusoidal component and a lagged value of or-
der 1. One starts with arbitrary values for the Y0j to get
the π1j and then uses the π1j to generate the Y1j and
so on. Figure 2(b)–(d) displays the transition probabil-
ities of each of the categories, respectively. Figure 3
displays the sample autocorrelation function of the
simulated data. The upper left and lower right panels
display plots of the sample autocorrelation functions
of Yt1 and Yt2, respectively. The other plots depict the
sample cross-correlation function between Yt1 and Yt2

for positive (upper right) and negative (lower left) lags.
In all these plots, the sinusoidal component is appar-
ent. Notice that in Figure 2(a) the assignment of values
to the three categories, namely 1,2,3, is arbitrary, but
this has no bearing on the final results due to (2).

3.2 Models for Ordinal Time Series

Ordinal categorical variables—such as blood pres-
sure classified as low, normal and high—are mea-
sured on a scale endowed with a natural ordering.
Thus, the hourly blood pressure of an individual
charted as low, normal and high constitutes an ordinal
time series. The cumulative odds model (Snell, 1964;
McCullagh, 1980) is often used in applications for the
analysis of ordinal data. The derivation of this model
is better understood by means of a latent or auxiliary
variable. That is, we assume the observed data result
from the following threshold mechanism. Let

Xt = −γ ′zt−1 + et ,

where et is a sequence of i.i.d. random variables
with continuous c.d.f. F , γ is a d-dimensional vector
of parameters and zt−1 is a covariate vector of the
same dimension. The process {Xt }, referred to as a
“latent” process, may or may not be observed, but
regardless of whether it is observed or not, the same
calculations persist. Define a categorical time series

FIG. 3. Sample autocorrelation and cross-correlation functions of the simulated data from Figure 2.
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{Yt}, t = 1, . . . ,N , from the levels of {Xt },
Yt = j ⇐⇒ Ytj = 1 ⇐⇒ θj−1 ≤ Xt < θj

for j = 1, . . . ,m, where {θ0, θ1, . . . , θm} is a set of
threshold parameters satisfying

−∞ = θ0 < θ1 < · · · < θm = ∞.

Then

πtj = P(θj−1 ≤ Xt < θj |Ft−1)

(6)
= F(θj + γ ′zt−1) − F(θj−1 + γ ′zt−1)

for j = 1, . . . ,m. In other words,

P(Yt ≤ j |Ft−1)

= F(θj + γ ′zt−1), j = 1, . . . ,m.
(7)

From the estimates of (6), we obtain estimates for (7),
since the set of the cumulative probabilities corre-
sponds one to one to the set of response probabilities.
Many different special cases arise for various choices
for F . For example, the cumulative logistic or propor-
tional odds model is obtained when F is the logistic
distribution function,

Fl(x) = 1

1 + exp(−x)
.

Then we have

log
{

P[Yt ≤ j |Ft−1]
P[Yt > j |Ft−1]

}
= θj + γ ′zt−1(8)

for j = 1, . . . , q . Other choices for F include the
standard normal cumulative distribution function

F ≡ �,

the extreme minimal distribution function

F ≡ 1 − exp
(− exp(x)

)
and the extreme maximal distribution function

F ≡ exp
(− exp(−x)

)
.

In principle, any inverse link function appropriate for
binary data can be used when entertaining a cumulative
odds model.

To recognize that model (7) is a special case of (3),
let β denote the q + d vector

β = (θ1, . . . , θq,γ ′)′

and Zt−1 the (q + d) × q matrix

Zt−1 =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
zt−1 zt−1 · · · zt−1




.

Now set

h = (h1, . . . , hq)′,

with

πt1(β) = h1(ηt ) = F(ηt1),

πtj (β) = hj (ηt ) = F(ηtj ) − F(ηt(j−1)),

j = 2, . . . , q,

where

ηt = (ηt1, . . . , ηtq )′ = Z′
t−1β.

It is clear that (3) is satisfied with this notation and
p = q + d .

Some other models worth mentioning for the analy-
sis of ordinal responses include the continuation ratio
model specified by

F−1
(

πtj (β)

πt(j+1)(β) + · · · + πtm(β)

)
= β ′zt−1,(9)

and the adjacent categories logit model given by

P(Yt = j |Yt ∈ {r, r + 1},Ft−1) = F(β ′zt−1),(10)

where F stands for a continuous c.d.f. Various authors
have considered the so-called two-step and mean re-
sponse models—the latter for the analysis of interval
response variables. The reader is referred to Agresti
(1990), Johnson and Albert (1999) and Fahrmeir and
Tutz (2001, Chapter 3) for further details on modeling
aspects of ordinal and interval data.

3.2.1 Example: proportional odds model with a pe-
riodic component. Figure 4(a) shows a typical real-
ization of an ordinal categorical time series of length
N = 200 with m = 3 categories generated by the fol-
lowing proportional odds model (8):

log
{

P[Yt ≤ 1|Ft−1]
P[Yt > 1|Ft−1]

}

= θ1 + γ ′zt−1

= θ1 + γ1 cos
(

2πt

12

)
+ γ2Y(t−1)1 + γ3Y(t−1)2

and

log
{

P[Yt ≤ 2|Ft−1]
P[Yt > 2|Ft−1]

}

= θ2 + γ ′zt−1

= θ2 + γ1 cos
(

2πt

12

)
+ γ2Y(t−1)1 + γ3Y(t−1)2.
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FIG. 4. Typical realization of the proportional odds model (8) with three categories. Here θ1 = −0.50, θ2 = 0.20, γ = (2.00,−0.50,1.00)′ ,
zt−1 = (cos(2πt/12),Y′

t−1)′ and N = 200. (a) Yt , (b) πt1, (c) πt2, (d) πt3.

The model parameters are θ1 = −0.50, θ2 = 0.20,
γ = (2.00,−0.50,1)′, and the covariate vector zt−1 =
(cos(2πt/12),Y′

t−1)
′ consists of a sinusoidal compo-

nent and a lagged value of order 1. Figure 4(b)–(d) dis-
plays the corresponding transition probabilities of each
of the categories, respectively. Figure 5 displays the

FIG. 5. Sample autocorrelation and cross-correlation functions of the simulated data from Figure 4.
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sample autocorrelation function of the simulated data.
The sinusoidal component is manifested clearly, espe-
cially in the upper left plot of Figure 5.

4. PARTIAL LIKELIHOOD ESTIMATION

The central statistical issue for a categorical time
series regression model is to estimate the vector of
parameters β . Since the data are dependent, we at-
tack the problem through the partial likelihood method-
ology, which was suggested by Cox (1975). Partial
likelihood successfully approaches the problem of es-
timation and testing by means of martingale theory. It
has been proved a useful tool for time series following
generalized linear models (see, e.g., Wong, 1986; Slud
and Kedem, 1994; Fokianos and Kedem, 1998, among
others). According to Fahrmeir and Kaufmann (1987),
Kaufmann (1987) and Fokianos and Kedem (1998), the
partial likelihood (PL) function relative to β , Ft and
the data is given by

PL(β) =
N∏

t=1

f (yt ;β|Ft−1)

=
N∏

t=1

m∏
j=1

πtj (β)ytj ,

(11)

so that the partial log-likelihood is given by

l(β) ≡ log PL(β) =
N∑

t=1

m∑
j=1

ytj logπtj (β).(12)

It is useful to introduce the logit function at this
point:

logit(x) =
(

log
(

x1

1 − ∑q
j=1 xj

)
,

. . . , log
(

xq

1 − ∑q
j=1 xj

))
,

(13)

for a q-dimensional vector x which belongs in the set
{(x1, . . . , xq)′ :xj > 0, j = 1, . . . , q,

∑q
j=1 xj < 1}.

Computation of the maximum partial likelihood
estimator (MPLE) β̂ is carried out by maximizing the
partial log-likelihood (12). This, in turn, implies that if
the MPLE β̂ exists then it is given as the solution of
the partial score equations

∇l(β) = ∇ log PL(β) = 0,(14)

assuming differentiability. The solution of the partial
score equations (14) is obtained by Fisher scoring.

We obtain the partial score by differentiating (12)

SN(β) = ∇l(β)

=
(

∂l(β)

∂β1
, . . . ,

∂l(β)

∂βp

)′

=
N∑

t=1

Zt−1Dt (β)�−1
t (β)

(
Yt − π t (β)

)
.

(15)

Set

Ut (β) = Dt (β)�−1
t (β),

where

Dt (β) =
[
∂h(ηt )

∂η′
t

]

and �t (β) is the conditional covariance matrix of Yt

with generic elements

σ
(ij)
t (β) =

{−πti (β)πtj (β), if i 
= j ,
πti(β)

(
1 − πti (β)

)
, if i = j ,

for i, j = 1, . . . , q . It follows that the partial score (15)
can also be expressed by the equation

SN(β) =
N∑

t=1

Zt−1Ut (β)
(
Yt − π t (β)

)
,(16)

where

Ut (β) =
[
∂u(ηt )

∂η′
t

]

is now a q × q matrix and ηt = Z′
t−1β. The function

u = (u1, . . . , uq) is the composition of the functions
h in (3) and logit in (13). In other words,

u = (u1, . . . , uq) = (
h1(logit), . . . , hq(logit)

)
.

In what follows, we shall use (16) rather than (15).
The conditional information matrix is given by

GN(β) =
N∑

t=1

Cov
[
Zt−1Ut (β)

(
Yt − π t (β)

)|Ft−1
]

=
N∑

t=1

Zt−1Ut (β)�t (β)U′
t (β)Z′

t−1.

(17)

The unconditional information matrix is given by

FN(β) = E[GN(β)](18)

and the second derivative of the partial log-likelihood
multiplied by −1 is

HN(β) = −∇∇′l(β) = GN(β) − RN(β),(19)
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where

RN(β) =
N∑

t=1

q∑
r=1

Zt−1Wtr (β)Z′
t−1

(
Ytr − πtr (β)

)
,

with

Wtr (β) =
[
∂2ur(ηt )

∂ηt ∂η′
t

]

for r = 1, . . . , q .

4.1 Large-Sample Theory

Asymptotic properties of the maximum partial like-
lihood estimator β̂ are examined via the score function
and the conditional information matrix. It turns out that
the following theorem holds under some mild regular-
ity conditions; see Fokianos and Kedem (1998).

THEOREM 4.1. Consider model (3). Then, under
some mild regularity conditions (Assumption A of
Fokianos and Kedem, 1998), we obtain the following:

1. There exists a locally unique maximum partial
likelihood estimator, β̂, with probability tending to 1
as N → ∞.

2. The estimator is consistent and asymptotically nor-
mal,

β̂
p→ β

and
√

N(β̂ − β)
D→ N

(
0,G−1(β)

)
as N → ∞.

3. The following is true:

√
N(β̂ − β) − 1√

N
G(β)−1SN(β)

p→ 0.

The matrix G(β) is the nonrandom limit of GN(β),
that is,

GN(β)

N
→

∫
Rp×q

ZU(β)�(β)U′(β)Z′ν(dZ)

= G(β)

(20)

in probability as N → ∞, where

U(β) =
[
∂u(η)

∂η′
]
,

with η = Z′β, and �(β) has generic elements

σ (ij)(β) =
{−hi(Z′β)hj (Z′β), if i 
= j ,

hi(Z′β)
(
1 − hi(Z′β)

)
, if i = j ,

for i, j = 1, . . . , q . Under some conditions, G(β) is a
positive-definite matrix at the true parameter value and
therefore its inverse exists.

As was noted in Fokianos and Kedem (1998),
this approach is quite general and does not call for
any Markov assumption. Previous related work on
conditional likelihood estimation can be found in
Fahrmeir and Kaufmann (1987) and Kaufmann (1987).
The latter reference provides a rigorous treatment of
consistency, asymptotic normality and efficiency of the
maximum conditional likelihood estimator.

4.2 Testing Hypotheses

In applications, it is often necessary to test the
general linear hypothesis

H0 : Cβ = β0 against H1 : Cβ 
= β0,(21)

where C is an appropriate known matrix with full rank,
say r ≤ p. To this end, it is convenient to denote by β̃

the restricted partial maximum likelihood estimator
under the hypothesis (21). Then the most commonly
used test statistics for testing (21) are:

• the partial likelihood ratio statistic

λN(β) = −2{l(β̃) − l(β̂)};(22)

• the Wald statistic

wN(β) = {Cβ̂ − β0}′
· {CG−1(β̂)C′}−1{Cβ̂ − β0};

(23)

• the partial score statistic

cN(β) = S′
N(β̃)G−1(β̃)SN(β̃).(24)

The following theorem states the asymptotic distribu-
tion of these statistics (see also Fahrmeir, 1987).

THEOREM 4.2. Under Assumption A of Fokianos
and Kedem (1998), the test statistics λN , wN and cN

are asymptotically equivalent. Furthermore, under the
null hypothesis in (21), their asymptotic distribution is
chi-square with r degrees of freedom.

The behavior of all three test statistics under a
sequence of alternatives is examined in Fahrmeir and
Kaufmann (1987), where Theorem 4.2 is applied in
testing the homogeneity and order of a Markov chain,
structural change and independence of two parallel
time series.
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5. OTHER MODELS FOR CATEGORICAL
TIME SERIES

There are several other models that have been pro-
posed in the literature for the analysis of categor-
ical time series. For instance, the so-called integer
autoregressive models—introduced in a series of ar-
ticles by McKenzie (1985, 1986, 1988), Al-Osh and
Alzaid (1987) and Alzaid and Al-Osh (1990)—imitate
the common AR structure (see Box, Jenkins and
Reinsel, 1994) in the sense that the thinning operator
is applied instead of common scalar multiplication.

The first attempt to introduce autoregressive and
moving average models for discrete-valued time series
data was made by Jacobs and Lewis (1978a, b). These
authors consider the so-called discrete autoregressive
moving average models—or DARMA models. In this
section, we review the mixture transition distribution
model which has been found useful in numerous
applications.

5.1 The Mixture Transition Distribution Model

The mixture transition distribution (MTD) model
was introduced in Raftery (1985a), extending previous
work of Pegram (1980), as a parsimonious approach
for the analysis of higher order Markov chains.

The mixture transition distribution model bypasses
the problem of an exponentially increasing number
of free parameters for a Markov chain by specifying
the conditional probability of observing Xt = i0 given
the past as a linear combination of contributions from
Xt−1, . . . ,Xt−p . More precisely, it is assumed that

P[Xt = i0|Xt−1 = i1, . . . ,Xt−p = ip]

=
p∑

j=1

λj P[Xt = i0|Xt−j = ij ]

=
p∑

j=1

λjqij i0,

(25)

where i0, . . . , ip belong to {1,2, . . . ,m}, qij i0 are
elements of the m × m transition matrix Q and the
vector of lag parameters λ = (λ1, . . . , λp)′ satisfies

p∑
j=1

λj = 1, λj ≥ 0,

so that the right-hand side of (25) is between 0 and 1.
An alternative set of restrictions for λ is given by
Raftery and Tavaré (1994).

Besides reducing considerably the number of pa-
rameters to m(m − 1) + (p − 1), model (25) enjoys

several properties. It can be shown that the limiting be-
havior of the MTD model is the same as that of the
full parameterized higher order Markov chain (Raftery,
1985a; Adke and Deshmukh, 1988).

Various generalizations of the MTD model have
been proposed. For example, Raftery (1985b) con-
siders the multimatrix mixture transition distribution
model called MTDg. The MTDg model uses a different
transition matrix for each lag as follows:

P[Xt = i0|Xt−1 = i1, . . . ,Xt−p = ip]

=
p∑

j=1

λjq
(j)
ij i0

.
(26)

Model (26) is less parsimonious than model (25) in
the sense that it requires m(m − 1) + 1 additional
parameters for each lag. However, it accommodates a
dynamic relation between each lag and time period.

The work in Le, Martin and Raftery (1996) and,
more recently, in Wong and Li (2000) extends defi-
nition (25) to arbitrary state space. The spatial MTD
model is investigated by Raftery and Banfield (1991)
and Berchtold (2001), and the double-chain Markov
model is studied by Berchtold (1999).

Estimation of the parameters λ and qij of the
mixture transition model (25) is accomplished by
maximizing the log-likelihood (Raftery and Tavaré,
1994; Berchtold, 2001)

m∑
i0,...,ip=1

ni0,...,ip log

( p∑
j=1

λjqij i0

)

subject to constraints for λ. Here ni0,...,ip counts the
number of sequences {Xt = i0, . . . ,Xt−p = ip}. Al-
ternative estimation methods include the minimum χ2

estimation (Raftery and Tavaré, 1994) and the E-M
algorithm (Le, Martin and Raftery, 1996). Software
(MTD and GMTD) for fitting the mixture transition
model as described above is available at http://lib.stat.
cmu.edu/general. A thorough review of the mixture
transition distribution model for higher order Markov
chains and non-Gaussian time series can be found in
Berchtold and Raftery (1999).

6. EXAMPLES

The regression methodology for categorical time
series can be employed in diverse applications as this
section illustrates in terms of DNA, soccer and sleep
data. Moreover, models such as (4) and (8) offer great
flexibility and accommodate dependence by inclusion
of past values of the response and other covariates
when available.
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6.1 Explanatory Analysis of DNA Sequence Data

Regression models for categorical time series can be
used in explanatory analysis of DNA sequence data as
shown next by model fitting and testing, conditional on
past response values.

A DNA sequence consists of four nucleotides differ-
ing only in the nitrogenous base, whose order deter-
mines the genetic information of each organism. The
four nucleotides are given one-letter abbreviations as
shorthand as follows:

• A is for adenine;
• G is for guanine;
• C is for cytosine;
• T is for thymine.

Adenine and guanine are purines—the larger of the
two types of bases found in DNA—while cytosine and
thymine are pyrimidines.

Thus, a strand of DNA can be represented as a
sequence of letters from {A,C,G,T} and can be
viewed as a nominal categorical time series with the
assignment A = 1, C = 2, G = 3 and T = 4. For more
information, see Waterman (1995).

We present an explanatory analysis for DNA
sequence data of the gene BNRF1 of the Epstein–
Barr virus (see Shumway and Stoffer, 2000, Sec-
tion 5.9) considering only the first 1000 observations—
the whole data set is 3,954 long. The idea is to apply
the multinomial logit model (4) by fitting a series of
various-order models. For example, a first-order model
is given by

log
(

πti(β)

πt4(β)

)
= βi0 + βi1Y(t−1)1

+ βi2Y(t−1)2 + βi3Y(t−1)3

(27)

for i = 1,2,3 and is denoted by 1 + Yt−1. A second-
order model is labeled 1 + Yt−1 + Yt−2 and consists
of (27) plus a linear combination in terms of Y(t−2)1,
Y(t−2)2, Y(t−2)3, and so on.

TABLE 1
Candidate models for the gene BNRF1 of the

Epstein–Barr virus DNA sequence data

Model 1 1 + Yt−1
Model 2 1 + Yt−1 + Yt−2
Model 3 1 + Yt−1 + Yt−2 + Yt−3
Model 4 1 + Yt−1 + Yt−2 + Yt−3 + Yt−4

Table 1 lists the models applied to the DNA sequence
data, and Table 2 reports the inferential results where
the second column lists the number of estimated
parameters, the third column reports the deviance of
the model

D = −2
N∑

t=1

m∑
j=1

Ytj logπtj (β̂)(28)

and the next two correspond to AIC and BIC criteria.
The last two columns give the values of the likelihood
ratio test statistic (22) together with its p-values for
testing the order of the model. Thus, the value 13.48
is not significant, and therefore we might not include
a lagged value of order 2 of the response. In other
words, the hypothesis that Yt−2 should not enter the
regression equation is accepted. Similarly, the p-value
of 0.2121 casts a doubt on the inclusion of Yt−4, while
a p-value of 0.0698 indicates that the inclusion of
Yt−3 is reasonable. The last column is constructed by
appealing to the chi-square distribution with 9 degrees
of freedom. Throughout the analysis, we use N = 996
observations.

The results from Table 2 show that the AIC criterion
is minimized for Model 1, while the BIC criterion is
minimized for the independence model. However, the
likelihood ratio test also indicates that an adequate
model for the data at hand consists of an intercept,
Yt−1 and Yt−3. For 1 + Yt−1 + Yt−3, the number of
estimated parameters is p = 21, D = 2663.20, BIC =
2808.17, AIC = 2705.20 and its p-value is 0.0968
when compared with Model 3.

TABLE 2
Comparison of different multinomial logit models for the gene BNRF1 of

the Epstein–Barr virus DNA sequence data (N = 996)

Model p D AIC BIC λN p-value

Independence 3 2711.31 2717.31 2732.02
Model 1 12 2677.75 2701.75 2760.60 33.56 0.0001
Model 2 21 2664.27 2706.27 2809.25 13.48 0.1420
Model 3 30 2648.41 2708.41 2855.52 15.86 0.0698
Model 4 39 2639.39 2714.39 2905.63 12.02 0.2121
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TABLE 3
Estimated parameters βij , i = 1,2,3, j = 0, . . . ,6, for model 1 + Yt−1 + Yt−3
with their standard errors for the gene BNRF1 of the Epstein–Barr virus DNA

sequence data

i 1 Y(t−1)1 Y(t−1)2 Y(t−1)3 Y(t−3)1 Y(t−3)2 Y(t−3)3

1 −0.908 0.541 0.665 1.071 0.534 0.167 0.787
(0.110) (0.171) (0.080) (0.059) (0.160) (0.084) (0.056)

2 −0.438 0.423 0.288 0.904 0.558 0.486 0.784
(0.100) (0.150) (0.074) (0.055) (0.150) (0.076) (0.053)

3 0.165 0.266 −0.412 0.584 0.262 0.320 0.422
(0.097) (0.141) (0.075) (0.054) (0.146) (0.074) (0.053)

The estimated parameters for this model are given
in Table 3 together with their standard errors in paren-
theses. The standard errors are computed after taking
the square root along the diagonal of G−1

N (β) which
is approximated by G−1(β)/N ; see (17) and (20), re-
spectively. Figure 6 shows the sample autocorrelation
plot of the squared Pearson residuals

r̂t = (Yt − π̂ t )
′�̂−1

t (Yt − π̂ t ),(29)

where �̂t = �t (β̂), for t = 1, . . . ,N , suggesting that
the fit is quite reasonable. Further evidence of this fact
is manifested in Table 4, where the values of the power
divergence statistic Iλ (see Read and Cressie, 1988;

FIG. 6. Sample autocorrelation function of the squared Pearson
residuals corresponding to model 1 + Yt−1 + Yt−3 for the gene
BNRF1 of the Epstein–Barr virus DNA sequence data.

Fokianos, 2002) are tabulated for different λ. It is seen
that all the Iλ values are less than 1.96 in absolute
value, which confirms from another point of view that
model 1 + Yt−1 + Yt−3 is adequate.

The transition probabilities

P(Yt = i|Yt−1 = j,Yt−3 = l)

for i, j, l = 1,2,3,4 are estimated by substitution of
the maximum partial likelihood estimators into the
regression equation of πti using (2). Table 5 reports
the transition probabilities among the different states
where, for example, if Yt−3 = A and Yt−1 = T , then
the transition probability to Yt = C is equal to 0.2592.

Table 6 reports the results of models (1), (25) and
(26) and should be compared with Table 2. Notice that
the number of reported parameters is different from
mp(m − 1) and m(m − 1) + (p − 1) for the Markov
chain and MTD models, respectively. The reason is that
some transitions among the different states never occur.

The first line of Table 6 reports results under inde-
pendence, the selected model under the BIC criterion.
The next four rows show the analysis based on full
Markov chain modeling, that is, model (1). We see that
a Markov chain of order 4 leads to the smallest AIC
with 321 parameters, while the BIC selects the first-
order model with 12 parameters.

MTD fitting points to the first-order model. Indeed,
an MTD model of order 1 is simply a Markov chain
of order 1. It can be seen, though, that higher order
MTD models do not affect the fit considerably since the

TABLE 4
Values of the power divergence statistic Iλ for model 1 + Yt−1 + Yt−3 for the gene BNRF1 of

the Epstein–Barr virus DNA sequence data

λ −0.8 −0.4 −0.1 0.3 0.6 0.8 1 1.2
Value −1.235 −1.056 −0.938 −0.774 −0.640 −0.556 −0.475 −0.396
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TABLE 5
Estimated transition matrix from model 1 + Yt−1 + Yt−3

for the gene BNRF1 of the Epstein–Barr virus DNA
sequence data

Yt−1

Yt−3 Yt A C G T

A A 0.2004 0.2756 0.2352 0.1583
C 0.2915 0.3097 0.3257 0.2592
G 0.3389 0.2089 0.3219 0.3526
T 0.1692 0.2058 0.1172 0.2299

C A 0.1479 0.2107 0.1763 0.1149
C 0.2889 0.3179 0.3279 0.2526
G 0.3828 0.2443 0.3692 0.3916
T 0.1804 0.2271 0.1266 0.2409

G A 0.2167 0.2972 0.2511 0.1738
C 0.3069 0.3251 0.3384 0.2770
G 0.3342 0.2053 0.3135 0.3531
T 0.1422 0.1724 0.0970 0.1961

T A 0.1643 0.2289 0.2001 0.1249
C 0.2335 0.2513 0.2705 0.1997
G 0.3652 0.2279 0.3596 0.3656
T 0.2370 0.2919 0.1688 0.3098

changes in deviance are rather small. Compared with
the output of the multinomial logit model (4) for the
DNA data, the MTD models reduce both the AIC and
the BIC criteria. In addition, the number of parameters
that need to be estimated is appreciably less than the
number of parameters that need to be estimated for
both the multinomial logit model and the full Markov
chain. Note that, as in orders 2 and 3, the equality
between the number of parameters for some models

may not leave degrees of freedom for testing certain
hypotheses.

The multilag MTDg model points to the first-order
Markov chain. Notice again that, as with MTD of
order 1, an MTDg model of order 1 is simply a
Markov chain of order 1. Regarding the fitted MTDg
models, here the number of parameters becomes large
compared with those of the MTD model and this leads
to an increase in both the AIC and the BIC values.
Compared with the multinomial logit fit, the AIC and
BIC values from the MTDg models are larger, except
the order 1 model.

6.2 Soccer Forecasting

A popular weekly game in Greece is that of fore-
casting soccer game outcomes. Each week, a list of 13
soccer games is published by the Greek Organization
of Forecasting Soccer Games in the form “Team A vs.
Team B,” where Team A plays at home. The 13 pairs
vary every week. The published list usually consists of
games played by the Greek First National League but
occasionally some other games, either from the Greek
Second National League or from a foreign league, en-
ter the list. A potential bettor is challenged to forecast
either 13, 12 or 11 correct outcomes by using the sym-
bols “1” (Team A wins), “X” (a tie) or “2” (Team B
wins).

The data consist of the true outcomes of the games
for the first four positions of the list starting from
3/5/1995 and ending on 10/29/2000. This is a total
of 289 sequential observations. Somewhat oddly, we
record “X” as 3, and point out that there are some

TABLE 6
Results from Markov chain and MTD models applied to gene BNRF1 of the

Epstein–Barr virus DNA data (N = 996)

Model Number of Parameters D AIC BIC

Independence 3 2711.31 2717.31 2732.02
Markov chain of order 1 12 2677.75 2701.75 2760.60
Markov chain of order 2 48 2627.68 2723.68 2959.06
Markov chain of order 3 179 2463.22 2821.22 3698.99
Markov chain of order 4 321 1808.33 2450.33 4024.44
MTD of order 1 12 2677.75 2701.75 2760.60
MTD of order 2 13 2677.75 2703.75 2767.51
MTD of order 3 13 2677.11 2703.11 2766.86
MTD of order 4 14 2676.18 2704.18 2772.83
MTDg of order 1 12 2677.75 2701.75 2760.60
MTDg of order 2 25 2664.27 2714.27 2836.87
MTDg of order 3 36 2647.27 2719.27 2895.80
MTDg of order 4 46 2631.12 2723.12 2948.70



370 K. FOKIANOS AND B. KEDEM

TABLE 7
Frequencies for the soccer

forecasting data

“1” “X” “2”

Position 1 166 63 60
Position 2 150 71 68
Position 3 156 57 76
Position 4 155 63 71

weeks when the gambling game did not run on sched-
ule. However, for data analysis purposes, we view these
data as a regular ordinal time series with ordered cate-
gories “1,” “X” and “2.”

Table 7 reports the frequencies of the categories
“1,” “X” and “2.” Thus, in the first position, among
all the soccer games corresponding to the first four
positions on the list, 166 games ended up a win for the
home team, 63 games were a tie and 60 games were a
loss. Figure 7 depicts time series plots of the first 150
outcomes for these data for the different positions. For
each position, the weekly occurrences of the ordinal
values “1,” “X”(=“3”) and “2” define a categorical
time series.

We investigate whether there is dependence among
the games by analyzing these categorical time se-
ries. For each time series, we fit a proportional odds
model (8) with lagged values of the response up to
order 2 as covariates. The results—for N = 287—are
summarized in Table 8. Let us consider the first-order
model fitted for position 2. According to (8) and with
suggestive notation,

log
[

P(Yt ≤ “1”|Ft−1)

P(Yt > “1”|Ft−1)

]

= θ1 + γ1Y(t−1)1 + γ2Y(t−1)2,

log
[

P(Yt ≤ “X”|Ft−1)

P(Yt > “X”|Ft−1)

]

= θ2 + γ1Y(t−1)1 + γ2Y(t−1)2.

The corresponding estimators are θ̂1 = 0.251, θ̂2 =
1.368, γ̂1 = −0.131 and γ̂2 = −0.415 and their
standard errors are 0.244, 0.257, 0.287 and 0.327, re-
spectively.

From Table 8, the BIC criterion is minimized for
the independence model for all positions, while the
AIC criterion is minimized for the independence model
with the single exception of position 2. Similarly, the
deviance is not reduced significantly when entering the

FIG. 7. Time series plot of the first 150 observations for the soccer forecasting data. (a) Outcomes of first position. (b) Outcomes of second
position. (c) Outcomes of third position. (d) Outcomes of fourth position.
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TABLE 8
Comparison of different proportional odds models for the soccer

forecasting data

Time series Model p D AIC BIC

Position 1 Independence 2 562.43 566.43 573.74
1 + Yt−1 4 562.15 570.15 584.79
1 + Yt−1 + Yt−2 6 561.73 573.73 595.69

Position 2 Independence 2 588.63 592.63 599.95
1 + Yt−1 4 586.84 594.84 609.47
1 + Yt−1 + Yt−2 6 578.09 590.09 612.05

Position 3 Independence 2 575.97 579.97 587.28
1 + Yt−1 4 574.12 582.12 596.77
1 + Yt−1 + Yt−2 6 569.18 581.18 603.13

Position 4 Independence 2 580.33 584.33 591.65
1+Yt−1 4 580.12 588.12 602.75
1+Yt−1 + Yt−2 6 579.93 591.93 613.88

lagged regressors into the model equation. It therefore
seems reasonable to conclude that the independence
model is quite adequate for the soccer forecasting data
and that the betting game is fair. As expected from
home games, “1” is more frequent than “X” and “2”:
“1” appears roughly 50% of the times, while the
relative frequency of “X” and “2” is about 25% each.

We compare the obtained results with the fit from
(1), (25) and (26) to the soccer forecasting data. Table 9
reports the results of this analysis only for the games
played in the first position. We see that the proportional
odds model performs better than all the alternatives
considered in the table in the sense of minimizing
both the AIC and the BIC. To explain this, notice the
relatively small number of parameters required when
fitting a proportional odds model. Furthermore, the
results are consistent with the previous analysis. That
is, the model of independence fits the soccer data quite
well, leading once more to the conclusion that the
soccer forecasting game is fair.

6.3 Sleep Data

The advantage of the regression models for categor-
ical time series over the other models considered so
far becomes more apparent when considering random
time-dependent covariates.

The sleep data which have been discussed briefly—
see Figure 1—consist of sleep state measurements of
a newborn infant together with his heart rate (Rt ) and
temperature (Tt ) sampled every 30 seconds. Recall that
the sleep states are classified as:

(1) quiet sleep,
(2) indeterminate sleep,
(3) active sleep,
(4) awake.

The total number of observations is equal to 1024 and
a plot of the data is displayed in Figure 8. The objective
is to predict—or classify—the sleep state based on
covariate information. In this respect, Figure 8 shows

TABLE 9
Results from Markov chain and MTD models applied to the soccer forecasting data

for the first position (N = 289)

Model Number of parameters D AIC BIC

Independence 2 562.43 566.43 573.74
Markov chain of order 1 6 558.69 570.69 592.64
Markov chain of order 2 18 549.21 585.21 651.08
MTD of order 1 6 558.69 570.69 592.64
MTD of order 2 7 558.68 572.68 598.29
MTDg of order 1 6 558.69 570.69 592.64
MTDg of order 2 12 557.84 581.84 625.75
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FIG. 8. Time series plot for the sleep data (N = 1024).

that sleep state depends on heart rate—higher values of
heart rate tend to correspond to state (4).

To begin analyzing these data, notice that the res-
ponse—the sleep state, say Yt —is an ordered time
series in the sense that “(4)” < “(1)” < “(2)” < “(3)”;
that is, the response increases from awake to active
sleep. By removing the first two observations, we fit
several proportional odds models (8) to these data
using only the first 700 observations. The remaining
observations are used as a testing data set. The results
of the analysis are summarized in Table 10.

Table 10 shows that a sensible model for the sleep
data includes Yt−1 and the logarithm of heart rate
(log Rt ). Comparing Model 1 with Model 7, we notice
that Yt−1 is clearly a significant predictor. In addition,
the deviance difference between Model 2 and Model 1
is 2.05 (p-value = 0.1522), suggesting that the loga-
rithm of heart rate may be included in the model. Mod-
els 3, 4, 5 and 6 do not substantially enhance the fitted
model, leading to the conclusion that temperature, and
higher order lagged values of the response, are not sig-
nificant predictors. These factors lead to the following

TABLE 10
Comparison of different proportional odds models for the sleep data (N = 700)

Model Covariates p D AIC BIC

1 1 + Yt−1 6 389.56 401.56 428.86
2 1 + Yt−1 + logRt 7 387.51 401.51 433.37
3 1 + Yt−1 + logRt + Tt 8 387.32 403.32 439.73
4 1 + Yt−1 + Tt 7 389.52 403.52 435.38
5 1 + Yt−1 + Yt−2 + logRt 10 387.28 407.28 452.79
6 1 + Yt−1 + logRt−1 7 389.40 403.40 435.26
7 1 + logRt 4 1684.31 1692.31 1710.51



REGRESSION THEORY FOR CATEGORICAL TIME SERIES 373

FIG. 9. (a) Observed versus (b) predicted sleep states for model 1 + Yt−1 + logRt applied to the testing data set (N = 322).

model:

log
[

P(Yt ≤ “4”|Ft−1)

P(Yt > “4”|Ft−1)

]

= θ1 + γ1Y(t−1)1 + γ2Y(t−1)2

+ γ3Y(t−1)3 + γ4 logRt,

log
[

P(Yt ≤ “1”|Ft−1)

P(Yt > “1”|Ft−1)

]

= θ2 + γ1Y(t−1)1 + γ2Y(t−1)2

+ γ3Y(t−1)3 + γ4 logRt,

log
[

P(Yt ≤ “2”|Ft−1)

P(Yt > “2”|Ft−1)

]

= θ3 + γ1Y(t−1)1 + γ2Y(t−1)2

+ γ3Y(t−1)3 + γ4 logRt,

with θ̂1 = −30.3529, θ̂2 = −23.4931, θ̂3 = −20.3495,
γ̂1 = 16.7183, γ̂2 = 9.5338, γ̂3 = 4.7550 and γ̂4 =
3.5567. The corresponding standard errors are 12.0517,
12.0128, 11.9858, 0.8726, 0.6306, 0.5018 and 2.4709.

Model 2 is applied to the testing data set which
consists of 322 measurements. Figure 9 displays a time
series plot of the observed versus predicted sleep states
for the testing data set. The predicted responses are
obtained by the following simple rule:

Yt = j ⇐⇒ max
k

π̂tk = π̂tj ;
that is, category j is chosen if and only if its estimated
transition probability is the maximum among the es-
timated transition probabilities. The misclassification
rate of Model 2 is 0.034.

Some further diagnostics for Model 2 are given in
Figure 10 and Table 11. Figure 10 displays cumulative
periodogram plots (Priestley, 1981) for the Pearson

FIG. 10. Cumulative periodogram plots for the Pearson residuals from model 1 + Yt−1 + logRt applied to sleep data.
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TABLE 11
Values of the power divergence statistic Iλ for model

1 + Yt−1 + logRt applied to sleep data

λ −0.5 5 5.50 6 6.50 7
Value 8.813 4.581 2.767 1.667 1.002 0.601

residuals defined by

r̂t = �̂
−1/2
t (Y − π̂ t ),

where r̂t is a q-dimensional vector, together with
95% confidence bands. Notice that for the sleep data
m = 4, q = 3, so Figure 10(a) corresponds to the
cumulative periodogram of the Pearson residuals for
the first category and so on. In all these cases, we
observe that the residual processes correspond to white
noise. Table 11 lists the values of the power divergence
statistic Iλ for different λ. We notice that for some λ

the test is reassuring but this conclusion is not uniform.
For an alternative approach to the problem of sleep
state prediction using wavelet methods, see Nason,
Sapatinas and Sawczenko (2001).

7. ADDITIONAL TOPICS

7.1 Alternative Modeling

Models for discrete-valued time series provide al-
ternative approaches to categorical time series model-
ing. Important examples include higher order Markov
chains (Azzalini, 1983; Raftery and Tavaré, 1994)
and discrete autoregressive moving average (DARMA)
models (Jacobs and Lewis, 1978a, b). Another useful
class is that of variable-length Markov chains (VLMC)
defined on a finite state space, where the Markov prop-
erty is retained with variable order (Bühlmann and
Wyner, 1999).

Another source of models are various transforma-
tions of an underlying process. Notable examples
are categorical time series generated by “clipping”
or “hard limiting” of a Gaussian process (Kedem,
1980, 1994). For an interesting extension of this to
“discrete images” obtained by quantizing a Gaussian
random field, see Kozintsev and Kedem (2000) and
Kedem and Kozintsev (2000). Interestingly, under sta-
tionarity, parameters in the original series/field can
be estimated quite effectively from the quantized data
using very few (e.g., three) quantization levels. We
mention Keenan (1982) as another example whereby a
binary time series is generated according to an under-
lying strictly stationary but unobserved process. The

connection between hidden Markov models and cate-
gorical time series has been explored in MacDonald
and Zucchini (1997).

7.2 Spectral Analysis

Spectral analysis, a topic indigenous to time series,
deserves serious consideration especially when the
goal is to discover periodic components in the data
(Priestley, 1981). Thus, we are led to consider the
spectrum of a categorical time series. However, due
to the qualitative nature of nominal data, the notion of
spectrum is problematic. Recent work in this area by
Stoffer, Tyler and McDougall (1993) and Stoffer, Tyler
and Wendt (2000) attacks the problem by introducing
the notions of scaling and assigning numerical values
to the categories and that of the spectral envelope for
selecting scales.

7.3 Longitudinal Data

Various authors have considered analysis of longitu-
dinal categorical data. For a survey of results in this
area, see the early article by Ashby et al. (1992) and
the recent works by Pendergast et al. (1996), Agresti
(1999) and Molenberghs and Lesaffre (1999). Infer-
ence for longitudinal multinomial data is mostly based
on a generalized estimating equation approach (see
Diggle, Liang and Zeger, 1994). Some key references
include Stram, Wei and Ware (1988), where the authors
suggest a method for comparing ordered categorical
responses in two groups of subjects observed repeat-
edly allowing for time-dependent covariates and miss-
ing observations, and, more recently, Clayton (1992),
Miller, Davis and Landis (1993), Williamson, Kim
and Lipsitz (1995), Heagerty and Zeger (1996, 1998),
Fahrmeir and Pritscher (1996) and Sutradhar and
Kovacevic (2000). The work by Heagerty and Zeger
(1998) proposes the lorelogram which can be used as
a data analysis tool for exploring dependence in lon-
gitudinal categorical responses, while the contribution
by Kosorok and Chao (1996) develops a Markov chain
model for repeated ordinal data in continuous time.
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