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Abstract. John Tukey’s impact on statistics, and on science in general, is
broad and lasting. This article discusses some of these contributions, with a
special emphasis on those that led to the development of robust methods and
data exploration. In view of today’s emphasis on data mining techniques, the
recollection of Tukey’s influence is especially timely.
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1. INTRODUCTION

Much of the work in the field that came to be known
as “robust methods” was inspired in one way or another
by John Tukey. Although the first appearance of the
word “robustness” seems to have been in an article
by Box (1953), it is clear from Tukey’s early work
in nonparametric methods and rank-based inference
techniques that he had viewed for some time the
Gaussian assumption with skepticism. His concerns
about parametric inference can be detected in many
of his early publications, and explicitly so in his later
ones. In this article, I review some of this early work,
discuss in particular one inspiring article that was
published in 1960 (Tukey, 1960a), describe some of
the ways in which he contributed to the field, either
directly (through his own publications) or indirectly
(through ideas that he sprinkled throughout his articles
or in conversations with others) and conclude with
some observations about the present impact of robust
methods on statistical practice today.

2. GENERAL PHILOSOPHY

Tukey’s general philosophy on the need for robust-
ness in data analysis appears in many of his articles,
most notably the landmark 1962 article, “The future of
data analysis”:

We need to tackle old problems in more real-
istic frameworks. The study of data analysis
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in the face of fluctuations whose distribu-
tion is rather reasonable, but unlikely to be
normal, provides many important instances
of this. So-called nonparametric methods,
valuable though they are as first steps to-
wards more realistic frameworks, are nei-
ther typical nor ideal examples of where to
stop. . . .

The development of a more effective pro-
cedure for determining properties of
samples from non-normal distributions by
experimental sampling is likely, if the pro-
cedure be used wisely and widely, to con-
tribute much to the practice of data analysis.
[Tukey, 1962, Section 1.]

(Tukey often made a point of distinguishing between
experimental sampling, which he viewed as straight-
forward simulation, and Monte Carlo, which he viewed
as a “smart” form of simulation.) In another article
much later, he wrote:

Probability modelers seem to want to be-
lieve that their models are entirely cor-
rect. . . .

Data analysts regard their models as a
basis from which to measure deviation, as
a convenient benchmark in the wilderness,
expecting little truth and relying on less.

The practitioner/theorist of statistical in-
ference was once supposed to think like
the probability modeler, but the rise of ro-
bust/resistant techniques and theory
presages the day when both practitioners
and theorists will speak and act as if the
truth were, hopefully, somewhere “not too

319



320 K. KAFADAR

far” from their models. [Tukey, 1979, pages
121–122.]

Despite his concerns about parametric inference,
Tukey often had some sort of “traditional” method
or model in mind, for purposes of comparison. For
example, the term “Gaussian deficiency” referred to
the loss in efficiency of a procedure, relative to the
most efficient procedure that one could use for the
Gaussian. In trying to understand the motivation for
some of Tukey’s proposed methods, often it was
helpful to recall the method that would be optimal for
some standard or traditional model, from which one
could often see more clearly the method’s inadequacies
in the face of departures from that model, and why
Tukey’s proposal often addressed those inadequacies.

Tukey also often left details to the readers, particu-
larly in later years. Likely, he had already processed
in his own mind, at least to some degree, the neces-
sary mathematical derivations, but he left it to others to
work out the formal theorems and proofs. [A good ex-
ample is the biweight; recent work by David W. Scott
(2001) shows that the influence function for his L2E

estimator resembles closely that of the biweight, pro-
viding some justification for the biweight’s remark-
able performance in so many contexts, and confirm-
ing Tukey’s early statement that “the distribution of
our observations will often be one for which minimiz-
ing a quadratic is a very bad choice” (Tukey, 1965,
page 669).]

3. EARLY WORK

Tukey’s first publications in statistics (after his math-
ematical publications in topology) involved nonpara-
metric methods and order statistics. In “A formula for
sample sizes for population tolerance limits” (Scheffé
and Tukey, 1944) and “Non-parametric estimation.
I. Validation of order statistics” (Scheffé and Tukey,
1945), Scheffé and Tukey use the probability integral
transform of order statistics (uniform) to derive pop-
ulation tolerance limits and confidence bands for a
continuous cumulative distribution function (c.d.f.).
The following year, a very short article appeared,
“An inequality for deviations from medians” (Tukey,
1946), in which he derived an upper bound for the
sum of the absolute deviations from the median:
h(n) · E(

∑ |xi |) ≤ E(|∑xi |), where xi are indepen-
dent random variables with median 0, and h(2k + 1) =
h(2k+2) = (2k+1)!/(2kk!)2. This result suggests that
he already recognized the value of least absolute devi-
ations as an alternative to least squares.

In “Low moments for small samples: a comparative
study of order statistics,” Hastings, Mosteller, Tukey
and Winsor (1947) derived the means, variances and
covariances of order statistics for small (n ≤ 10)
samples from the Gaussian, uniform and “special”
distributions (the last later known as a member of the
Tukey λ family with λ = 0.1) and showed that the
asymptotic formulas were not trustworthy (except for
the standard deviation of central order statistics).

Tukey also realized as early as 1948 the practical dif-
ficulties of inference in small samples when distribu-
tions were not Gaussian. He opened his article “Some
elementary problems of importance to small sample
practice” as follows:

This memorandum outlines a few problems
concerning small samples whose solution
would have considerable practical applica-
tion and which seem approachable by some
combination of experimental sampling, em-
pirical approximation, and, possibly, analyt-
ical investigation.

The first group of these problems is con-
nected with the behavior of t for non-
normal distributions and the possibilities of
finding an improved expression for use in
such cases.

The second group is related to the “stu-
dentization,” in a generalized sense, of the
sample variance. These problems are gener-
alized to the higher k-statistics.

Finally, the last group of problems is
concerned with t and its modifications when
the population is finite. [Tukey, 1948a.]

This article confirms Tukey’s worries about devia-
tions from normality, even before the concept of “ro-
bustness” had been mentioned, much less developed.
This article also shows his proposal to use three meth-
ods (experimental sampling, empirical approximation,
analytical investigation) for verification and demon-
stration, methods on which he relied throughout his ca-
reer. In the second section of this paper, Tukey recalled
the problems of skewness in the distribution of t for
underlying skewed populations and proposed a poten-
tially less sensitive “t-statistic”:

It has been appreciated for a long time
that two-sided t-tests are insensitive to de-
viations from normality [robustness of va-
lidity]. . . .It would be highly desirable to
have a modified version of the t-test with
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a greater resistance to skewness when used
as a one-sided test. Since there is always a
quid pro quo in statistics (unless inefficient
methods are involved), we must expect to
lose a little power when the underlying dis-
tribution is symmetrical, but this loss may
be expected to be very small. A similar al-
lowance for the kurtosis of the sample might
possibly be worthwhile if very simple.

Casting about for a possible way in which
to bring about this modification, our atten-
tion is struck by the work of Egon Pearson
(5, 1929, pp. 280–286) and Walsh (unpub-
lished) on the use of the expression

midrange − assumed mean

range

in very small samples. The efficiency is
very high when the underlying distribution
is normal, and the distribution is remark-
ably little affected by deviations from nor-
mality. . . .

With this background, we can now formu-
late some specific problems.

Problem A1: What modifications of t are
(i) simple, (ii) distributed with less depen-
dence on the underlying distribution than t ,
and (iii) have reasonable power? How are
these modifications distributed when the un-
derlying distribution is normal?

Problem A2: What modifications of t are
(i) simple, and (ii) distributed similarly for
normal and binomial underlying distribu-
tions? How are these modifications distrib-
uted when the underlying distribution is
normal?

Problem A3: Are there general proce-
dures for finding such modifications of
given expressions, which are less depen-
dent on the underlying distribution? [Tukey,
1948a, pages 205–206.]

Along these lines, much later, Arthur (1979) investi-
gated the behavior of Student’s t-statistic under skewed
and stretched-tailed distributions, and Horn (1983)
developed some t-like statistics, similar to Tukey’s
proposal above but based on only two or four order
statistics. [Incidentally, the article immediately preced-
ing Tukey (1948a) was written by Charles Winsor, to
whom Tukey often referred as his mentor; it discussed
the value of transformation to ensure additivity in an

analysis of variance, specifically the probit transforma-
tion for data in the form of proportions (Winsor, 1948).
Transformation (or re-expression) in general is a com-
mon theme in Tukey’s work. See Section 7 below and
the article by Hoaglin (2003)].

Another useful article that appeared in the same
year concerned the issue of misweighting when com-
bining sample means of various precisions for an
overall estimate of a common population mean. He
presented the results of this very short article, “Ap-
proximate weights” (Tukey, 1948b), in his legendary
“Statistics 411” course (purportedly for seniors, but at-
tended by graduate students and visiting professors as
well). This article provides a very useful bound to an-
swer the question: how “unoptimal” is a misweighted
average? Given observations x1, . . . , xn with associ-
ated variances σ 2

1 , . . . , σ 2
n , the optimal weighted aver-

age uses weights w∗
i = 1/σ 2

i , i = 1, . . . , n (the opti-
mal weighted median uses weights w∗

i = 1/σi). But
what if one uses instead the wrong weights wi , i =
1, . . . , n? Tukey defined R as the ratio of the maximum
to the minimum of the ratios between the contemplated
weights and the optimal weights, that is,

R = maxi(wi/w
∗
i )

mini (wi/w
∗
i )

.

Then he derived the following bound for the ratio of the
misweighted mean to the optimally weighted mean:

Var(ȳm)/Var(ȳ∗) ≤ 1 + (R − 1)2/(4R);
that is, small variations in weights generally cause
small changes in the variances of the weighted average.
In conveying to the students the consequences of this
result, Tukey said:

• “R = 2, don’t worry” (this corresponds to only a
12.5% increase in the variance);

• “R = 3, you can live with” (33.3% increase);
• “R = 4, you begin to get queasy” (56.25% increase).

Tukey relied on order statistics again in deriving an
approximate test for the difference in location between
two populations in “A quick, compact two-sample test
to Duckworth’s specifications” (Tukey, 1959). This
test, apparently derived for a client named Duckworth,
proceeds by counting the number of “overhanging” ob-
servations (i.e., the number of observations in sample 1
that are less than the minimum in sample 2, plus the
number of observations in sample 2 that are greater
than the maximum in sample 1). If this count is 7, 10
or 13, then this test statistic indicates different popula-
tion means at the 5%, 1% or 0.1% level of significance,
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when the sample sizes are approximately equal. (Tukey
derives adjustments to the critical levels 7, 10, 13, if the
ratio of sample sizes exceeds 1.33.) He justifies this
rather simple test on the basis of “practical power”: “If
[a procedure] is compact, then it can afford somewhat
reduced power, for what is practically important may
be, roughly, the practical power of the procedure in the
sense of Churchill Eisenhart, who has defined practical
power as the product of the mathematical power by the
probability that the procedure will be used” (page 32).
About one-half of this article is devoted to the com-
binatorial derivations that justify the error rates in the
procedure. The test is enormously useful and is inde-
pendent of parametric assumptions.

In perhaps the most widely cited abstract of all time,
Tukey described, in only seven sentences, a procedure
for assessing the uncertainty in a parameter estimate
(Tukey, 1958):

The linear combination of estimates based
on all the data with estimates based on
parts thereof seems to have been first treated
in print as a means of reducing bias by
Jones (J. Amer. Stat. Assn., Vol. 51 (1956),
pp. 54–83). Let y(·) be the estimate based
on all the data, y(i) that based on all but
the ith piece, ȳ(i) the average of the y(i).
Quenouille (Biometrika, Vol. 43 (1956),
pp. 353–360) has pointed out some of the
advantages of ny(·) − (n − 1)ȳ(i) as such
an estimate of much reduced bias. Actually,
the individual expressions ny(·)−(n−1)ȳ(i)

may, to a good approximation, be treated
as though they were n independent esti-
mates. Not only is each nearly unbiased,
but their average sum of squares of devia-
tions is nearly n(n − 1) times the variance
of their mean, etc. In a wide class of situ-
ations, they behave rather like projections
from a non-linear situation on to a tangent
linear situation. They may thus be used in
connection with standard confidence proce-
dures to set closely approximate confidence
limits on the estimand.

When asked how the name “jackknife” came to
be, Tukey responded, “If you had exactly the right
tool for the job, you’d use it. But if you don’t, then
you’d use a jackknife.” (See also Mosteller and Tukey,
1968, page 655; Mosteller and Tukey, 1977, page 162.)
So, if we knew the distribution of y1, . . . , yn, then

we could derive, in theory or via simulation, the dis-
tribution of T , and hence 95% confidence limits or
any other measure of uncertainty. But, since we do
not, the jackknife offers an all-purpose, handy and
useful tool. Twenty years later, Efron proposed the
bootstrap, which has the same flavor as the jack-
knife but which has different properties (Efron, 1982,
1992; Efron and Tibshirani, 1993). The measure of un-
certainty provided by the jackknife is not robust to
outliers. Mosteller and Tukey (1977, pages 140–141)
provide an illustration where all but one of the
pseudovalues have nearly the same magnitude, and the
one pseudovalue without the outlier is much
different. [In fact, the pseudovalues were found to
relate directly to the sensitivity curve of an estima-
tor, a finite sample version of the influence function
(Andrews et al., 1972); more discussion on this point
appears in Hampel et al., 1986, page 95.] The robust-
ness of the jackknife variance led Tukey to collabo-
rate in one of his last projects with Luisa Fernholz
and Stephan Morgenthaler (Fernholz, Morgenthaler
and Tukey, 2004) on the “multihalver jackknife,” a ver-
sion of the jackknife in which subsamples are selected
in accordance with Hadamard matrices (on which
Plackett–Burman designs are also based). The balance
in the constructed subsamples leads to improved per-
formance in variance estimates and to methods for
outlier detection. (Luisa Fernholz saved Tukey’s hand-
written “flow-chart” that served as the basis for this
work and that showed the extent to which the details
were already well formulated in his own mind.)

4. TRIMMING AND WINSORIZATION

The first appearance of the word “robustness” may
have been in an article by G. E. P. Box entitled “Non-
normality and tests on variances”: “It would appear,
however, that this remarkable property of ‘robustness’
to non-normality. . . is not necessarily shared by other
statistical tests, and in particular is not shared by the
tests for equality of variances” (Box, 1953). This ar-
ticle concludes, “The property of robustness I believe
to be even more important in practice than that the
test should have maximum power and that the statistics
employed should be fully efficient. Where necessary
I believe that the latter qualities should be sacrified to
ensure the former.*” The asterisk refers to a footnote
at the end of the article: “* Since writing the above a
very interesting paper by J. W. Tukey (1948) has come
to my notice which has many points of contact with
the present paper and which expresses similar views
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to the above.” [The cited article was Tukey (1948a) in
Human Biology, quoted earlier.] In a later publication,
“Permutation theory in the derivation of robust crite-
ria and the study of departures from assumptions,” Box
and Andersen (1955) studied whether departures from
the assumed Gaussian distribution affected the size of
conventional test statistics, such as that used in Stu-
dent’s t-test or in the F -statistic in the analysis of vari-
ance (i.e., was the actual type I error rate still the same
as the nominal one?). For long-tailed distributions, they
showed that these tests were conservative (i.e., the ac-
tual error rates were less than the nominal error rates),
while the opposite held true for short-tailed distribu-
tions. “In practice, long tails seem more frequent than
short” (Tukey, 1960a, page 458), so presumably statis-
ticians had no reason to worry about using their tradi-
tional methods in non-Gaussian situations, so long as
the distributions were symmetric and not short-tailed.
Despite the appearance of both the word and the con-
cept in the literature, a formal definition and operating
framework for “robustness” was still needed.

A critical leap forward into the development of ro-
bust methods started with Tukey’s paper, “A survey
of sampling from contaminated distributions,” that ap-
peared in a volume dedicated to Harold Hotelling
(Tukey, 1960a). Prior to its publication, Edgeworth
threw the statistical community into a debate when
he proposed the mean absolute deviation from the
mean as a reasonable estimator of scale. Fisher seem-
ingly halted this debate by publishing the “best as-
ymptotically normal” results of maximum likelihood
estimators, thereby demonstrating the superiority of
the estimator based on the usual sample variance
(David, 2002). Tukey reopened this debate when he
investigated the performance of the sample mean and
sample standard deviation on contaminated normal dis-
tributions of the form (1 − ε)N(0,1) + εN(0,9) as
the fraction ε of the contaminating normal distribution,
having three times the standard deviation of the target
normal, varies from 0 (no contamination) to 1

2 . Several
graphs show an in-depth analysis of the degradation in
performance of traditional estimators for the Gaussian
distribution under the contaminated normal model. In
the introduction to that paper, Tukey presents his rea-
sons for investigating a trimmed mean rather than the
ordinary sample mean as an estimate for the popula-
tion mean, and a Winsorized variance rather than the
sample variance to estimate the population variance:

Some years of close contact with the late
C. P. Winsor had taught the writer to be-
ware of extreme deviates, and, in particular,

to beware of using them with high weights.
Using second moments to assess variabil-
ity means giving very high weights to ex-
tremely deviant observations. Thus the use
of second moments, unquestionably opti-
mum for normal distributions, comes into
serious question. When this point was raised
in conversation, real differences of opinion
between some of the statisticians concerned
showed themselves. The earliest work on
sampling from contaminated distributions
was carried out in an attempt to develop
facts which would help to quiet this clash
of opinion. [Tukey, 1960a, pages 449–450.]

Tukey frequently acknowledged his debt to Charles
Winsor as one of the people “from whom the au-
thor learned much” [dedication of Exploratory Data
Analysis (Tukey, 1977)]. In an interview, he said,
“associating with Charlie and living in the data-rich
environment where what we were doing was trying to
make sense out of the data left me with an ultimate
data orientation” (Fernholz and Morgenthaler, 2000,
page 83). Tukey cited Winsor as the namesake of the
procedure that has come to be called “Winsorization”
in a discussion of an article that appeared also in May
1960:

Finally, there is Winsorization. Charles
Winsor put forward a principle of quite gen-
eral application, namely: While the numeri-
cal value of an apparently wild observation
is untrustworthy, the direction of its devia-
tion (e.g. high or low) is worthy of atten-
tion. He applied this principle to outliers by
taking the largest deviations or largest resid-
uals and decreasing their magnitude, while
retaining their sign, until they are equal to
the next largest ones, thus making a quali-
tatively reasonable adjustment. In fact, it is
possible to give quite quantitative reasons
why this sort of adjustment is not only a
convenient approach but an effective one.
[Tukey, 1960b, page 160.]

[Tukey often proposed new ideas in his brief “discus-
sions” of other papers; for other examples, see Tukey
(1961, 1979).] W. J. Dixon, who worked with Tukey
at Princeton, also wrote on the use of Winsorized es-
timates of location and scale in univariate samples
(Dixon, 1960).

The landmark article for robust methods (Tukey,
1960a) proposed much more than just Winsorization.
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Tukey also addressed the robustness issue raised by
Box and Andersen (1955) from the perspective of
power:

It would seem that questions of robustness
of efficiency are intrinsically at least as im-
portant as questions of robustness of signif-
icance levels. And, as soon as it develops,
as it shortly will, that failures of robustness
of efficiency may be very substantial, the
need for more work on the robustness of ef-
ficiency will be clear and pressing. [Tukey,
1960a, page 450.]

The article also provides, in a style unique to Tukey,
the reasons why robust approaches must be considered:

THE FIRST QUESTION

Given two normal populations with the
same mean, one having three times the stan-
dard deviation of the other, it is proposed to
prepare a sequence of mixed populations by
adding varying small amounts of the wider
normal population to the narrower one. It is
well known that, in large samples, the rela-
tive efficiency as a measure of scale of the
mean deviation compared with the standard
deviation is 88% when the underlying popu-
lation is normal. As specific amounts of the
wider normal population are added to the
narrower one, thus defining new classes of
distributions of fixed shape, will the relative
efficiency for scaling of the mean deviation
compared to the standard deviation increase
or decrease?
Notes:

1. The possible answers are “increase,”
“stay the same,” and “decrease.”

2. The problem is a large-sample problem.
3. To find the answer, after giving the

question long and careful thought, turn
over two pages.

Tukey continued in this vein with “The first answer,”
“The second question,” “The second answer,” “The
third and fourth questions” and “The third and fourth
answers,” leading to the conclusion that the mean ab-
solute deviation from the mean will surpass the sam-
ple standard deviation as an efficient estimate of the
population standard deviation when the contamination
is as little as 0.018 [the correct value, due to Huber,

is actually 0.0018; cf. Huber (1981), page 3]; that is,
with an average of only 2 outliers in a sample of
size 1000, where on average 998 come from N(0,1)

and 2 from N(0,9), already the mean absolute de-
viation from the mean surpasses the sample standard
deviation. This seminal paper highlighted many key
concepts that directed the research in robust methods
for several decades:

(1) robustness of efficiency versus validity;
(2) evaluation on contaminated normal distributions,

(1−ε) ·N(0,1)+ε ·N(0,9), which later led to the
consideration of the “one-wild situation,” which
has exactly n − 1 observations from N(0,1) and
1 from N(0,100);

(3) measures of “deficiency,” such as

“deviation ratio”

= (deviation of %-point from mean)

(deviation of %-point from mean for normal)
;

(4) long-versus short-tailed distributions (Tukey,
1960a, page 458);

(5) appropriate scaling of distributions for purposes of
comparison;

(6) reliance on asymptotic results, because:
(i) “Both the asymptotic average value. . . and the

asymptotic variance of [the average] exist for
‘reasonable’ distributions. . .

(ii) [Finite sample averages and variances] are
deliberately not defined exactly. . .

(iii) Only the distributions of the original [random
variables] appear in the definitions. . .

(iv) The so-called ‘�-process,’ or ‘method of
propagation of error,’ is usually valid in terms
of these asymptotic techniques” (Tukey,
1960a, page 459).

[Later, Morgenthaler and Tukey (1991) and coau-
thors developed a theory and an approach for con-
structing robust procedures that achieved finite-
sample robustness using configural polysampling,
because “an asymptotic theory can give very useful
indications at its best and can be misleading at its
worst” (Morgenthaler and Tukey, 1991, page 3).]

As a result, the field moved forward in its considera-
tion of:

• both types of robustness;
• efficiency measures quoted with sufficient accuracy

to be trusted, but no more (“there is little if any
sense in paying attention to an efficiency figure
to greater precision than ±10% of itself” (Tukey,
1960a, page 473);
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• other robust estimators of both location and scale,
because “if contamination is a real possibility (and
when it is not?), neither [sample] mean nor [sample]
variance is likely to be a wisely chosen basis
for making estimates from a large sample. . . [due
to] nearly imperceptible non-normalities” (Tukey,
1960a, page 474).

Tukey concluded this article by recommending the use
of the trimmed mean and mean absolute deviation
as a “frequently useful compromise” for estimating
location and scale, and that “more work is needed”
(Tukey, 1960a, page 485).

Tukey and his coauthors continued to study the
use of trimmed means and Winsorized standard de-
viations in a “t-like” statistic in two further arti-
cles (McLaughlin and Tukey, 1963; Dixon and Tukey,
1968). Other articles using trimming and Winsoriza-
tion for two samples later followed (e.g., Yuen and
Dixon, 1973; Yuen, 1974).

5. THE PRINCETON ROBUSTNESS STUDY

The academic year 1970–1971 provided the oppor-
tunity to study these issues. During that year, plans
were formulated to execute a large-scale, highly effi-
cient Monte Carlo simulation of the performance of
64 estimators of location for the symmetric one-sample
location problem. These estimators included M-, L-
and R-estimates, many of which were proposed and
tested specifically for this simulation (e.g., hampels).
For reasons given in Tukey (1960a), only long-tailed
departures were considered, and, for reasons of simu-
lation efficiency that dictated the use of a Monte Carlo
swindle [which was used also in Dixon and Tukey
(1968) and nicely explained in Simon (1976)], only
distributions of the form N/I were considered, where
N represents a standard Gaussian random variable
and I represents a positive random variable that is
independent of N . This class includes a variety of
long-tailed distributions, depending upon the distrib-
ution of I ; for example, Normal (I is a constant),
Cauchy (I is another standard Gaussian), “Slash” (I is
uniform on [0,1], which creates a random variable
whose distribution is, as Tukey often said, “as un-
realistic as the Gaussian but in the opposite direc-

tion”), Student’s t (I is
√

χ2
k /k), and the contami-

nated normals (Tukey, 1960a). [See also Rogers and
Tukey (1972) for an in-depth discussion of this class.]
Notice that the one-wild situation is not a member
of this class, since exactly one observation comes
from N(0,100), not a probabilistic fraction 1/n (which

results in a random number of “outliers” in a given
realization). This study also led to the notion of the
three “corners” to represent plausible situations that
might be encountered in practice [extremely optimistic
(Gaussian), extremely unrealistic (Slash) and one out-
lier (One-wild)]. The outcome was the book Robust
Estimates of Location: Survey and Advances, pub-
lished in 1972 and co-authored by D. F. Andrews,
P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers
and J. W. Tukey. (This book is often cited as “Andrews
et al., 1972”, but David Andrews once cited it to me as
“et al. Tukey.”)

One of the important consequences of this book
was the use of simulation (or, preferably, a more ef-
ficient Monte Carlo swindle) as an acceptable form of
“proof.” Many years would have to pass before sim-
ulation would become acceptable as a demonstration
of performance; even in 1972, many skeptics still held
the belief that only analytical theory could be used to
justify performance. Today, thirty years later, that view
has changed greatly, and many publications in statistics
utilize simulation in some form, either as an intrinsic
part of the methodology itself or for purposes of evalu-
ating it. But Tukey’s advice to use efficient simulation
still holds today as much as it did then.

Another important consequence of this book derived
from the realization that M-estimates of location can be
computed as iteratively reweighted means, presaging
the use of iteration in many current statistical proce-
dures used today. Since it was published in 1972, many
of the performance comparisons from the Princeton
Robustness Study have been largely superceded by the
biweight M-estimate as an estimator of location (Gross,
1976, 1977). The biweight can be computed as an iter-
atively reweighted sample mean, where the weights wi

are defined in terms of the estimate obtained in the pre-
vious iteration, Tn−1:

Tn =
n∑

i=1

wixi

/ n∑
i=1

xi,

wi = w(ui), ui = (xi − Tn−1)/(cS),

w(u) = (1 − u2)2I[−1,1](u),

where c is a “tuning constant” (usually in the range
4–6) and S is an estimate of scale (usually made to be
unbiased if the xi’s came from a Gaussian population).
Beaton and Tukey (1974, pages 151–152) offered a
rationale for the name biweight: “the ‘bi-’ referring
to the outer exponent (whose value ensures continuity
for both w(u) and w′(u)).” The biweight has been
shown to be highly efficient in many diverse contexts,
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including robust analysis of variance, time series and
even in control charts used to monitor product quality.

6. ROBUSTNESS IN TIME SERIES

Brillinger (2002a) cited many instances where Tukey
writes of robustness considerations in time series
analysis. He further noted analogues between com-
mon robustness themes and time series procedures fre-
quently advocated by Tukey. For example, outlier re-
moval in the analysis of simple batches is analogous to
detrending and point deletion in time series; likewise,
the analogue to weighting is tapering and data window-
ing to minimize end effects, and detection of pairs of
outliers is analogous to the detection of echoes in time
series (Bogert, Healy and Tukey, 1963). In 1965, Tukey
addressed the Institute of Geophysics and Planetary
Geophysics in La Jolla and cited three areas of future
importance to these scientists: “(1) Spectrum analysis,
in the broadest sense, . . . (2) Wise expression of data
for analysis, . . . (3) Modification of our techniques of
summarization and analysis to deal with the case (al-
most universal, especially in geophysics, even after the
observations have been expressed wisely) where fluc-
tuations and errors have a distribution whose shape is
far more straggling than that of the magic bell-shaped
curve of Gauss and Laplace” (Tukey, 1965, page 660).
With respect to these three issues, Tukey wrote:

There are situations in which one may want
to use nonlinear techniques to answer ques-
tions which are about linear phenomena
and which, at least naively, would seem to
be most naturally answered by linear pro-
cedures of analysis. In one situation—the
analysis of time series for echoes—there is
at least a moderate amount of evidence that
this is a good thing to do. [Tukey, 1965,
page 666.]

If—often by so simple a change as tak-
ing square roots, or logarithms—we can
eliminate most of these nonlinearities by a
more appropriate and useful choice, perhaps
guided by the bispectrum of a trial expres-
sion, we will be able to see much more
deeply into these phenomena these time se-
ries describe. [Tukey, 1965, page 667.]

If we must be realistic. . . if we are to get
anywhere near the most out of our data, then
we must face up to the possibility. . . that

the distribution of our observations will of-
ten be one for which minimizing a quadratic
is a very bad choice. And it requires only
almost imperceptible modifications of the
shape of a Gaussian distribution to make the
use of the arithmetic mean a slightly infe-
rior way to summarize the typical-value be-
havior of a sample, and to make its sum-
of-squared deviations an almost unbearably
poor summary of its spread (Tukey, 1960).
The price of thinking more generally and
more usefully here, of acting more realis-
tically, will be that our procedures will be-
come more nonlinear, and almost certainly
iterative, and that, in particular, the proce-
dures for assessing the quality of the result
will have to be at least somewhat more com-
plicated than evaluating a fixed quadratic
function. [Tukey, 1965, pages 669–670.]

He repeated his emphasis on the need for robust
methods in a paper on spectrum analysis designed for
an advanced seminar at Madison in 1966: “It seems
likely that the use of trimmed means, trimmed sums
of squares, and trimmed sums of squared differences
will prove useful in such a standard preprocessor
[preparatory prewhitening]” (Tukey, 1968, page 828).
Twelve years later, in “Can we predict where ‘time
series’ should go next?” (Tukey, 1980), robustness was
clearly on his mind:

Both detecting and dealing with outliers are
likely to need interpolated values, or sizes,
for comparison. Here interpolation must be
done robustly/resistantly since we do not yet
know which are outliers and which are not.
[Tukey, 1980, page 961.]

Another question is: “How should we insert
robustness/resistance into the ARMA cal-
culations?” If we confine our attention to
the AR part, which is often enough for a
satisfactory approximation to prewhitening,
then we can, as one possibility, give up any
analogs of lagged moments and go directly
to a robust/resistant regression of y(t) on
y(t −1), y(t −2), . . . , y(t −k), as described
by Denby and Martin (1979). [Tukey, 1980,
page 970.]

In this paper, Tukey also discusses the impact and
possible treatment of “holes,” “isolates” and “outliers”
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in time series (Tukey, 1980, pages 966–967). In ad-
dition to such “exotic” values, the distribution of the
data may be far from the conventionally assumed
Gaussian distribution. Brillinger and Tukey (1985,
pages 1020–1021) cite several instances where this oc-
curs [in the following quotation, X(t) denotes a ran-
dom variable at time t , whose distribution serves as a
probability model for a single real data value, say x(t)]:

REAL DATA OFTEN FAIL to be Gaussian
IN MANY WAYS.

Example 1. Each realization can be
thought of as a realization of Gaussian white
noise with variance σ 2, but σ 2 varies from
realization to realization.

Example 2. Each realization is of the form
X(t) = α cos(ωt + φ), with α, ω and φ all
random, where φ is uniform on [0, 2π ],
independent of α and ω, which follow some
messy joint distribution.

Example 3. X(t) is always either +1
or −1.

Example 4. X(t) is the sum of a realiza-
tion of some fixed Gaussian colored noise
and a peppering of random (say Poisson)
values which affect only a small fraction of
the observations (the contributions of this
component are elsewhere zero).

Example 5. X∗(t) = X(t) + c[X(t)]3

where X(t) is a realization of some fixed
Gaussian colored noise.

Example 6. X∗(t) = [10 + cos(νt + φ)] ·
X(t) where X(t) is a realization of some
fixed Gaussian colored noise, ν is fixed, and
φ is a uniformly distributed random variate.
It is easy to be—or become—non-Gaussian;
it is hard to be—or remain—Gaussian.
(Narrow-band filtration is an exception.)

In “Nonlinear (nonsuperposable) methods for
smoothing data” (Tukey, 1974), Tukey discussed the
mathematics, practice and implications of nonlinear
smoothing, largely in the form of running medians.
Tukey believed strongly in the use of 3R [running me-
dians of length 3, repeated until convergence, which
Arce and Gallagher (1988) and Wilson (1989) proved
do indeed converge to “root signals,” and for which
Bryc and Peligrad (1992) proved a sort of central limit
theorem for the smoothed output] and, more gener-
ally, in median smoothers, having devoted to them four
chapters in Exploratory Data Analysis (EDA) (Tukey,
1977, Chapters 7, 7+, 8, 16) and two sections in “the

green book” (Mosteller and Tukey, 1977, Sections 3F,
3G). In the last years of his life, he developed a fur-
ther modification which he termed 3pR, which in-
volved a combination of smoothing, deletion and in-
sertion, and which he hoped to include in EDA2 (a
revised version of EDA). The electrical engineering
community later developed the idea of smoothing by
medians into “separable median filters” (row medians,
followed by column medians) for image processing
(Narendra, 1981; Yang and Huang, 1981; Butz, 1988;
Park and Lee, 1989). Brillinger (2002b) describes in
greater depth Tukey’s profound and long-lasting con-
tributions to time series.

7. TRANSFORMATIONS

Because Tukey had analyzed so much data of so
many different forms, he had direct experience with
the various ways in which standard assumptions (e.g.,
normal distribution, homogeneous variances, linear-
ity) do not hold. This experience led him to be-
lieve strongly in the value of transformations, as a
way of “bending the data nearer the Procrustean bed
of the assumptions underlying conventional analyses”
(Tukey, 1957, page 603). Transformations had been
discussed previously in the literature (e.g., Curtiss,
1943); many of these early articles considered their
use for only certain types of data such as counts or
proportions (e.g., Beall, 1942, Bartlett, 1947; Cochran,
1940) where distributions are often more Poisson or
binomial than Gaussian. Freeman and Tukey (1950,
page 607) reported on “an empirical study of a num-
ber of transformations, some intended for significance
and confidence work and others for variance stabi-
lization” specifically for data from these two distri-
butions (Poisson and binomial). This paper led to
Tukey’s often-used transformations for Poisson counts,
namely

√
4(observed) + 2 − √

4(expected) + 1 (us-
ing “+1” instead of “+2” in the first square root if
observed = 0), because “clearly

√
x + √

x + 1 is best
if small expectations are to be considered” (Freeman
and Tukey, 1950, page 609), and

√
x + √

x + 1 ≈
2
√

x + 1
2 = √

4x + 2, and, finally, because E(
√

X) ≤√
E(X) for nonnegative random variables (Jensen’s in-

equality).
A much longer and more detailed mathematical

treatment of transformations appears in another one
of his landmark papers, “On the comparative anatomy
of transformations” (Tukey, 1957). Tukey recognized
that a single transformation may not always achieve
the desired purposes across the entire range of interest.
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A classic example appears in Exploratory Data Analy-
sis, where a single transformation fails to straighten the
plot of U.S. population over the entire range 1800–
1950: log(population) works well for Census counts
between 1800 and 1870, while population (untrans-
formed) works well from 1870 to 1950 (Tukey, 1977,
Section 5D). Tukey later called such combinations of
two transformations (here, log and identity) that are
matched at a point “hybrid re-expressions,” with the
combination (square root and log, matched at the me-
dian) being called the “principal hybrid.” [Emerson
and Stoto (1983, Section 4E) discuss the procedure of
matching any two transformations at a single point.]

Another approach to the problem raised by the fact
that real data are often not Gaussian is to fit the data
to a decidedly non-Gaussian distribution. For this pur-
pose, Tukey proposed two classes of distributions, one
for skewed distributions and the other for stretched-
tailed (elongated) distributions, both relative to the
Gaussian. Starting with a standard Gaussian random
variable Z, the g-distribution is that of the random
variable Yg(Z) = (egZ − 1)/g; the parameter g indi-
cates the amount and direction of skewness (g = 0
corresponds to the Gaussian). The random variable
Yh(Z) = ZehZ2/2 has the h-distribution; larger values
of h (h > 0) indicate longer, more stretched tails (h = 0
corresponds to the Gaussian). Combining both skew-
ness and stretched tails, Ygh(Z) = ehZ2/2(ezZ − 1)/g.
(In all three cases, location and scale can be incorpo-
rated by multiplying by a scale factor B and adding
a location term A.) In his “Notes for Statistics 411,”
Tukey called the process of fitting these distributions to
real data (i.e., fitting the parameters g, h, A, B) “g–h

technology.” Details and further results on the prop-
erties of these distributions, fitting them to real data,
and applications of g–h technology can be found in
Hoaglin (1985).

8. FURTHER WORK IN ROBUSTNESS

During the 1970s and 1980s, Tukey and others con-
ducted much further work in robust methods; authors
who have contributed to this literature are far too nu-
merous to cite. Many of these ideas have appeared
in Exploratory Data Analysis (Tukey, 1977) and Data
Analysis and Regression: A Second Course in Sta-
tistics (Mosteller and Tukey, 1977), and in the three
books edited by David Hoaglin, Fred Mosteller and
John Tukey: Understanding Robust and Exploratory
Data Analysis (1983), Exploring Data Tables, Trends,
and Shapes (1985) and Fundamentals of Exploratory

Analysis of Variance (1991), fondly known as EDA,
DAR, UREDA, EDTTS and FEAV, respectively. Work
motivated by problems with multivariate data led
to methods of analysis and graphical displays (cf.
Friedman and Tukey, 1974; Tukey and Tukey, 1981).
Less widely available publications include many other
procedures; one important example is The Manage-
ment of Weather Resources II: The Role of Statistics
in Weather Resources Management (Brillinger, Jones
and Tukey, 1978), which discussed at length issues of
the design and analysis of cloud-seeding experiments
(many of which apply to experimental design more
generally). Morgenthaler and Tukey (1991) considered
the problem of finite-sample robustness in the book
Configural Polysampling: A Route to Practical Robust-
ness (see also Tukey, 1987), and robust multiple com-
parisons and graphical displays are important themes
in Basford and Tukey (1998), Graphical Analysis of
Multiresponse Data.

Many other robust-resistant procedures, and graph-
ical displays designed for detecting departures from
assumptions, are associated with Tukey’s name: box-
plot, stem-and-leaf diagram, robust-resistant line, con-
fidence interval for the median, hanging rootogram,
median polish, one degree of freedom for nonadditiv-
ity (Tukey, 1949), smoothing, twicing, 3R and many
others that never made it into the formal published lit-
erature.

9. CONCLUSION AND REFLECTIONS

Robustness and exploratory data analysis permeated
Tukey’s work, from his earliest days as a statistician
in the 1940s, continuing throughout his sixty-year,
enormously productive career. He was ably assisted
in this mission by several coauthors, including his
long-time colleague and friend, Frederick Mosteller
(e.g., Mosteller and Tukey, 1977). These concepts now
influence everyone’s work. Stem-and-leaf displays and
boxplots are part of many grade school curricula.
The incorporation of robust methods and consideration
of departures from assumptions are routine today
throughout much of the statistics literature. The focus
on robustness and exploratory methods might have
happened anyway, as computers became cheaper and
more efficient at handling massive amounts of data—
but Tukey certainly accelerated the development in
these fields, allowing us to be somewhat more ready to
“mine” data than we might otherwise have been able to
do without him.
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In 1982, Tukey ended his discussion on “The role of
statistical graduate training” with the following proph-
esy: “We plan to influence what actually goes on, today
and tomorrow. . . .We plan to help others in laying foun-
dations for the future” (Tukey, 1982, page 889). And
Tukey did exactly that. Lyle Jones found a quotation
from James Thurber, who commented on the lasting
influence of New Yorker columnist Harold Ross. The
quotation applies to JWT as well:

He is still all over the place for many of
us, vitally stalking the corridors of our lives,
disturbed and disturbing, fretting, stimulat-
ing, more evident in death than the living
presence of ordinary men.
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