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John W. Tukey and Data Analysis
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Abstract. From the time that John W. Tukey started to do serious work in
statistics, he was interested in problems and techniques of data analysis.
Some people know him best for exploratory data analysis, which he
pioneered, but he also made key contributions in analysis of variance, in
regression and through a wide range of applications. This paper reviews
illustrative contributions in these areas.
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1. INTRODUCTION

To many in statistics and other fields John Tukey
may be best known for Exploratory Data Analysis
(EDA), which first appeared in print in 1970, but data
analysis played a major role in his work from early
on. Indeed, I don’t think it would be an exaggeration
to say that most of John’s contributions to statistics
involved or grew out of problems in data analysis. Even
if one focuses on data analysis itself, the number is
large. Two substantial volumes of The Collected Works
of John W. Tukey (CWJWT) are devoted to Philosophy
and Principles of Data Analysis. It would be reasonable
to include the volume on Graphics: 1965–1985, and
parts of other volumes surely count as well (e.g.,
Factorial and ANOVA: 1949–1962). And I haven’t
mentioned the applications, where the object was to
analyze the data themselves; nearly all sets of data have
some distinctive features, and it’s hard to imagine that
an analysis with John as a participant would be routine.

This brief account cannot hope to cover more than
a small fraction of such a corpus. Thus I offer a se-
lection of topics, chosen to highlight several major
areas: exploratory data analysis, of course, and also
analysis of variance, regression and applications. In
some instances I illustrate the way that John devel-
oped techniques and refined them over a period of
years. A more comprehensive account would surely in-
clude time series and spectrum analysis; fortunately,
Brillinger (2002) covers that area in depth.
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The way that John got into statistics had a lot to do
with his data-analytic orientation. As Fred Mosteller
recounts in the biographical sketch that appears in
each volume of CWJWT, John joined the Department
of Mathematics at Princeton University in 1939, after
completing his Ph.D. in pure mathematics (topology).
His “conversion” to statistics came in part through his
work on weapons problems as a member of the Fire
Control Research Office at Princeton during World
War II. A key influence was the biometrician and data
analyst Charles P. Winsor, from whom (as John said in
the dedication of EDA) he “learned much that could not
have been learned elsewhere.”

For some of the roots of John’s attitude toward data
analysis, however, it helps to look a little farther back.
When he came to Princeton as a graduate student in
1937, he was in the Chemistry Department (he had
completed his undergraduate education and taken a
master’s degree in chemistry at Brown University). In
his foreword to the philosophy volumes of CWJWT,
John explained,

A respectable physical-science education—
officially in chemistry, but with large doses
of physics and substantial doses of ge-
ology—probably helped me a lot in under-
standing the character of the problems to
which data brought to me were intended to
be relevant. A purely mathematical back-
ground would, I believe, have left me at
a severe disadvantage. Given a reasonable
sensitivity to the underlying issues, seeing
many sets of data seems to have made it nat-
ural to try to think about techniques in terms
of the needs they might fill and the gaps
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that they left. The philosophy that appears
in these two volumes is far more based on a
“bottom up” approach than on a “top down”
one.

This background helps me to understand his approach.
So does a discussion in the last part of “The Future of
Data Analysis” (Tukey, 1962a):

If we are to make progress in data analysis,
as it is important that we should, we need to
pay attention to our tools and our attitudes.
If these are adequate, our goals will take
care of themselves.
We dare not neglect any of the tools that
have proved useful in the past. But equally
we dare not find ourselves confined to their
use. If algebra and analysis cannot help us,
we must press on just the same, making as
good use of intuition and originality as we
know how.
In particular we must give very much more
attention to what specific techniques and
procedures do when the hypotheses on
which they are customarily developed do
not hold. And in doing this we must take a
positive attitude, not a negative one. It is not
sufficient to start with what it is supposed
to be desired to estimate, and to study how
well an estimator succeeds in doing this. We
must give even more attention to starting
with an estimator and discovering what is
a reasonable estimand, to discovering what
it is reasonable to think of the estimator as
estimating. To those who hold the (ossified)
view that “statistics is optimization” such a
study is hindside before, but to those who
believe that “the purpose of data analysis is
to analyze data better” it is clearly wise to
learn what a procedure really seems to be
telling us about. It would be hard to overem-
phasize the importance of this approach as a
tool in clarifying situations.

A page or two later in that paper John turns to
attitudes: “Almost all the most vital attitudes can be
described in a type form: willingness to face up to X.”
He discusses a number of X’s, including (quotation
marks omitted)

• more realistic problems,
• the necessarily approximate nature of useful results

in data analysis,

• the need for collecting the results of actual experi-
ence with specific data-analytic techniques,

• the need for iterative procedures,
• free use of ad hoc and informal procedures, and
• the fact that data analysis is intrinsically an empirical

science.

In the area of attitudes, and with plenty of intuition and
originality, John practiced what he preached.

Some of these attitudes contribute to flexibility, an
important theme in John’s approach to data analysis.
The separation between exploratory data analysis and
confirmatory data analysis allowed exploratory data
analysis to proceed freely, without adherence to a
unified framework, and assigned to confirmatory data
analysis the systematic task of assessing the strength
of the evidence. In what he wrote, John gave much
more attention to exploratory. As he explained in the
foreword to the philosophy volumes, “there is little
doubt that exploratory gets more attention here than
would be its fair share, if these two volumes were to
be one’s only reference and guide. Emphasis, however,
was rightly placed where the need for more attention
was greatest. Exploratory data analysis has, to my
joy, been receiving more and more attention, but the
pendulum of relative attention has not yet reached
the balance point, through which it will, no doubt,
overswing.” In commenting on Bayesian analysis he
mentioned “a natural, but dangerous desire for a
unified approach” and remarked that “the greatest
danger I see from Bayesian analysis stems from the
belief that everything that is important can be stuffed
into a single quantitative framework.” For me these
comments illustrate his avoidance of frameworks and
unification for data analysis more generally.

2. EXPLORATORY DATA ANALYSIS

John Tukey’s qualities and attitudes are nowhere
more apparent than in EDA. The limited preliminary
edition of the book came out, in three xeroxed volumes,
in 1970 and 1971 (Tukey, 1970c, d, 1971a), and, after
further development, the first edition followed in 1977
(Tukey, 1977a). A few years later the two volumes of
“The Statistician’s Guide to Exploratory Data Analy-
sis” (Hoaglin, Mosteller and Tukey, 1983b, 1985b)
provided conceptual and logical support for selected
techniques and explained connections with classical
statistical theory.

From the publication of the limited preliminary edi-
tion, EDA received an enthusiastic welcome, especially
in fields that analyze data and apply statistics. In 1975 it
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was the topic for the first ASA-sponsored short course
at the annual meeting in Atlanta. Users embraced such
techniques as the stem-and-leaf display and the boxplot
(née “schematic plot”), and within a few years the basic
techniques, particularly displays, were available in sta-
tistical software. By now a number of those techniques
have become part of statistical instruction at all levels.
So, at the level of tools, the impact of EDA has been
broad and lasting. I am not so sure about the attitudes,
which require more effort to teach and more reflection,
but I am hopeful that they will continue to spread and
have a positive impact.

As a basis for a more systematic look, the introduc-
tion to Understanding Robust and Exploratory Data
Analysis (UREDA) (Hoaglin, Mosteller and Tukey,
1983b) discusses four main themes that run through
exploratory data analysis: resistance, residuals, re-
expression and revelation:

• resistance: insensitivity to localized misbehavior in
data;

• residual = data MINUS fit;
• re-expression uses a transformation (such as the

logarithm or square root) to put the data in a scale
that simplifies the analysis;

• revelation relies on displays to show behavior, and
thus unexpected features along with familiar regu-
larities.

In presenting the techniques that illustrate and apply
these themes, John gave us a torrent of terminology,
much of it newly coined. For example, stem-and-
leaf display, hinges and other letter values, box-and-
whisker plot, the “bulging” rule, running medians,
wandering schematic plot, median polish, two-way
plot, diagnostic plot, froot and flog, reroughing, double
root, product-ratio analysis and pseudospreads. Some
of the basic ideas appear much earlier in John’s work
(though not always in publications). For example,
he was interested in resistance and robustness in the
1940s, as well as re-expression—in “One Degree of
Freedom for Non-Additivity” (Tukey, 1949h), which
I discuss below. From the EDA contributions I have
selected a few that illustrate how John developed
techniques over a period of time.

In these instances his approach was to devise a
technique (building on insight and experience), use it
on diverse data and modify or fine-tune it (or, perhaps,
scrap it). This approach is a natural application of some
of the attitudes that I quoted earlier (from “The Future
of Data Analysis”).

2.1 Fences

EDA uses “fences” to flag possible outliers. These
are based on the “hinges,” HL and HU , which are
approximate quartiles of the batch. The basic idea is
to calculate the H-spread, dH = HU − HL, and lay off
a multiple of it below HL and above HU :

HL − kdH and HU + kdH .

The limited preliminary edition (Tukey, 1970c) used
k = 1.0 for the “side values” and k = 1.5 for the “three-
halves values.” By the first edition (Tukey, 1977a) the
constants had changed a lot, to k = 1.5 for the “inner
fences” and k = 3.0 for the “outer fences,” with the
labels “outside” and “far out,” respectively, for data
values beyond them.

The aim was not to have a formal rule for declaring
an observation an outlier, but to call attention to
such data for further investigation. The values of k

have remained at 1.5 and 3.0, and the “inner fences”
naturally see more use in practice. The most frequent
application is in boxplots, as illustrated in Figure 1.
The inner fences determine which data values should
be plotted individually at the ends of a boxplot, and
thus how far out the “whiskers” extend.

John did not arrive at 1.5 and 3.0 by setting up some
sort of theoretical calculation. That step came later, as a
form of evaluation, when we were working on UREDA;
Boris Iglewicz proposed that we study the perfor-
mance of the fences for data from the Gaussian and

FIG. 1. Example of a boxplot. The box extends from the lower
hinge to the upper hinge and has a line across it at the median. The
whiskers show the extent of the data inside the inner fences, and
four observations are “outside” at the upper end.
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some heavier-tailed distributions (Hoaglin, Iglewicz
and Tukey, 1986m).

2.2 Resistant Smoothing

Resistant smoothing for sequences of data (often
indexed by time) illustrates an extended process of
development (Tukey, 1977a, Chapters 7, 7+ and 16).
The most basic operations work on short segments
of the sequence, {yt : t = 1, . . . , T }. For example, for
t = 2, . . . , T − 1 the “running median of 3” replaces yt

by the median of {yt−1, yt , yt+1}. John put together a
favored smoother from a number of building blocks:

• Running medians (3).
• Repeated smoothing or “resmoothing” (R)—use the

output of a smoothing operation (most often running
medians of 3) as input to that same smoothing
operation (and continue until no changes occur).

• An end-value rule—to handle y1 and yT .
• Splitting peaks and valleys (2 points wide: yt−1 <

yt = yt+1 > yt+2 or yt−1 > yt = yt+1 < yt+2) (S)—
treat the value on each side of the split as an end
value.

• A component to handle steadily increasing se-
quences: hanning (H) (after von Hann), a weighted
average with weights 1

4 , 1
2 , 1

4 .
• Residuals—the rough.
• Extracting an additional smooth from the rough—

“reroughing.”
• If both smoothers are the same, “reroughing” is

called “twicing.”

From all this emerged the favored smoother in EDA:
“3RSSH, twice.”

Theory related to such smoothers and their com-
ponent operations was subsequently developed by
Mallows (1980) and Velleman (1980).

The process of experimentation continued, and by
about 1998 John had settled on two simpler choices:
“3R” and “3R then 3pR.” The operation 3p handles
sequences in which two consecutive values are equal:

(. . . ,A,B,B,C, . . .) → (. . . ,A,M,M,C, . . .),

where M is the median of A, B and C. (Thus
3p replaced the earlier operation of splitting 2-point
peaks and valleys, useful because a running median
of 3 leaves them unchanged.) In the second edition of
EDA (“2EDA”) he planned to cover only “the simplest
useful smoothing.”

2.3 Hybrid Re-expression

Hybrid re-expression is another more recent devel-
opment (also intended for inclusion in 2EDA). John
sometimes found that he wanted something a bit more
complicated than the simplest re-expressions, so he
expanded his toolkit by adding hybrids of two re-
expressions. These use one re-expression to the left of
x0 and the other to the right of x0, matching their value
and slope at x0. The one that he used most often (par-
ticularly for counts) was the principal hybrid, which is
made up of the square root for x ≤ M and the log for
x ≥ M :

2
√

Mx − M for x ≤ M,

M + M loge(x/M) for x ≥ M.

Here the two re-expressions are matched at the me-
dian, M , and the hybrid re-expression is matched to the
data at M . More experience from use by others would
be instructive.

3. ANALYSIS OF VARIANCE

Some of the same attitudes and themes that I dis-
cussed earlier and traced through EDA also stand out
in John’s work in ANOVA. Thus alerted, it is easy for
me to see the data-analytic motivation for the pigeon-
hole model (Cornfield and Tukey, 1956f), but the thrust
of that paper and related ones is more methodologi-
cal. For their direct data-analytic flavor I prefer to fo-
cus on “One Degree of Freedom for Non-Additivity”
(ODOFFNA; Tukey, 1949h) and on some aspects of
“Complex Analyses of Variance: General Problems”
(Green and Tukey, 1960b).

3.1 ODOFFNA

A number of John’s contributions respond to the
practical challenges of dealing with nonadditivity in
data that are customarily handled by analysis of vari-
ance. The initial publication is “One Degree of Free-
dom for Non-Additivity” (Tukey, 1949h). Noncon-
stancy of variability and nonnormality had received
considerable attention in the literature. John noted that
he had more often needed to be concerned with non-
additivity, and he showed how, in a row-by-column ta-
ble, to isolate a one-degree-of-freedom piece from the
residual sum of squares, with the expectation that this
piece would capture:

• discrepant observations;
• systematic behavior associated with analyzing the

data in a scale where the effects for rows and
columns are not additive.
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In terms of the usual breakdown for a two-way table

yij = m + ai + bj + eij ,

the 1-d.f. piece is a multiple of aibj .
John indicated how to use this information in choos-

ing a transformation to reduce or remove the nonaddi-
tivity, but he did not take this aspect very far, because
of limited experience. By the time EDA appeared, how-
ever, he had accumulated plenty of experience and had
refined the approach by defining the comparison values
aibj /m, plotting the eij against these (the diagnostic
plot) and interpreting a slope of p as an indication to
try something like the 1−p power as the re-expression
(Tukey, 1977a, Sections 10F and 10G). The ability to
distinguish systematic nonadditivity from discrepant
observations was much enhanced by obtaining the fit
and residuals from median polish (Tukey, 1977a, Sec-
tion 11A).

EDA also included a discussion of fitting a multiple
of aibj /m (instead of re-expressing the yij ), and John
pointed out that the resulting PLUS-one fit (writing the
fitted multiple of aibj/m as aibj /c),

ŷij = m + ai + bj + aibj

c
,

has an equivalent multiplicative form,

cAiBj + (m − c),

with Ai = 1 + ai/c and Bj = 1 + bj /c. That is,

row-PLUS-column-PLUS-one

is the same family of fits as

row-TIMES-column-PLUS-one.

John also discussed the ODOFFNA fit as an example
of the use of the “vacuum cleaner” (Tukey, 1962a).

Looking back on this line of development in the
foreword to Volume VII of CWJWT, he listed four
branches of extensions from ODOFFNA (pages l–li):

• higher-order single degrees of freedom;
• the recognition that a purely multiplicative fit differs

from an additive fit by an odoffna single degree of
freedom [the PLUS-one fit];

• breakdowns into low-rank (but not single-degree-of-
freedom) constituents [as in the “vacuum cleaner,”
higher-rank fits in McNeil and Tukey (1975c), and
work by John Mandel, Ruben Gabriel and others,
conveniently summarized by Emerson and Wong
(1985)];

• graphical replacement of odoffna by diagnostic
plots.

3.2 Complex Analyses

The paper by Green and Tukey (1960b) has a
thoroughly practical orientation and covers a number
of important issues. I am grateful to Bert Green for
some of the background details. The initial stimulus
was a set of data analyzed by Johnson and Tsao
(1944) and published by Johnson (1949). The work
began in 1950, when John recruited Bert, then a
second-year graduate student in psychometrics, to help
with reanalyzing the data. As that analysis unfolded
and each iteration suggested the next, Bert did the
calculations—on an electromechanical calculator! The
complexity of the example was genuine: the data layout
had 448 observations, and the initial ANOVA table had
39 lines.

The dataset itself is of interest, especially because
John used it as a source of examples over the years. The
experiment, from psychophysics, measured difference
limens for weights “by a method of continuous change.
An aluminum pail was attached by a lever system to a
ring on the subject’s finger. One of seven weights—
100, 150, 200, 250, 300, 350, or 400 grams—was
placed in the pail. By controlling a flow of water
into the pail, the experimenter increased the load
in the pail at one of four constant rates—50, 100,
150, or 200 grams per 30 seconds—until the subject
reported a change in pull. The difference limen, DL, in
grams, was measured by the amount of water added.
Four men and four women served as subjects. Two
of each sex were congenitally blind, the others had
normal vision. . . . [T]he order of presentation of the
weight–rate combinations was randomized. For each
weight–rate combination, five determinations of the
DL were made for each subject. The mean of these
five measurements was used in the analysis. The entire
experiment was carried out on each of two days, one
week apart.” Thus the data involve six factors:

• S = sex
• I = sight
• P = person
• R = rate
• W = weight
• D = date

John used a small part of the data throughout the
chapter on three-way fits in EDA (Tukey, 1977a,
Chapter 13) and other parts as examples on other
occasions (which I have not attempted to catalog).

Analysis of those data involved a considerable num-
ber of questions. For “students” who are prepared to do
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some homework, the paper is almost a mini-textbook in
practical ANOVA. For the present account I would like
to single out two “lessons”: aggregation and choice of
response variable.

Aggregation. Once the initial computations have
produced sums of squares and mean squares, accord-
ing to “the shape of the analysis” (e.g., which classi-
fications are crossed and which are nested), the real
work of the analysis can begin. One aim is “to provide
a simple summary of the variation in the experimental
data.” Green and Tukey approach this task by aggre-
gating lines in the analysis, for which they give spe-
cific rules. (The “lines in the analysis” are the lines in
the ANOVA table, corresponding to the main effects of
the factors, two-factor interactions, three-factor inter-
actions, etc., and ending with the residuals. Each line
has, at a minimum, a sum of squares, its degrees of
freedom and its mean square.) One component gener-
alizes the rule of thumb of Paull (1950): “a line should
be aggregated with a basic line only when. . . the first
mean square is less than twice the basic mean square.”
Two other features of their procedure are important for
the present discussion. First, the choice of lines for ap-
plication of this “Rule of 2” is guided by the expected
mean squares. Second, they start with the lowest (i.e.,
highest-order) line in the ANOVA table (as the “ba-
sic line”) and lines “above” it. (If the expected mean
square for one line contains all the terms in the ex-
pected mean square for another line, the first line is
“above” the second line.)

Not surprisingly, the question of aggregation re-
ceives considerable attention in Fundamentals of Ex-
ploratory Analysis of Variance (FEAV; Hoaglin,
Mosteller and Tukey, 1991h, Chapter 11), though in a
framework of rather different terminology. The Rule
of 2 remains, but other aspects of the procedure have
changed substantially. Another rule of thumb now ad-
vises: “start by treating all factors as random.” The
process begins at the top, with the zeroth-order or com-
mon term (which usually will not be combined). And
for each term of a given order, the mean square is com-
pared with the mean squares for all appropriate terms
of the next higher order (e.g., in the example in FEAV
the mean square for M would be compared with the
mean squares for the two-factor interactions M × A,
M × T and M × D). It might be of interest to compare
the two procedures, but I am not aware of anything that
has been written about this.

Returning to the Green–Tukey paper and the differ-
ence limen data, their aggregation procedure reduced

the initial 39 lines to 15. In the resulting analysis the
main effects of person and rate were the key part of
the story. Thus aggregation did much to simplify the
summary of the variation in the data.

Choice of response variable. The other “lesson”
in simplifying an analysis is choice of the response
variable. After considerable work on the difference
limen data, Green and Tukey discovered, to their
chagrin, that analysis of response time (in seconds)
was much better than analysis of difference limen
(in grams). The interpretation is that “each person
in the experiment responds after a constant Time,
regardless of the Rate.” The transformation of the
data divides each value of the dependent variable by
the corresponding value of Rate. This operation is
different from re-expression (discussed above as part
of EDA), and it has its own name: “reformulation.”
In the actual re-analysis (Can you hear the whir of
Bert’s calculator?!), Green and Tukey also used a re-
expression, the logarithm of response time, to stabilize
variability.

In summary, for ANOVA John contributed powerful
techniques that can be brought to bear when one
analyzes data.

4. REGRESSION

In the general area of regression John made a number
of key contributions. Chapters 12–16 of Data Analysis
and Regression (Mosteller and Tukey, 1977b) should
be required reading for both students and practitioners.

Some of his ideas paved the way for a num-
ber of effective regression diagnostics. The leave-out-
one mechanism associated with the jackknife (Tukey,
1958g) underlies various measures of the influence of
single observations, including Cook’s distance (Cook,
1977) and DBETAS and DFITS of Belsley, Kuh and
Welsch (1980). And the information on leverage is
contained in the “hat matrix,” H = X(XT X)−1XT ,
so named because it takes y into ŷ = Hy. Of course,
X(XT X)−1XT has been around as long as we have had
regression in matrix notation, but a compact and evoca-
tive name makes it more accessible to some audiences.
Again we see John’s penchant for terminology. As I re-
call, I first saw the name “hat matrix” in mimeographed
notes for a course, around 1968. For the case of a two-
way table Anscombe and Tukey (1963b) gave the for-
mulas for all elements of H .

Besides Data Analysis and Regression John’s writ-
ings indicate that he gave considerable attention to
regression. Beaton and Tukey (1974c) discussed, at
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length, issues that arise in fitting polynomials to equally
spaced data. They were motivated (in connection with
the Dartmouth Conference on Critical Evaluation of
Chemical and Physical Structural Information) by data
on the band spectrum of hydrogen fluoride—a proto-
type situation because the equal spacing is theoreti-
cally precise and the data are accurate to many decimal
places. Their topics include orthogonalization, various
aspects of least-squares fitting, robust-resistant fitting,
nonlinear smoothing, the degree of the polynomial, in-
dicators for stopping and balancing bias and variance.

Earlier Anscombe and Tukey (1963b) examined an
extensive kit of techniques for working with residu-
als. Though their focus was mainly on one-way and
two-way classifications, several of the techniques are
applicable to regressions with less structure and have
been widely used.

Also, I am aware of two substantial unpublished
pieces: “Introduction to the Dilemmas and Difficulties
of Regression” (1979) and “Practical Regression for
1983” (1982, with Paul Velleman). And in 1991
John circulated two series of short notes related to
regression.

Some of the scientific applications suggest that it
is appropriate to end this discussion of regression
by quoting briefly from the unpublished latter part
of the manuscript whose published part appeared as
“Causation, Regression, and Path Analysis” (Tukey,
1954b): “Most of us, I fear, are far from being at home
with determinate functions of several variables, so
that when these determinate functions become covered
up with fluctuations, and at best exist as regression
surfaces, it is not surprising that we have discomfort
and difficulty. Such comfort and ease as I have in
multiple-variable statistical situations is due, I believe,
to learning about the determinate case as a student
of physical chemistry.” John’s scientific training had a
sizable impact on his statistical work.

5. APPLICATIONS

In the work that I have been discussing, specific
applications are often in view. Throughout his career
John also put great effort into a wide variety of projects
in which the focus was primarily the applications
themselves. Some of these left no published trace (nor
any public trace—for example, for reasons of national
security). For others we do have a published account.
I mention only a few of these activities as illustrations:

• The Kinsey Report (Cochran, Mosteller and Tukey,
1953b, 1954c);

• Panel on Seismic Improvement (Tukey, 1959e);

• Environmental pollution (Tukey et al., 1965n; Tukey,
1966a);

• The National Halothane Study (Subcommittee on
the National Halothane Study, 1966d; Gentleman,
Gilbert and Tukey, 1969a);

• National Assessment of Educational Progress
(Tukey, 1970a);

• Impacts of Stratospheric Change (Tukey, 1976h);
• Adjustment of the U.S. Census (Ericksen, Kadane

and Tukey, 1989x; Tukey, 1990t).

Many of these activities involved John’s participation
for a number of years, during which he contributed
in many ways besides advising on or guiding data
analysis.

6. CONCLUSION

Over the years John received much recognition for
his many accomplishments—in the form of medals
(including the National Medal of Science), awards
and honorary degrees. As his student (1966–1970)
and, later, collaborator, I was aware of many of
his contributions, though not always of the details.
The process of reviewing part of his work in data
analysis has given me a renewed appreciation of
their number, breadth, depth and impact. For nearly
60 years, statistics, science and the nation benefited
enormously from the efforts of John W. Tukey.
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