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David J. Hand, Gordon Blunt, Mark G. Kelly and Niall M. Adams

Abstract. Data mining is defined as the process of seeking interesting
or valuable information within large data sets. This presents novel chal-
lenges and problems, distinct from those typically arising in the allied
areas of statistics, machine learning, pattern recognition or database
science. A distinction is drawn between the two data mining activities
of model building and pattern detection. Even though statisticians are
familiar with the former, the large data sets involved in data mining
mean that novel problems do arise. The second of the activities, pat-
tern detection, presents entirely new classes of challenges, some arising,
again, as a consequence of the large sizes of the data sets. Data qual-
ity is a particularly troublesome issue in data mining applications, and
this is examined. The discussion is illustrated with a variety of real
examples.
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1. INTRODUCTION

Data mining is the process of seeking interesting
or valuable information within large databases. The
novelty, and the reason that a new term has been
coined to describe the activity, has its origin pri-
marily in the large sizes of modern databases. The
size means that standard statistical exploratory
data analysis procedures need to be extended, mod-
ified, adapted and also supplemented by different
kinds of procedures. The result is that data min-
ing is an interdisciplinary subject, representing the
confluence of ideas from statistics, exploratory data
analysis, machine learning, pattern recognition,
database technology, and other disciplines.
The size of modern databases is illustrated by the

following examples. Barclaycard, the U.K.’s largest
credit card company, carries out 350 million trans-
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actions a year. However, this is nothing compared
to the American retailer Wal-Mart, which makes
over 7 billion transactions a year (Babcock, 1994).
More strikingly still, according to Cortes and Preg-
ibon (1997), AT&T carries over 70 billion long dis-
tance calls annually. Harrison (1993) remarks that
Mobil Oil aims to store over 100 terabytes of data
concerned with oil exploration. Fayyad, Piatetsky-
Shapiro, and Smyth (1996) say that the NASA
Earth Observing System was projected to gener-
ate on the order of 50 gigabytes of data per hour
around the turn of the century. The human genome
project has already collected gigabytes of data.
Numbers as large as those above are very much

a consequence of modern electronics, computer
and database technology. The data may have been
collected as secondary to some other activity, or
to answer a specific question but then retained.
Once collected, they clearly represent some kind
of resource: it is likely, arguably certain, that such
mountains of data contain valuable or interesting
information, if only one could identify and extract it.
The term “data mining” is not a new one to statis-

ticians. However, rather than the promise implicit
in the above (the information is there in the data,
and “all we have to do” is extract it), it often car-
ries negative connotations because one can always
find apparent structures in data sets. Many of these
structures will not be real in the sense that they
represent aspects of an underlying distribution,
but will be attributable to the random aspects of
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the data generating process. Statisticians, to whom
inference is a fundamental activity, are acutely
aware of this and have as a central concern the
question of how to distinguish between the under-
lying “systematic” components and the random
components of data. Thus, on observing a small
local cluster of data points, one of the statistician’s
chief concerns may be whether the clustering could
reasonably be attributable to chance or not. In con-
trast, data mining practitioners concern themselves
primarily with identifying potentially interesting
or valuable structures in data (i.e., with finding
the “small local cluster of data points” in the first
place), shifting the responsibility for determining
“reality” to the database owner or domain expert.
This also allows the expert to characterize struc-
tures which, though real, are not of interest (for
example, a data mining exercise may reveal that
almost all sufferers from prostate cancer in the
database are male). We have more to say about
such issues below.
Chance is one source of structures in data which

have no matching underlying “reality,” or which are
not valuable or interesting. Another source is data
corruption. One should expect any large data set to
be imperfect. This poses particular challenges for
those concerned with finding interesting, valuable
and meaningful structures in large data sets. It
means that one may discover structures which are
an aspect of systematic variation between objects,
but which have arisen because of missing data,
distorted data or ambiguity of definition (e.g., a
few sufferers from prostate cancer in the illustra-
tion mentioned above who are apparently female).
Such structures may be of interest, but equally may
not be.
We commented above that most statisticians are

concerned with inference of one kind or another.
Their aim is to take a sample of data and make a
statement, with associated probabilities, about the
population from which it came. This may be at a
low level—a simple hypothesis test—or at a higher
level—an overall model. Some data mining tasks
are of this kind: in some situations, as we describe
in Section 2.1, the analysis can be based on a sam-
ple from a large database. Others, however, espe-
cially pattern detection problems (see below), cannot
be based on a sample. Moreover, in some cases one
has the entire data set available (in the numerical
examples above, all of the Wal-Mart transactions
for a year will be available, not merely a sample of
them). Again this can lead to differences from stan-
dard statistical approaches.
Because data mining is concerned with discover-

ing structure within existing databases, it is seldom

concerned with issues of data collection. In partic-
ular, sciences of efficient data collection, such as
experimental design, survey design and question-
naire design, are beyond its remit. This is one way
in which data mining differs from statistics. Another
way is that data mining places greater emphasis on
algorithms than does statistics. That data mining
should be more concerned with algorithms is hardly
surprising. Given the large sizes of the data sets
that may be examined, one must rely very heavily
on automatic data processing of some kind. There
is no way that one can individually examine a bil-
lion data points. Moreover, the algorithms have to
be fast. This has led to an interest in adaptive and
sequential estimation methods, in which estimates
are updated data point by data point, so minimiz-
ing the number of disc accesses. Machine learn-
ing, as the very word “learning” suggests, has his-
torically placed emphasis on such approaches. Per-
haps because of this, in contrast to most modern
statistics, where the model is central and deriv-
ing a model is the goal of statistical analysis (and
from which other questions can be answered), to
many data mining practitioners the algorithm is
central. Often they may not even think in terms of a
model-building process at all, instead viewing it as a
data driven descriptive exercise, with the algorithm
determining what sort of description emerges. Hand
(1999) has pointed out that the Gifi school of multi-
variate statistics also adopts this perspective, so it is
not without precedent, even amongst statisticians.
(Gifi 1990, page 34) says: “In this book we adopt the
point of view that, given some of the most common
MVA [multivariate analysis] questions, it is possible
to start either from the model or from the technique.
As we have seen in Section 1.1 classical multivari-
ate statistical analysis starts from the model, � � � .
In many cases, however, the choice of the model is
not at all obvious, choice of a conventional model
is impossible, and computing optimum procedures
is not feasible. In order to do something reasonable
in these cases we start from the other end, with
a class of techniques designed to answer the MVA
questions, and postpone the choice of model and of
optimality criterion.”
In the above, we have described the objectives of

data mining as being to find structure in data. It
is useful to distinguish between two types of struc-
ture (Hand, 1998a): models and patterns. Both are
widely sought in data mining exercises. The dis-
tinction, though sometimes blurred, is nevertheless
a useful one. A model is an overall summary of a
set of data, or a subset of the data. This is thus
the standard statistical usage. We can speak of a
regression model, a Box-Jenkins time series model,
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a dynamic linear model, a conditional independence
graph model, a cluster model and so on. Such struc-
tures represent a large-scale summary of a mass of
data.
In contrast, a pattern is a local structure, possi-

bly (though not necessarily) referring to only a rel-
atively small number of objects. (“Small” here could
mean 10 or 100,000. It depends on the context and,
of course, the size of the overall data set.) Thus a
pattern might be an anomalously high log-odds ratio
for a small group of objects or a small sequence of
values which occurs several times in a time series
trace (this is precisely the sort of thing that chartists
seek in stock prices). A multiway table of counts can
be analysed via a log-linear model, which will sum-
marize its broad features, or one can try to identify
unexpectedly high or low cell counts. This suggests
that patterns are defined relative to a model. This
is often the case—outliers are another example—
but it is not always so; as we illustrate below, the
pattern may simply be defined relative to a broad
notion of continuity, something which is really too
general to call a “model.”
As with data analysis in general, data mining

is not a once-off activity. That is, presented with
a billion point data set, one does not simply mine
it and be done with it. Rather, the exercise should
be seen as an interactive process involving both
the data miner and the domain expert, as well as
the data.
In the next section we examine the sorts of tools

being used and developed for data mining applica-
tions. We expand on the distinction between mod-
els and patterns, and illustrate with some real data
sets. Section 3 discusses some of the challenging
problems which arise as a consequence of the sheer
size of the data sets which are becoming available,
and Section 4 looks at the vital issue of data quality.
Section 5 draws some overall conclusions.

2. DATA MINING TOOLS

In Section 1 we distinguished between models and
patterns. Any kind of statistical model may appear
in a data mining application, and we need not dwell
on tools for these here, since they will be familiar
to statisticians. Examination of recent data mining
conference proceedings shows that certain classes of
tools are particularly important (or, at least, attract
considerable attention from those concerned with
developing data mining tools). They include tools
for unsupervised classification (clustering), super-
vised classification, more general predictive models
(regression), modelling time series to detect trend
and other structures, and graphical models.

Even though the objective and basic nature of
tools for modelling will be familiar, the algorithms
may differ from those in standard use in statistical
applications (recall the comment about sequen-
tial estimation methods in Section 1), and often
the emphasis is different. For example, recursive
partitioning methods are widely used in data min-
ing applications with emphasis placed on their
interpretability. This perhaps has more in com-
mon with machine learning work than statistics.
Often, in fact, the data mining work goes further
in this direction and the aim is not so much to
extract entire tree structures as to characterize
“local rules” relating variables (e.g., “If A is present
and B is absent, then C has a high probability of
being present”).
In some contexts, rule extraction, (or association

analysis, as it is sometimes rather unfortunately
called) is a key aim. A classic example is market
basket analysis, so called because of its origins in
mining supermarket purchasing data: interest lies
in the percent of customers who purchase certain
goods, given that they purchase others. Some sub-
tleties were not always recognised by early workers
in the field (or, dare we say it, by some more recent
workers), often working in ignorance of the statis-
tical content of the analysis. In particular, it will
be obvious to statisticians that a high conditional
probability P�X�Y = 0� may not be very interest-
ing in itself. It may only become interesting if, also,
P�X�Y = 1� is low, so that a contrasting behavior
between groups is evident. Likewise, the familiar
caution that correlation does not imply causation
has not always been remembered in the enthusiasm
inspired by the discovery of apparent relationships
between purchases of different goods. The fact that
most people who buy A also buy B does not mean
that inducing other people to buy A will lead to them
also buying B.
The term data visualization is often used to

describe graphical methods in data mining con-
texts, where the potentially huge numbers of data
points can present problems for standard statistical
methods. As with statistics, dynamic and inter-
active methods obviously have considerable novel
potential. This is an active area of research, though
thus far highly innovatory tools with wide impact
seem few and far between. Virtual reality meth-
ods for exploring large databases represent one
exciting area of future work. Given the difficulty of
adequately demonstrating dynamic, interactive and
virtual reality methods in the medium of a journal
paper, we will not dwell on them here. Exam-
ples of data visualization methods are described in
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Cox, Eick, Wills and Brachman (1997), Derthick,
Kolojejchick and Roth (1997) and Mihalisin and
Timlin (1997).
Pattern detection methods will be less familiar

to statisticians than will model building exercises.
They represent a relatively new area of work. Much
of it is rather ad hoc, and deep ideas about the best
strategies to pursue in pattern detection appear not
to have emerged yet. (Of course, they may never
emerge.) Sections 2.1 and 2.2 give some relatively
straightforward, but we hope interesting, examples
of model building and pattern detection in data min-
ing from our own work.

2.1 Models

Figure 1, from Hand (1998b), shows a histogram
of the number of weeks of a particular year that
credit card holders used their cards in supermar-
kets. This distribution has various features, which
are evident from the histogram and which we might
try to model. Most strikingly, there is the rapidly
decaying left-hand mode. This mode is probably
to be expected: it means that many people never
use their cards in a supermarket; a smaller num-
ber, though still relatively large, use them in just
one week and so on. However, closer examina-
tion shows that the distribution does not decay to
zero, but perhaps to some constant level: a similar
number of customers use their cards 20 weeks as
do 30 or 40 weeks of the year. Furthermore, at the
right-hand end of the distribution, there appears
to be a smaller, flatter mode. Having detected this
second mode, it is not difficult to concoct a ret-
rospective explanation. It is likely that there are

Fig. 1. Histogram of number of times credit card owners used their cards in a supermarket in one year.

people who use their cards in a supermarket every
week, except, perhaps, when they are on holiday or
unable to for some other reason. One could build a
model (perhaps a mixture model involving a Pois-
son left-hand mode, a reversed Poisson right-hand
mode, and maybe other components) to summarize
the shape of the distribution in terms of a few con-
venient parameters. Whether the features of this
model (the decaying left-hand mode, the constant
middle part, the small right-hand mode) are inter-
esting or valuable is a matter for the supermarket
operators to determine. We could conduct statis-
tical significance tests on aspects of the model,
though the numbers involved in this example are
such that all the aspects above will be highly sig-
nificant. Moreover, as noted above, one has to be
careful in interpreting such tests; the data may
be all credit card supermarket transactions in the
year in question, not a sample from them. Statisti-
cal inferences will then presumably refer to other
data sets which could have been drawn, with the
implication that one is really concerned with future
possible transactions.
This example illustrates the basics of the mod-

elling approach to data mining. It is very similar
to standard statistical modelling. Perhaps one
difference is that one might be more sensitive to
the question of how large (“substantively signifi-
cant”) are the features one wants. If the data set
involved 100 million points, then minute features
could be detected as highly statistically significant.
It is likely, however, that many of these would be
so small as to be of no conceivable value. Of course,
such issues depend critically on the context. One
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Fig. 2. Histogram of sizes of petrol station transactions.

can avoid detecting small features as statistically
significant by reducing the size of the data set
by sampling. Then standard statistical inferential
issues come into play.
For a second modelling example, consider the dis-

tribution shown in Figure 2. This again involves
credit card data, but now is a histogram of the
amount spent in each of 40,068 credit card transac-
tions in petrol stations over a given period. The cells
in this histogram range from £x�51 to £�x + 1��50,
and 196 transactions of value over £100 have been
excluded so that the distribution of the remain-
der is clearer. It is apparent that the distribution
has some striking and, at least to the authors,
unexpected features. There are marked peaks at
multiples of £5 and £10, and also at the values £12
and £18. Again the numbers of transactions here, as
well as the regularity of the patterns, make it clear
that these structures are not simply chance events:
something real is going on. (We note here that the
peaks could legitimately be regarded as patterns.
In this example, however, we are concerned with
modelling them, rather than detecting them. In the
next section we give an example where the empha-
sis is on detecting and explaining patterns forming
similar peaks.)
Blunt and Hand (1999) have examined this data

set in detail. Closer examination reveals rounding
to all integral numbers of pounds, though much less
marked than is evident in Figure 2. Blunt and Hand
build a mixture model for these data, in which petrol
purchasers are characterized as being one of two

types: those who seek to make purchases of rounded
values and those who do not. Based on this, they
identify features which distinguish between the two
types. For commercial reasons, they stop short of
showing how this information may be made use of
by the credit card company.
Predictive models are important in data min-

ing, perhaps especially in commercial applications,
where one is often concerned with the possibility
of manipulating practices so as to increase sales.
In one of our studies we knew that customers who
exhibited a certain type of transaction pattern were
likely to respond positively to a marketing initia-
tive, while those who did not exhibit the pattern
were unlikely to respond positively. We knew that,
in the customer base in general, 12.5% of cus-
tomers followed the transaction pattern. However,
we were able to identify a subgroup of 10% of the
customer base that had a 43% chance of exhibiting
the transaction pattern. It was then easy to set up
an equation including per capita return on the mar-
keting initiative and per capita marketing cost, to
demonstrate that greater profit would be obtained
by restricting the marketing initiative to the iden-
tified subgroup. Here we knew what transaction
pattern was to be used as the predictor variable,
so we only had to concern ourselves with the mod-
elling aspects. In general, we will also be searching
for patterns that give us this sort of opportunity.
This is described in the next section.
These examples show that modelling in data min-

ing is closely related to modelling in statistics. There
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are differences, however, primarily arising from the
sizes of the data sets frequently encountered in data
mining. These issues are discussed in Section 3.
Perhaps it is not necessary to say that the bor-
der between the two disciplines, as far as modelling
work goes, is a fuzzy and shifting boundary, and
one that probably depends as much on the individ-
ual investigator as the subject matter and objective.

2.2 Patterns

A “pattern” is an unusual structure or relation-
ship in the data set. The structure may be shared
by relatively few cases, but nevertheless enough to
be worthy of attention. We should note that the term
“pattern” is used in a different way from its use in
the phrase “pattern recognition.” There it refers to
the identification of a particular shape (in an image)
or classification of a vector of observations (in sta-
tistical pattern recognition).
There are different kinds of patterns. They may

be cases that demonstrate apparent departure from
models, such as outliers. They may be shapes in
time series or patterns in event sequences which
occasionally recur (these are often called episodes:
see Mannila, Toivonen and Verkamo, 1997). Our
first example illustrates a case in which they are
defined relative to a notion of uniformity of the back-
ground data.
Adams and Hand (1999) describe a tool for

detecting local groups of points which might be
regarded as anomalously similar. If they are not
merely chance aggregations of points, such struc-
tures would reflect local peaks of the underlying
distribution. Multivariate nonparametric density
estimation techniques (e.g., Scott, 1992) can be used
to smooth a data set to detect such peaks, but find-
ing their positions after the smooth is difficult in
more than two or three dimensions. To overcome

Fig. 3. Scatterplot (left-hand panel) of chromosome data showing locations (right-hand panel) of locally dense regions.

this difficulty, Adams and Hand (1999) evaluate the
smooth at each of the data points themselves. The
value of the estimated density at each data point
is then compared with the estimated value for the
point’s M neighbors. If it has a larger estimated
value than any of its M neighbors, then it is taken
as a local peak, and the position flagged as a pat-
tern of potential interest. By varying M we vary
the meaning of “local.”
To illustrate, the left-hand panel of Figure 3

shows a scatterplot of two standardized variables
measured on 5520 human chromosomes. The right-
hand panel shows the position of the local maxima
of estimated probability density, using M = 10.
There are clear local maxima around the “center” of
the plot, which are to be expected. However, there
are other, less predictable and far from obvious
peaks in the tails of the distributions. The local rel-
ative overabundance of points at these coordinates
may merely be chance fluctuations, but we are flag-
ging them as worth checking. Of course, the value
of such an exercise is more apparent when more
than two variables are involved.
Pattern detection data mining tools are used for

identifying fraud, fault detection, instrument break-
down, distinguishing between genuine and spuri-
ous alarms, and, of course, also for finding errors in
data. Hand (1998b) notes that credit card compa-
nies use such methods to trigger an alert when the
pattern of card usage deviates from the customer’s
normal pattern.
We pointed out in Section 2.1 that sampling can

be used in modelling, where the aim is generally to
characterize the most important (and hence, large
scale) features of a data set. However, sampling can-
not be used in data mining for patterns. By def-
inition, sampling thins out the available data for
detecting the structure, and, since a pattern may be



DATA MINING FOR FUN AND PROFIT 117

based on only a small number of cases in the first
place, reducing this number may remove the pattern
altogether. An increasing trend in a customer’s num-
ber of credit card transactions may be adequately
modelled by taking only every tenth transaction,
but the fraud patterns mentioned above could well
be missed by thinning out the data in this way.
There are two major problems with pattern detec-

tion methods. One arises from data quality and is
discussed in Section 4. The other, familiar to statis-
ticians, is the fact that many spurious patterns,
generated merely by chance fluctuation, will be
“discovered.” This is particularly the case if one
is examining many candidates, seeking patterns
defined by small numbers of cases. We discuss
this further in Section 3. Whereas much statistical
work is concerned with characterizing how likely
it is that apparent structure will arise in a data
set given that there is no such structure in the
underlying process, in data mining the emphasis is
simply on locating the structure. The responsibility
for deciding whether the structure has meaning in
terms of the underlying process (“is real”) is shifted
to a domain expert. For example, perhaps the 100
“largest” structures in the database will be referred
to the expert, who can decide whether they are
interesting, valuable, or likely merely to be chance
features of the random aspect of the data. This is
one reason why “data mining” should not be seen
as a “once off” activity, but rather as a process, in

Fig. 4. Values of credit card purchases in department stores: £1 cell widths.

which the discovery of apparent structure and the
interpretation of that structure bounce back and
forth.
Although the aim of the exercise is to find pre-

viously unsuspected patterns, we believe that pat-
terns which can be explained (that is, for which a
convincing post hoc rational explanation can be cre-
ated) are much more likely to be “real” than those
for which such an explanation cannot be created.
Thus, we suggested an explanation for the right-
hand mode in Figure 1 that, at least to us, sounds
reasonable. It would be more difficult to find an
equally convincing explanation for the mode at 11
weeks in that figure. Although a pattern detection
data mining tool [such as that described by Adams
and Hand (1999), outlined above] could well pick up
this mode also, we would be suspicious of it on the
grounds that we could not explain it.
Figure 4 shows a histogram of the values of

credit card purchases in department stores. There
are clear peaks at some values; notably at values
ending in 0 and, to a rather lesser extent, at values
ending in 5. A pattern detection algorithm, such as
that described above, might pick these up (though,
in fact, since this example is one-dimensional for
illustrative purposes, this is not really necessary).
Since department store purchases seldom provide
the opportunity for choosing rounded values, the
explanation provided for the petrol purchases in
Section 2.1 will not suffice. Neither will digit pref-
erence (see Section 4) since the values are objective
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and recorded electronically. Some other explanation
is required and a little thought readily provides one.
Items in department stores are often priced to 1p

less than a multiple of 5 or 10 pounds. Thus we
have prices of £4�99 and £19�99. If plotted on a his-
togram with cell widths of £1, these will be rounded
to £5 and £20. Further support for this explana-
tion comes from Figure 5, which shows histograms,
with cell widths 1p, around some of the peaks from
Figure 4. If one, or sometimes more, purchases with
such prices were made, one would expect to find pre-
cisely these local distributions, tailing off to the left.
The structure in Figure 4 can be explained, and

we are confident that (a) the structure is real and
(b) our explanation is correct. Whether the infor-
mation is valuable or not is a different question.
Whether the structure is obvious or not is also a dif-
ferent question; perhaps most of the real structures
discovered in data mining exercises are obvious in
retrospect.
Pattern detection is often used in an interactive

way. Thus collaborative filtering describes the pro-
cess of extracting conditional probabilities from pur-
chasing data used by some retail organizations. (For
example, the Amazon internet bookstore uses this
strategy.) The purchases of customers who bought
item X are examined to see what other items, Y,
they tended to buy. Then new customers who buy
X are alerted to the fact that they may also find Y

Fig. 5. Histograms of credit card purchases in department stores: 1p cell widths.

interesting. Clearly, rather more than a high con-
ditional probability P�Y�X� is needed—some items
are bought by everyone.
The key feature is a high P�Y�X� and a low

P�Y�∼X�, along with, of course, a value of P�X�
which is not too small. The exercise here is a fairly
elementary statistical one, although the practice
does have some interesting features. The data sets
are large, of course, and the application (detect a
purchase of item X and send a message about Y)
occurs in real time, although the processing to find
the conditional and marginal probabilities need not.
On the other hand, these probabilities need regular
updating, and this updating must also adapt to the
changing inventory of the supplier.

3. PROBLEMS OF SIZE

It is the size of the data sets encountered in many
data mining applications which provides the poten-
tial for discovering and taking advantage of novel
structures. The sheer number of records may serve
to conceal features of interest, but these numbers
mean that relatively small effects, not easily iden-
tifiable or observable with smaller numbers, can be
productively sought. But size is a two-edged sword.
As well as providing the opportunity, it also brings
with it problems.
One obvious one is that large samples mean that

things which are substantively insignificant may
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be highly statistically significant. This is an issue
which is very much context dependent. For exam-
ple, 100,000 records with a common property may
mean very high statistical significance. And 100,000
records may provide the potential for large extra
profit, if advantage can be taken of whatever com-
mon property they have. (In one project with which
we have been involved, reducing the bad rate on a
bank loan portfolio of 8 million customers by just
0.25%, in which each “bad” means a loss of £1000,
would lead to an overall saving of £20 million.) On
the other hand, if the 100,000 records are from a
1 billion item database, then the relative size of the
extra profit, may not be worthwhile. It depends on
the context.
In searching for interesting patterns, one could

test each candidate pattern for statistical signifi-
cance. However, this inevitably means a large num-
ber of tests. Carrying out large numbers of tests
does not really protect us against detection of spu-
rious relationships, either because they will also
falsely reject a large number of null hypotheses (5%
of a large number is still a large number, for exam-
ple) or because the overall (“experimentwise”) con-
trol adopted requires the underlying effect to be
very large to have a nonnegligible chance of being
detected.
Given that formal probability models are of lim-

ited value, a scoring strategy is often adopted. This
abandons probabilistic interpretations and sim-
ply scores each model or pattern according to its
“unusualness,” “unexpectedness,” or “interesting-
ness.” The quotation marks are intended to signify
that there is some considerable flexibility in defin-
ing the measures used for these concepts. (Note
the similarity to projection pursuit, though there
the aim is really modelling rather than pattern
detection.)
Other issues arising from the size of modern data

sets relate to how to analyse them. For example,
the scatterplot is a basic statistical tool that is very
useful both for probing data and for communicat-
ing findings. However, to illustrate what can happen
when very large data sets are involved, Figure 6(a)
shows a scatterplot of a data set of time in employ-
ment against the day of application (called “index”
in the plots) for around 96,000 bank customers. The
scatterplot does show some structure. For example,
there are clear dense horizontal bands. However,
it is likely that these bands are an artifact of the
coarseness with which the data are recorded, and do
not reflect any underlying reality of interest. In fact,
this scatterplot is concealing, rather than revealing
information, as the contour plot of the same data
given in Figure 6(b) shows. There are clear modes

for both time in employment and index number,
though there appears to be no dependence between
the values of these two variables.
This example illustrates a key issue for data

mining algorithms: they must be scalable. That is,
they must increase in a reasonable way as the sam-
ple size (or perhaps as the number of variables)
increases. This scalability must relate to the ease
with which the methods reveal aspects of structure,
and also to computational resources. Algorithms in
which processing time or required memory increase
exponentially or quadratically with sample size
rapidly become impracticable. This necessary fea-
ture of data mining algorithms may mean that
methods that are optimal from a formal statistical
perspective cannot be used.

4. DATA QUALITY

We believe that data quality is one of the key
issues in data mining. The simple reason is that,
as any experienced data analyst will know, it is
extremely unusual to find data sets that have no
errors or distortions. Presented with a data set that
appears to be free of errors, a statistician’s suspi-
cions may be immediately aroused. One might ask
what happened to the incomplete records, whether
the recording instruments really never failed or
drifted over time, if all the cases were followed to
the end of the study period, and so on.
This being the case, and given that data mining is

concerned with finding structure in data, we might
reasonably expect such exercises often to identify
structures arising solely because of inadequacies
or peculiarities in the data or the data collection
process. Our experience shows this expectation to
be entirely justified. Figure 7 shows a histogram of
diastolic blood pressure for a sample of 10,772 men.
A crude analysis would reveal that there is a strong
correlation between the value of the blood pressure
and whether or not it takes odd-numbered values.
Indeed, the histogram shows that there are several
other peculiarities with this data set. For exam-
ple, there are marked peaks at values ending in 0,
and the only odd values which occur in the lower
part of the distribution are those ending in 5. We
attribute the peaks to digit preference (contrast
this with the explanations for the peaks in the
petrol purchase data and the department store data
above). Moreover, deeper investigation revealed
that the instrument only recorded even values
and, when measurement yielded an exceptionally
high value of blood pressure, the measurement was
repeated and the average of the two (even) mea-
surements recorded. This can yield odd numbers.
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Fig. 6. (a) Scatterplot of 100,000 bank customers, showing their time in employment plotted against their index number. (b) A contour
plot corresponding to Figure 6(a).

We believe the values ending in 5 in the lower
part of the distribution are again due to digit pref-
erence. Of course, the necessity for seeking such
explanations only arises because one has identi-
fied unexpected features about the data in the first
place.
We believe it is not farfetched to suggest that most

of the “interesting and unexpected” patterns discov-
ered in a data set during the course of a data mining
exercise will be attributable to “inadequacies” of the
data.
Data distortion and missing values can, of course,

be a serious problem even in relatively small data
sets. Figure 8 is produced from a data set of 3884

applicants for loans, with the application form yield-
ing scores for 25 variables. The histogram shows
how many applicants had no missing values, one
missing value and so on. Only 66 applicants pro-
vided complete information, and one applicant had
16 of the 25 values missing (history does not record
whether this applicant was granted a loan). Only
five of the variables had no missing values, and two
had over 2000 missing values.
Of course, things are complicated by the fact that,

often, whether a value will be recorded for a variable
is contingent on the values taken by other variables.
If half the subjects are female, questions about tes-
ticular cancer remain unanswered. This sort of sit-



DATA MINING FOR FUN AND PROFIT 121

Fig. 7. Diastolic blood pressure for 10,772 men.

Fig. 8. Histogram of number of missing values for each of 3884 applicants for personal loans.
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uation is illustrated in Figure 9. The data are from
a study to develop a screening instrument for osteo-
porosis and relate to 1012 elderly women (Cooper, et
al., 1991). The vertical axis, V1, shows the patient
number and the horizontal axis shows the variable
number (from 1 to 45). A point is printed when-
ever there is a missing value. The resolution of the
figure is such that one cannot see individual cases,
but it is apparent from the figure that there is struc-
ture to the missing values. Variables 4 and 5 are
usually either both missing or both not missing. A
few cases have most variables missing. Some vari-
ables have many missing values. And so on. Many
such features are precisely the sorts of things one
would hope a data mining exercise would detect,
but they will often be of little interest; it is typically
statements about the values that are recorded that
one is seeking to make. (On the other hand, miss-
ing values can sometimes be useful; for example,
in supervised classification problems, sometimes the
fact that a value is missing can be predictive.)
Missing values are perhaps the most common

kind of data distortion, but there is an infinite num-
ber of ways that things can go wrong. Figure 10
shows mean weight changes over a four-month
period for the control group from a classic study of
10,000 children carried out in the 1930s to explore
the effect of free school milk (Leighton and McKin-
lay, 1930). The consecutive pairs of points show
the mean weight before the trial and the mean

Fig. 9. A missing value plot of 1012 elderly women.

weight at the end of the four-month trial. The dif-
ferent pairs of points relate to different age groups.
A priori, one might expect that the curve would
be smooth. The manifest irregularities are pre-
cisely the sort of thing one would hope a data
mining exercise would detect, such structure is
unexpected, and certainly interesting. But in this
case it is of little value. It seems likely that it can
be attributed to the fact that the first measurement
of each pair took place in February and the sec-
ond in June when the weather was warmer and the
children would be wearing lighter clothing. (This
despite the precautions the experimenters took: “All
of the children were weighed without their boots
or shoes and wearing only their ordinary indoor
clothing. The boys were made to turn out the mis-
cellaneous collection of articles which is normally
found in their pockets, and overcoats, mufflers, etc.,
were also discarded. Where a child was found to
be wearing three or four jerseys—a not uncom-
mon experience—all in excess of one were removed”
(Leighton and McKinlay, 1930, page 8).
Hand (1998b) distinguishes between two kinds of

data inadequacy. In one kind, individual records are
distorted, while, in the other kind, the overall sam-
ple is distorted. If individual records are distorted,
one might try to develop methods that allow for this
or correct the distortion. Thus, for example, the EM
algorithm will permit one to find maximum likeli-
hood solutions with incomplete records and impu-
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Fig. 10. Weight changes for 10,000 children in a trial to study the effect of milk on growth carried out in the 1930s.

tation methods seek to fill in the missing values.
Of course, such methods are based on assumptions
and models about why the data are missing. The
lack of transparency which is an inevitable con-
comitant of very large data sets means that one
may be tempted to adopt automatic “data correc-
tion” procedures. While these may be useful, there
is also the very real risk that they will smooth out or
remove the very structures one is hoping to detect.
An anomalous tight grouping of a handful of cus-
tomers could be regarded as due to data record-
ing errors. Clearly the solutions are not straight-
forward.
The second kind of data inadequacy occurs at

a higher level and is due to distortion in the set
of records which is selected for inclusion in the
database. Selection bias is an example of this sort
of phenomenon, in which whether or not a record
is included in the database depends on the values
the variables take. This can cause major difficul-
ties. Patients for whom a treatment fails to work
may be more likely to drop out of a study, thus leav-
ing those for whom it has worked and hence giving
a distorted impression of the treatment’s efficacy.
Copas and Li (1997) give an example involving kid-
ney dialysis, in which log(hospitalization rate) for a
new method of treatment appears to decline with
time, but for which it is possible that the effect is
due to the nonrandom allocation to the new and
standard treatment.

In many data mining problems, in which data col-
lection may be a far from straightforward process,
it is likely that the samples in the database will be
convenience or opportunity samples: those records
which could be easily collected. The implications for
inference to the overall population may be unpre-
dictable. Furthermore, populations can change over
time. Figure 11 shows weekly averages of four
variables describing applicants for unsecured per-
sonal loans over a four-year period (time-scale
disguised for commercial reasons). Figure 11(a)
(a binary indicator of whether or not customers
were aged between 30 and 35) shows very little
change over time. Figure 11(b) (a binary indica-
tor of whether or not the customer had a check
guarantee card) shows a marked downward trend.
Figure 11(c) (a binary indicator of whether or not
the loan was for debt consolidation) shows a grad-
ual upward trend, with a superimposed seasonal
component. Finally, Figure 11(d) (a binary indica-
tor of repayment method) shows a clear change
halfway through the observation period. This is
thought to be due to a policy change by the bank,
requiring customers to pay by a particular method,
and is perhaps therefore an example of an unin-
teresting structure. (On the other hand, one might
enquire why, if customers are required to pay by a
particular method, there is any irregularity at all
in the right-hand half of the figure. Perhaps this is
another issue of data quality.) In such cases, infer-
ences made on data collected at one time may have
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Fig. 11. Weekly averages of four binary variables. (a) Customers aged between 30 and 35 years, (b) Check guarantee card, (c) Purpose
of loan—debt consolidation, (d) Repayment method.

limited applicability later on. Of course, in such
circumstances one might contemplate building a
dynamic model.
As a final example, consider Figure 12. This arose

during a study of how well different definitions of a
“bad” risk could be predicted in a consumer bank-
ing operation. The vertical axis shows the Gini coef-
ficient, a measure of how well a prediction rule per-
forms. The horizontal axis shows different values of
a threshold, varying between 1 and 27, so that dif-
ferent definitions of bad risk result. There is a strik-
ing pattern in the plot, as in several of the exam-
ples above, precisely the sort of pattern one might
hope a data mining exercise would identify. Unfor-
tunately, once again, this pattern is an artifact of
problems with the data. In this case, the bank in
question had previously worked with a definition in
which values of the horizontal variable above 5 were
taken to define a bad risk. This variable had been
inadvertently included as a potential predictor in
the analysis, and the looping pattern in the plot is
a direct consequence of this.
For explanatory purposes, each of the examples

above has focused on single problems. But life is sel-
dom so simple. It is far more likely that the sample

will be distorted, and there will be missing values,
and those values which are recorded will sometimes
be misrecorded and so on. In one data set on unse-
cured personal loans, we found tiny amounts unpaid
(e.g., 1p or 2p) leading to a customer being classified
as a “bad debt,” negative values in the amount owed,
12 month loans still active after 24 months (techni-
cally not possible under the bank’s rules), outstand-
ing balances dropping to zero and then becoming
positive again, balances which were always zero and
number of months in arrears increasing by more
than a single integer in one month. Once identified,
some of these problems can be explained (and, per-
haps, corrected). Some, however, defied ready expla-
nation.

5. CONCLUSION

The large size of modern data sets means that it
was legitimate to coin a new phrase to denote the
activity of finding structure and pattern in data.
Modern statistics has grown from a base of analy-
sis of relatively small data sets. Moreover, modern
statistics has placed emphasis on only parts of the
entire range of data analytic problems (see, for
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Fig. 12. Structure induced in classification rule performance measure due to inclusion of an inappropriate variable.

example, Chambers, 1993 and Bartholomew, 1995)
and other disciplines, especially machine learn-
ing and database technology, have begun to make
important contributions.
Because data mining is such a young field, there

remain fundamental open questions, requiring
novel ideas for their solution. Among the most
important of these questions are those relating to
issues of chance in the context of large numbers of
events and to issues of data quality.
Also because it is a new field, data mining has

developed its own terminology (for example, dic-
ing, drilling down, rolling up, and support and
confidence). In many cases, there already existed
perfectly good terms for the same exercises in
disciplines such as database theory or statistics
(conditioning, marginalizing, joint probability, con-
ditional probability). In other cases, terms have
been invented according to the domain in which
they were developed. “Market basket analysis,”
mentioned above, is one such, as is bread dominoes,
describing how records can chain together (derived
from the fact that shoppers unable to buy the kind
of bread they want tend to purchase some similar
alternative).
One important difference between data mining

and statistics is the emphasis of the former on algo-
rithms. In this regard, data mining has more in
common with machine learning than statistics. We
would go so far as to suggest that the data mining
literature is full of descriptions of algorithms with
little underlying theory relating them. It is easy
to develop new algorithms, but without underlying
theory it is difficult to see what sort of progress is

being made. It is possible that, as the field matures,
so deeper theoretical understanding will lead to
proper critical assessment of the algorithms and
their (comparative) properties. However, it is also
possible that the ease with which algorithms can
be developed using powerful computers will work
against that.
Data mining has promise, but there are many

difficulties associated with it. It is not to be entered
into lightly or in ignorance of the obstacles. Per-
haps there are similarities to meta-analysis, in that
it is easy to carry out a poor analysis, and very
hard to carry out a good one. One difference is
that the quality of the data mining exercise will
soon be revealed, in terms of whether the struc-
tures which have been unearthed are interesting,
valuable, surprising or previously unknown. Also
like meta-analysis, the phrase “data mining” is
rich in implication. It almost spells excitement and
opportunity. However, given the difficulties we have
outlined above, one should be wary of getting car-
ried away by this. It remains to see precisely who
will benefit from data mining activities, beyond
companies marketing data mining tools.
General overviews of data mining, including dis-

cussions of the relationship between datamining and
statistics, are given in Elder and Pregibon (1996),
Fayyad, Piatetsky-Shapiro and Smyth (1996), Gly-
mour,Madigan, Pregibon and Smyth (1997), Klösgen
(1998), Hand (1998a, b), Hand (1999) and Hand,
Mannila and Smyth (2000). The range of current
research is showcased in the journal Data Min-
ing and Knowledge Discovery and the proceed-
ings of the International Conference on Knowledge
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Discovery and Data Mining series (e.g., Hecker-
man, Mannila, Pregibon and Uthurusamy 1997 and
Agrawal, Stolorz and Piatetsky-Shapiro, 1998).
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Comment
William Kahn

The current approach to direct marketing empha-
sizes data analysis and, as such, is grossly subop-
timal. By approaching direct marketing in a more
traditionally scientific manner, one that involves all
aspects of the research process, significant new eco-
nomic value can be generated. Specifically, compa-
nies will be much more successful if they use mod-
ern experimentation than by simply improving their
data analysis.

1. INTRODUCTION

As an active seeker of both fun and profit, and
as a statistician in the financial sector, I welcome
the opportunity to comment on Hand, Blunt, Kelly
and Adams. The topic is extremely timely and rele-
vant, with tens of millions of dollars spent annually
within individual financial firms and with even rel-
atively small data mining firms being bought for
hundreds of millions of dollars (New York Times,
Oct., Nov., 1999).
However, while I appreciate the importance of

data mining, in practice the profit it brings has
turned out to be surprisingly limited in many key
businesses. W. Edwards Deming began his 1943
statistics book, The Statistical Adjustment of Data
with “The purpose of collecting data is to provide a
basis for action.” It is in this spirit, the spirit of help-
ing businesses make better decisions, that I wish to
discuss an extension of Hand et al. beyond analysis
of large data sets to the active collection of useful
data.

2. THE CONTINUOUS LEARNING CYCLE

Before I jump into some of the details of research
design, let me present an overview of learning
which my clients have found useful. The core
observation is that businesses make decisions.
Some decisions, the strategic ones, can never be
repeated or replicated, yet have significant impact.
Examples include decisions to develop a franchise
distribution model, to demutualize or to expand

William Kahn is Professor, Mitchell Madison Group,
West 57th Street, New York, NY 10019 (e-mail:
kahnb@mmgnet.com).

internationally. These decisions require leadership,
commitment and insight into industry structure.
Most business decisions, however, are tactical and
can be—and are—repeated. Examples include how
much to charge, to whom to send mailings and
which product features to highlight. My main the-
sis is that those decisions which are repeated should
be tracked and managed so as to be continuously
improved.
I have broken this continuous learning cycle into

eight basic operations: data archiving, financial
analysis, brainstorming, experimental design, oper-
ations, data collection, data analysis and implemen-
tation. Hand et al., in focusing on just part of the
data analysis issues, find themselves working with
immense amounts of data which contain very lit-
tle information, while trying to reflect on poorly
defined business problems. A systematic approach
to the entire statistical problem will greatly improve
data mining’s contribution to business success. For
example, one of my clients annually mails 340 mil-
lion pieces of mail. One of their core business ques-
tions was to whom they should remail, that is, mail
a second advertisement. Unfortunately, in all the
historical data, every name from a certain source
had been remailed and only those names had been
remailed. There was perfect confounding between
name source and remailing. No amount of data
analysis on the one gigabyte data set we were
given would ever allow data-driven estimation of
the value of remailing. To allieviate this and related
problems, we use the following eight steps to help
guide our direct marketing clients.

2.1 Data Archiving

Data warehousing companies have been ex-
tremely successful over the past decade in selling
multiyear, multimillion dollar corporate-wide, inte-
grated, data warehouses. In retrospect, a large frac-
tion of the companies investing in these projects
have felt that the value generated from the invest-
ment was minimal. Terabyte databases are now
common. While, as a statistician, I am happy to
have data, the quest for size in these architectures
is so ambitious that the usability and business value
is normally left far behind. Most commonly, the
warehouses support the creation of hundred-page
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weekly tallies, which hundreds of managers receive
and no one actually uses to support decisions. Our
experience is that wisely selected data, for example,
fewer than one hundred fields per customer, turns
out to have nearly all of the value and to be eas-
ily manageable. We encourage timely use of data
which is immediately available with additions to
the data driven by documented value and available
time.

2.2 Financial Analysis

Fundamentally, business decisions are made in an
attempt to improve specific business metrics. These
metrics become the response variables in predictive
modelling. Most companies, however, grossly sub-
optimize their business. It is common, for example,
for a credit card company to reward the direct mar-
keters for more credit card applications, regardless
of the credit quality of the applicants. The credit
evaluation group tries to minimize credit losses, but
ends up weeding out extremely profitable customers
who use the credit line more extensively than the
original limit allowed. The servicing group is mea-
sured on minimal cost and not rewarded for effective
cross-sell, and the collections group minimizes res-
olution time instead of total future lifetime value.
In summary, each stage in the customer life cycle is
optimized, based on local measures, a process which
greatly suboptimizes the overall business system. It
is crucial to build an integrated financial model of
customer activity in order to have a proper view-
point of long-term customer value, conditional on
everything known about the customer up to that
point.

2.3 Brainstorming

As in any scientific endeavor, a thorough review
of all possible stimuli must be made before deciding
on the key factors which will be studied. A busi-
ness unit must decide which factors are under its
control and could, therefore, be studied. It is thus
crucial to have a view of everything a business
could do. This involves explicitly knowing every-
thing the company is trying, and has tried, both
recently and long ago. Furthermore, knowledge of
everything competitors are doing is obviously key.
Understanding of the theoretical and academic lit-
erature, as well as of innovative and out-of-the-box
approaches, will prove useful. In standard direct
marketing there are dozens of potentially important
factors, including the impact of color, paper quality,

reading level, telemarketing, font size, mail class,
delivery day, price and free gifts.

2.4 Experimental Design

Given the dozens, if not hundreds, of decisions
direct marketers must make, it is not suprising
that many of the decisions are based on luck and
folk-knowledge. However, without the use of formal
experimental design methodologies, it is impossi-
ble to learn the impact of all the decisions which
must be made. Very little of the $250 billion spent
every year in the United States in direct marketing
is part of an experiment with complexity beyond
case-control. 22 designs are found on occasion, but
the 22�5−1�, wherein five two-level factors and all 10
two-way interactions are studied in 16 packages, a
design common in agriculture and engineering, is
virtually unheard of in this field. I have run five-
factor d-optimal designs in direct marketing with
tremendous impact. Further, given the ability of
modern in-line package production, it is now pos-
sible to customize every individual offering. I hope
to run a full factorial 2ˆ15 design in the near future.
While the interaction effects will likely be ignored
in the analysis, given no incremental cost over the
16 offering, highly fractionated, 2 ˆ �15-11� version
of the design, there is no reason not to run full fac-
torial.

2.5 Operations

In traditional scientific fields there is a constant
tension, usually good-natured, between the theoreti-
cians and the experimentalists. One component of
this banter is the knowledge, by both groups, of the
extreme difficulty in making laboratory equipment
actually work or of making field observations reli-
ably. In the lab, cables won’t mate, and when they
do, the connections are intermittent. In the field,
perhaps the rainy season starts three weeks early,
and the only poncho has a hole and drips rain over
the camera. Similarly, in the actual execution of ten
million piece (and larger) mail drops, much can, and
does, go wrong. It is hard to ensure the integrity
of apparently simple basic operations like color
alignment, address validation and postage meter-
ing. When a theoretician asks direct mail opera-
tors to handle, say eight separate packages with
correct randomization, the response is a resound-
ing “Impossible!” After much explanation, cajoling
and sometimes additional funding, the answer can
be driven to “Well, OK, we’ll try.” However, while
the eight packages are indeed actually produced,
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almost certainly they are mailed on successive days,
and not randomly. Making experimentation work
requires great attention to the capability of the oper-
ations team. It must be overseen by a principal
investigator with hourly attention to detail.

2.6 Data Collection

The response to direct solicitation, whether mail,
e-mail, telemarketing, in person or web, must be
collected reliably and quickly. Initially, the response
may just be an indicator that the targeted individual
was home. Later response measures would include
expressed interest in the product, order quantity,
net profitability and, finally, up-sell and cross-sell
producing a response equivalent to total customer-
value. It is crucial to pick up each of these cus-
tomer responses as soon as the data become avail-
able. I have seen large business operations ($100
million annual revenue) continue to use three-year-
old response data in fields which change extremely
rapidly, such as mail-order PCs. When working in
a rapidly changing market, collecting timely data is
crucial.

2.7 Data Analysis

Having collected timely response data from a
designed experiment and having built a proper
financial model for the economic value of the
changed customer behavior, we are now in a posi-
tion to model the change in customer value as a
function of two sets of variables. The first set are
the factors used in the design, that is, the factors we
can actively control. The second set are the covari-
ates which describe each customer that resides in
our data archive. Note that we are not interested in
which package features are best. Nor are we inter-
ested in which individuals to mail. Rather, we must
model the best possible offer to mail to each indi-
vidual customer. The analysis of the design factors
in and of themselves is fairly simple—basic aver-
ages normally do pretty well in balanced designs.
However, the introduction of the interactions of the
design factors with several dozen or more covari-
ates greatly complicates the analysis. Typically, the
covariates are extremely dirty data, and robust pro-
cedures are absolutely required. Hand et al. dis-
cuss many of the issues surrounding this phase of
the research. Let me add from my personal expe-
rience that with good quality design data, almost
any modelling approach yields significant insights.
Adding robust procedures gives significant lift, and
the use of interpretable models, such as recursive
trees, gives good internal saleablity.

2.8 Implementation

We are now in an enviable position. We have a for-
mal mathematical model which gives the best pos-
sible product to offer to every individual. We also
can predict the value generated by any alternative
offer. Thus, we can estimate the value being gen-
erated by our optimal assignment process. This is
often a startingly large number; we have routinely
learned how to double the economic return in direct
mailing. One interpretation of this result is that
broad application of these procedures will halve the
amount of junk mail received by American house-
holds, while delivering the same amount of inter-
esting and intriguing offers. The targeting proce-
dure is simply to mail each customer the offer which
optimizes the increase in value. Of course, the null
offer—do nothing—is one of the possibilities. Fur-
thermore, because we want to be able to update our
targeting models continually, we retain some small
proportion of customers (say 1% to 10%) for random
(as opposed to optimal) reassignment to new exper-
iments.

3. CONCLUSION

The continuous learning cycle discussed will be
very familar to readers of this journal: it is just a
specific articulation of the scientific method. It is
structured in a way that business managers can
understand and is sufficiently detailed so as to
be implemented relatively directly. While I have
used direct marketing as my running example, the
eight steps are easily applied to many other busi-
ness activities. For example, I have used this core
methodology in areas including residential mort-
gage valuation, automobile collision pure premium
estimation and insurance underwriting.
To some degree I have been intrigued by the lack

of use of experimental design in the financial ser-
vice sector, despite its obvious tremendous poten-
tial impact. But, of course, many other sectors of
our economy also fail to use experimental design,
despite the potential value. More interesting, how-
ever, is how isolated each of the eight business activ-
ities are from each other in most businesses. The
data warehousing team, by almost universally fix-
ing on a large and inflexible data model, locks the
business into such a limited mode of operation that
the data warehouse ends up ignored by the oper-
ational teams. Or, more to the current point, the
data analysts work on data which simply does not
contain the information the business actually needs:
the impact of every controllable factor on every indi-
vidual.
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This isolation of activities which should be inte-
grated is a generally observed phenomenon. While
certainly there are sociological explanations for the
behavior, I suggest that proactive leadership in the
integration of the business processes is the only way
to actually find, and build, the required synergies.

I appreciate the work of Hand et al. in further
developing our thinking in special areas of data
analysis and encourage them and all readers of this
journal to expand our influence, both to increase the
sophistication of all the tools used in our research
and to integrate all the core business activities.

Rejoinder:
David J. Hand, Gordon Blunt, Mark G. Kelly and Niall M. Adams

We thank Dr. Kahn for his interesting comments.
We agree that the profit so far generated by data

mining activities “has turned out to be surprisingly
limited in many key businesses.” We suggest that
one reason for this is the poor quality of much of
the data, so that the unusual pattern, when it is
found, is more often due to the process of data col-
lection than it is to the substantive content to which
it relates. However, we hope that recognition and
appreciation of this fact will mean that more care
is put on data collection in the future, not necessar-
ily in the way that Kahn describes (or perhaps in
addition to this), but simply to ensure better qual-
ity data which may be more effectively mined.
We like the distinction between strategic and

tactical business decisions. The thesis that tac-
tical decisions should be tracked and managed
so as to be continuously improved is surely one
with which no one would disagree. Kahn’s anal-
ysis of the continuous business learning cycle
into eight operations is certainly one legitimate
partition of the process. Paying careful attention
to these stages, and improving those that can
be improved, will doubtless lead to more effec-
tive business decisions. However, as he says, in
our paper we were concerned with information-
thin, data-rich problems, and it was tools for
making the best of this situation that we
addressed.
Surely, the point made under the heading Data

Archiving, that hundreds of managers receive
hundred-page weekly tallies, demonstrates the
importance of the model-building aspect of data
mining. Business decisions will only be aided if
those “hundred-page weekly tallies” are reduced to
manageable sizes.
The comments about specific business metrics

under the Financial Analysis heading rang bells.
We have seen many situations in which the left
hand of a company did not know what the right

hand was doing. Figure 11(d) in our paper might
be an example of this: the exciting discovery of
a dramatic change in customer behavior half-way
through the time period loses its interest when
one is told that, at that time, all customers were
required to repay by a particular method. This is
not the only example we have seen in which changes
to the customer population, discovered by a risk
assessment group, corresponded to shifts in mar-
keting strategy imposed by the marketing depart-
ment. This sort of thing is a powerful argument
for more global perspectives on company manage-
ment (and if data mining produces this result, then
that alone would be a valuable consequence of the
exercise).
Admittedly, the drive behind the development of

data mining techniques has come from commercial
sources (although the discipline is not restricted
to such problems). In view of this, it will come
as no surprise to hear that we entirely endorse
Kahn’s comment that “it is crucial to build an
integrated financial model of customer activity.”
This is precisely the sort of model we illustrated
in Hand, McConway and Stanghellini (1997) and
Stanghellini, McConway and Hand (1999). On the
other hand, we feel that Kahn may be a little unre-
alistic when he argues, under Brainstorming, that
“it is thus crucial to have a view of everything a
business could do. This involves explicitly knowing
everything the company is trying, and has tried,
both recently and long ago. Furthermore, knowl-
edge of everything competitors are doing is obvi-
ously key.” In general, while we should clearly strive
to improve the information on which we base our
decisions, it will inevitably be at best partial.
The comments under Experimental Design and

Implementation also ring true. In various contexts,
we have had considerable difficulty convincing busi-
ness of the merits of accepting a small sample of
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high-risk customers which, while perhaps not prof-
itable in themselves, would lead to improved deci-
sions overall.
The example of population drift in a mail order

PC market is a nice one.
We agree with Kahn that there is no doubt that

formal experimental design has tremendous poten-
tial for positive impact on the financial services com-
munity. The power of such techniques is something
all statisticians would presumably promote. Our
paper does not contradict that. We merely argue for
a parallel, in-depth investigation of the data that
have been collected, and that will be collected.
Dr. Kahn’s comments apply only to particular

kinds of data mining, those where the aim is to

optimize some response function (profit, perhaps).
In other situations, however, the aim is simply to
explore the data in a search for interesting struc-
tures.
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