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1. Introduction and motivations.

Let K be a normal closed field, An = K[T1, · · · , Tn] the ring of polynomials
in n variables over K, Xn = Kn provided with the Zarisky topology i.e the
topology on Xn the set of K-rational roots Yn = Spec(An) by the Zarisky
topology on Yn the seaf on Xn by the canonical sheaf on Yn.

A space (V,OV ) is said to be an algebraic variety over Xn if (V,OV ) is iso-
morphic to a space (W,RW ) where W is the set of K-rational points of a
finitely generated and separated (Y,OY ) over K and RW is the restriction
to W of the topology on Y . The seaf OV is also denoted RV and called the
sheaf of regular functions on V .

If Y = P n
K the projective space of dimension n over R, W is denoted P n(K)

and called the projective algebraic space of dimension n over K. An alge-
braic sub-variety of a projective space P n(K) is called a projective algebraic
variety.

An algebraic variety over K (V,OV ) is said to be affine if (Y,OY ) is defined
to be an algebraic sub-variety of Xn for some integer n.

2. Results and proofs.

Theorem 1. The projective algebraic space P n(K) of dimension n over K
is an affine algebraic variety.
For the proof of this proposition we need the following lemma.

Lemma 1. Let I be an ideal of An. Then there exist an element f of I
such that V (I) = V (f). Furthermore, if I = sigmafiAn, f can be chosen to be
equation P (f1, · · · , fn) where P is a homogenous polynomial in q variables
with coefficients in K.

Proof of Lemma 1. Since K is not algebraically closed, there exist a finite
extension K

′ of K such that n = [K
′
: K] > m.

Let B = x1, · · · , xm be a base of K ′ over K. Then there exist a homogenous
polynomial P1 in n variables with coefficients in K such that if x ∈ K ′,
x = σλixi with λi ∈ K1 ≤ i ≤ n, and if fx is the multiplication by x in K ′,
then deffx = P1(λ1, · · · , λm).
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P1(α1, · · · , αm) = 0 if and only if α1 =, · · · , αm = 0.

We will prove by induction on k > 1 that there exist a homogenous poly-
nomial Pk in k variables with coefficients in K of degree mk such that
Pk(α1, · · · , αmk) = 0 if and only if α1 =, · · · , αmk = 0.

Assume that this assertion is true up to k > 1. Let Xij, 1 < i < m, 1 <
j < mk be mk+1 variables et Qk = Pk(Xi1, · · · , Ximk). It is clear that Pk+1 =
P1(Q1, · · · , Qm) is a homogenous polynomial in themk+1 variablesXij, 1 < i <
m, 1 < j < mk of degreemk+1 such that Pk+1(α11, · · · , α1mk , · · · , αm1, · · · , αmmk) =
0 if and only if αij = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ mk. Hence the assertion is
true up to k+ 1. Since the assertion is true for k = 1, we conclude that the
assertion is true for every integer k > 1.

More assume that if I =
∑n

i=1 fiAn, there exist an integer k > 1 such that
mk > q. It is clear that f = Pk(f1, · · · , fq, 0, · · · , 0) is an element of I because
the constant term of Pk is equal to 0 and α = (α1, · · · , αm) ∈ Km is a zero of
f if and only if α is a zero of f1, · · · , fq ie V (f) = V (I).

Proof of Theorem 1. Let R = K[X1, · · · , Xm+1] the ring of polynomials
in n + 1 variables over K and M the maximal ideal of R generated by
X1, · · · , Xm+1. Then there exist a homogenous polynomial f ∈M such that
V (M) = V (f).

It is well know that Y = V (f) is an affine open subset of P n(K). It is also
clear that P n(K) is contained in Y because of α ∈ P n(K)

⋂
D(Xi). Then

α = (α1, · · · , αi−1, 1, αi+1, · · · , αn) with αj ∈ K for j = 1, · · · , i − 1, i + 1, · · · , n.
So,

f(α1, · · · , αi−1, 1, αi+1, · · · , αn) 6= 0.

Hence P n(K) which is the set of K−maximal points of P n(K) is an affine
algebraic variety.

Corollary 1. Every projective algebraic variety (V,OV ) over K is affine.
Corollary 2. Every compact non singular real algebraic variety is affine.

Proof. By a theorem of Nash (1995), every compact non singular algebraic
variety is projective, so the conclusion follows from corollary 1

Theorem 2 (Harstshorne’s conjecture). Every non singular real algebraic
variety is affine.
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Proof of Theorem 2. Let (V,OV ) be a non singular real algebraic vari-
ety. Assume that V is the set of K−maximal points of separated finitely
generated scheme over K, (Y,OY ) and OV = OY )/V . By Nagata (1962)’s
compactification theorem there exist a complete scheme over K, (Z,OZ)
such that Y is an open subset of Z and OY = OZ)/Y and by Hiromota’s
resolution of singularities theorem we can assume that (Z,OZ) is a regular
scheme. Let W be a set of K−rational points of (Z,OZ) and OW = OZ)/W .
Then (W,OW ) is a compact non singular real algebraic variety. So (W,OW )
is an affine real algebraic variety (of Corollary 2), and by Lemma 1. There
exist f ∈ T (W,OW ) such that W\V = V (f). Hence V = D(f), so (V,OV ) is
an affine real algebraic variety.
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