
MYHILLfS THEORY OF COMBINATORIAL FUNCTIONS

J.C.E. DEKKER

Abstract. This is an expository account of the theory of

combinatorial functions introduced by J. Myhill in 1958.

§1. Introduction. The English logician John Myhill (1923-1987)

introduced certain functions which he called combinatorial [3J. He used

these functions to study recursive equivalence types, but we conjecture that

many logicians will find these functions of interest apart from their use in

recursion theory. This is an expository account of some of Myhillfs work.

Combinatorial functions can have any finite number n of variables, but the

most important cases are n = 1 and n = 2 . We shall therefore restrict

our attention to these two cases.

We write e for the set of all nonnegative integers and e for the

set of all integers. Our starting point is the following theorem which is a

special case of Newton1 s approximation theorem.

THEOREM Tl. For every function f :e —»£ there is exactly one

function c:e —»e such that

n
(1) f(n) =

1-0 ±

n
namely the function

(2) A±f(n) n=0 ' where Af(n) = f(n+l) - f(n)
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The function c. related to f(n) by (1) or equivalently by (2) is

the function associated with fCn) .

nILLUSTRATION. Let f(n) = a , where a € e, a >0 . Then

• •

Af(n) = (a-l)f(n), c. = A1f(0) = (a-l)1 .

In particular, if a =2, f(n) = 2 n and c. = 1 . We see therefore that the

function associated with one of the most important functions of

combinatorics, namely 2 is extremely simple: it is identically one.

* 2
THEOREM Tl . For every function f:e —> e there is exactly one

2 *function c:e —> e such that

(3)
m n

i=0 k=0

m
l

n
k namely the function

C4) c, = A1 Ak f(0,0) =
lk m n v ' J < A ; *<».»> m,n=0 where

f(m,n) = f(m+l,n) - f(m,n), f(m,n) = f(m,n+l) - f(m,n).

The function c , related to f(m,n) by (3) or equivalently by (4)

is the function associated with f(m,n) .
2

ILLUSTRATIONS. We are especially interested in functions from e

into e for which the associated functions only assume values 20, e.g.,

(A) m+n = 1 •

(B) m • n = 1 •

m n
, where cQ1 = c 1 Q = 1, c , = 0, otherwise,Q1 1Q = 1, c ,

m n
1 where c,, = 1 , c.v = 0, otherwise,ik

(C)
(m+n)! _
m!n!

t N f >

m n m n m
%

n

where £ = minCm,n), c, = 1, for i = k, c^ = 0, otherwise.



SUMMARY. We shall give set-theoretic characterizations of the

functions f(n), f(m,n) and their associated functions c., c ^ in case

c., c, only assume values > 0 .

§2. Notations and terminology. Let a subcollection of e be called

a set and a collection of sets a class. We write o for the empty set, Q

for the class of all finite sets, |a| for the cardinality of a , C for

inclusion and C for proper inclusion. For sets a, 0,Y><5>

(a,3) i (Y,5) means: a f y or 0 ?* 6 ,

(a, 0) C (Y, <$) means: a C y § 0 C 6 ,

(a, 0) C+ (Y, 6) means: (a, 0) C (Y, 6) * (a, 0) ^ (Y, 6) .

2
We need a function which maps e one-to-one onto e . For this

purpose we use the function

j(Xf30 =
 (x+y) ( f y 4 l ) * x .

For every n € e there is exactly one ordered pair (x,y) with j(x,y) = n

The functions k(n) and £(n) are therefore well-defined by the identity

j(k(n),£(n)) = n .

We also need an effective enumeration without repetitions of the

class Q of all finite sets. For this purpose we use the enumeration

P0,P1,.,., where



po =

pn =
(a.,...,a.)> where a,,...,a. are the

al aidistinct numbers such that n = 2 +...+2

for n > 1 .

Let r = |p I , then r is an effectively computable function of n . We
n • n1 n / r

put v = {x £ e|x < n} , for n € e . Thus vQ = o and v = (0,...,n-l) ,
2

for n > 0 . A mapping from Q into Q or from Q into Q is called an

operator.

DEFINITION. An operator $

from Q into Q is numerical, if |a| = |B| =^ |$(a)I = |$(3)I »

from Q into Q is numerical, if |ct| = |y| § |B| = |<S| =4> |$(a,B)

DEFINITION. For a numerical operator

from Q into Q, f^(n) = |$(v)| = the function induced by

2 i i
from Q into Q, f.(m,n) = |$(v ,v )| = the function induced by

• Combinatorial operators. We shall introduce two special types

of numerical operators, namely the combinatorial operators and the dispersive

ones. They are poles apart, but intimately related,

DEFINITION. A numerical operator $:Q — » Q is combinatorial, if

P -1 £

for $ = U(*(cx) |a € Q) , there is a mapping $" :$ —» Q such that

-1 e
x G $(a) 4=£ * (x) C a , for x € * , a G Q .

2
A numerical operator $:Q—»Q is combinatorial, if for

P — 1 P 9

$ = LH$(ot, $) |a, 3€ Q) , there is a mapping *" :* — > Q such that

x € #(o,B) 4>* *-1(x) C (a, 3) , for x G $e, (a, 3) € Q2 .



Both in the one-variable case and the two-variable case, ~ IS

called a quasi-inverse of $ . It is not an ordinary inverse, since (i)

2need not be one-to-one and (ii) while $ maps Q into Q or Q into Q ,

the domain of ~

DEFINITION.

is a set of nonnegative integers.

A function f(n) [or f(m,n)] is combinatorial, if it

intois induced by some combinatorial operator from Q into Q [or from Q i

Q] .

ILLUSTRATIONS. (A) Let $(a) = {x G e|p C a} , then $ maps Q

into Q and |a| = n =£ |$(a) | = 2 . Thus * is a numerical operator

which induces the function f(n) = 2 . Also, $ = e and

x G $(a) pv C a , for

-1 e
hence $ (x) ?= p , for x E $ , is a quasi-inyerse of $ . We have proved

that $ is a combinatorial operator and f(h) = 2 a combinatorial function.

(B) Let $(a,B) = {2x € e|x G a} (J {2x+l e e|x € 3) , then $ maps Q

into Q and

= m = n |*(a,B) | = m + n .

Thus $ is a numerical operator which induces the function f(m,n) = m + n

Note that $ = e . For x G

x even € a

Put

x odd

, if x is even ,

, if x is odd ,

x-1 €6



then $" is a quasi-inverse of $ . We have proved that $ is a

combinatorial operator and f(m,n) = m + n a combinatorial function

2
(C) Let $(a, B) = j(axg), then $ maps Q into Q and

|a| e m fi |B| = n |*(a, B) | = m* n .

Thus $ is a numerical operator which induces the function f(m,n) = m • n

Also, = e and

j (x,y) € j x £ a S y € B

(00, (y)) C (a,B) .

Substitution of k(n) for x and £(n) for y yields

n £ *(a,6) ((k(n)),(£(n))) C (a, B) .

Hence $ has a quasi-inverse. We proved that $ is a combinatorial

operator and f(m,n) = m » n a combinatorial function.

(D) Let #(a,B) = j(x,y) € C a S p C B 5 r = r
yj

, then

a = Y 3| - |« *(a,8)

Thus $ is a numerical operator. Note that

JCx.y) e r = r
x yj

n € elrk(n)

j(x,y) € C (a,B)

since the condition r = r holds for all j(x,y) G 4 . Hence
x y

for n 6

8



Thus $"1(n) = LPk(n)'pA(n)J for n £ * , is a quasi-inverse of $ . We

proved that $ is a combinatorial operator. Also,

U
i=0

•yj

e|Px C vm « p C vn § rx = r - i

where £ = min (m,n) . It follows that

I
i=o

C v 5r = ry n x y

«v

- I
m n

(m -i- n ) ! _

i=0 m!n!
m +n
m

m +n
n

We proved that (m+n)!/m!n! is a combinatorial function.

THEOREM T2. For a combinatorial operator $ of one variable,

a C 6 C *(3) , for a, @ € Q

PROOF. Let $" be a quasi-inverse of $ . Assume a C 3 , then

x G $(a) Ca

a C 3
C 3 $(3)

COROLLARY. Every combinatorial function of one variable is monotone

increasing

PROOF. For a combinatorial operator $ of one variable,

m < n v C vm n m n

•(vn) 5
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This corollary tells us that some of the simplest functions of combinatorics

are not combinatorial. Let e.g., f(t) = L r . Then f(t) is not monotone

increasing, hence not combinatorial (i.e., in the sense of Myhill).

THEOREM T2 . For a combinatorial operator $ of two variables,

(a,B) C (Y,6) for (a, B), (Y, 6) £ Q'

The proof is similar to that of T2. As a corollary we now obtain the

statement that a combinatorial function of two variables is monotone
(n)

increasing in each variable. Thus (kj is not a combinatorial function of two

variables (i.e., in the sense of Myhill).

If $ is a combinatorial operator we define

$ (a) = $(a) - IY C+ a for a £ Q .

We claim that for a combinatorial operator

(5)

(6)

(7)

$ (a) = ,-lx G. $e|$"1(x) = a for a 6 Q ,

-1
(x) = ot G Q|x for x £

$ uniquely determines its quasi-inverse and vice versa.

Re (5). + a|

x 6 #(o) Y C+ a

Y C+ a not Cx)C Y

~ (x) = a

Re (6). For x 6 # ,

10



= OJa € Q|$"1(x) C a| , since $ (x) € Q ,

a £ Q|X € $(oO

Re (7). $ uniquely determines $ by (6). Moreover,

= <{x G^I^^Cx) Ca

hence $ uniquely determines

The definition of $ and the relations (5), (jb), (7) can be

generalized to operators of two variables.

. Dispersive operators. We now define a second type of numerical

operator.

DEFINITION. A numerical operator

maps distinct sets onto disjoint sets, i.e., if

5> Q is dispersive, if it

a ^ 6

A numerical operator ¥:Q Q is dispersive, if

(a, 3) i (Y,6) , 3) = o .

We do not call a function c from e into e dispersive, if it is

induced by some dispersive operator of one variable. For let c be any

function from e into e . Define

j(x,y) G e|px = a S y < for a € Q, then

r = Ix ,y) € = a Q y < c.
x J 1

11



hence ¥ is a numerical operator which induces the function c . Moreover,

a / 3 implies that ¥(a) and are disjoint, hence ¥ is dispersive.

Thus every function from e into e would be dispersive.

§5. The natural one-to-one correspondence.

THEOREM T3. There is a natural one-to-one correspondence between

the family of all combinatorial operators of one variable and the family of

all dispersive operators of one variable. It can be described as follows:

10

• (a) = *(a) - U *(Y)|Y C+ a if $ is combinatorial,

if ¥ is dispersive.

Moreover,

THEOREM T4. A function

n
f(n) = I c.

i=0

is combinatorial iff (Vi) c. > 0 If f is combinatorial, f is induced

by the combinatorial operator $ and c by the dispersive operator

where

*(oO = | j ( x , y ) 6 e | p x C a S y < c r

We shall prove a part of T4, namely:

12
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n

i=0 x
c. > 0 f(n) combinatorial.

For assume the hypothesis. If |a | = n we have

j (x ,y) e e | P x C a S y < c r ( x )

nu
i=0

j(x,y) 6 E | P X C C X S rx = i S y < c . j

n
I

i=0

Since |a| = n , the condition p C a § r = i is satisfied by [i) values

of x ; also, y < c. holds for c. values of y . Hence

*C<*) = X c. UJ = f (n) .
i=0

Thus $ is a numerical operator which induces f . Moreover,

#(a) PxCa, for j(x,

n for n 6

Hence $ is a combinatorial operator and f a combinatorial function.

For the complete proofs of T3 and T4 see [2, P12, P13 and P20]. We

now state the two-variable analogues of T3 and T4.

THEOREM T3 • There is a natural one-to-one correspondence between

the family of all combinatorial operators of two variables and the family of

all dispersive operators of two variables. It can be described as follows:

13



12

$o(a,S) = $(a,B) - U{*(Y>$)I(Y,<S) C + (a,B)j , if $ is combinatorial,

tya.B) = U{v(Y.6)|(Y.6) C («.B) if Y is dispersive.

Moreover,

In the next theorem we need a function which maps e one-to-one

onto e . The function j,(x,y,z) = j[j(x,y),z] is such a function.

THEOREM T4*. A function

m
f(m,iO = I

i=O k=O

n [m
I cikW

n
k

is combinatorial iff (Vi)(Vk) If f is combinatorial, f is

induced by the combinatorial operator $ and c by the dispersive operator

, where

,6) - {j3(x,y,z)ee|pxca5 Py C z <

= a § p =

§6. Interpretation of the function Suppose

n

i=0

n
where (Vi) c. > 0

and f(n) can be defined conceptually, say as |F | , for some family F

of entities associated with a finite set of cardinality n , say a • Then

c can be interpreted as the contribution to f(n) made by each i-element
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subset of a . If for example, f (n) = 2 n so that f (n) is the number of

subsets of an n-element set a , each i-element subset of a with

0 < i < n contributes c. =1 element to f(n) . We now discuss two more

examples of this type, namely:

(A) f(n) = n! = # of permutations of an n-set,

(B) f(n) = n^ = # of functions from a p-set into an n-set•

In order to associate numerical operators with the functions f and c we

use appropriate Godel numberings of the entities under consideration.

Re (A), j3 s the family of all permutations of e ,

iTp = {x €e|p(x) ^ x) , T = (p

The family T consists therefore of all permutations of t which leave

almost all elements of e fixed. It is readily seen that there is an

effectively computable function p (x) of two variables such that S iism~ -

enumerated without repetitions in the sequence pn(x), p.(x),... of

functions from t into e . Define

S 4 a> ,m € e 17Tpm C a , for a € Q ,

then |oc| = n implies |$(a)| « n! Hence * is a numerical operator which

induces the function f(n) = n! Note that $ = e and that # (m) = *npv ^m

is a quasi-inverse of * . Hence * is a combinatorial operator and n! a

combinatorial function. Using (5) we see that

c. =
1

(v.)
3

f .
im £ t hrp = v.

= # of derangements (permutations without fixed points) of v. .

1.5



Henceforth we write d. for the number of derangements of an i-set

Thus

(8)
n

1 - * d.n! =
n

i=0

Relation (8) reflects the fact that every permutation p of an n-set , say

a , is characterized by a derangement of some subset of a , namely the set

of all nonfixed points of p .

Re (B). Let X = (x,,...,x ), for r > 1 and

14

, J r + 1(
x
r + 1) = J (X ), xr v rJ'

For every r > 1 the function j maps e one-to-one onto e . Thus the

functions k, (m),... ,k (m) are well-defined by the identity

k.(m),...,k (m) = m .

Define 7t = (l,...,p) and for a € Q ,

•n 1 5 * * * *^"n 1 • * " " >^-n
IT •} hence

= jx|k1(x),...,k (x) € a

Thus |a| = n implies I$(a)| = np , hence $ is a numerical operator which

induces the function n^ . Also, $ = £ and for x 6 *

,...̂  (x)J C a .

Thus has a quasi-inverse, namely ~ (x) = .....k (x) It follows

that $ is a combinatorial operator and n^ a combinatorial function of n ,

16



for every p > 0 (also for p = 0 , since n =1) . Using (5) we see that

15

c. =
1

4

r

x 6 e
L

,..., Vx) j

= # of surjective functions from TT into v. .

Henceforth we write su(i,p) for the number of functions from TT

onto v. , i.e., from a p-set onto an i-set. Thus

(9) np =
n

su(i,p)
i=0

n

V J

Relation (9) reflects the fact that every function f from a p-set into an
mmmmm

n-set, say a , is a function from that p-set onto some subset of a ,

namely the range of f .

The well-known formulas for d. and su(i,p) , namely

(10) d = i!
t=0

(11) su(i,p) = I
t=0

(t) (i-t)

readily follow from formula (2) of section 1. For let Ef(n) denote the

function f(n+l) of n and If(n) the function f(n) itself. Write

1 for I , then E - 1 = A . If we substitute

(E - I) 1 =
t=0

for A in (2), we obtain

E 1" 1 (-l)t

17
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(12) c. = I (-1)* (t)f(i-t) .
1 t=0

Taking ci = di and f(n) = n! in (12) yields (10), while taking

c± - su(i,p) and f(n) = np in (12) yields (11).

§7. Composition. Let f(n) and g(n) be combinatorial functions,

say,

(13) f(n) = I c (i) , g(n) = I d. (i) ,
i=0 * i=0 *

where c.,d. £ 0 , for i > 0 . Then c. + d. > 0 , for i 2 0 , hence the
I I ' ii*

function f(n) + g(n) is also combinatorial. We now consider the following

two questions:

(A) Is the function f(n) • g(n) combinatorial?

(B) Is the function f(g(n)) combinatorial?

The answer to each question is "Yes.11 Combinatorial operators enable us to

prove this without the algebraic complications which arise from substitution

involving the expressions listed in (13). Let the functions f(n) and g(n)

be induced by the combinatorial operators $ and ¥ respectively. Suppose

~ and y" are the respective quasi-inverses of $ and

Re (A). Put xOO = J[*(°0 x *(<*)] , for a £ Q . We claim that

for a, 6 £ Q ,

(i) X(°0 € Q ,

Cii) lot | = |6| — » |x(a)| = lx(6)

(iii) f (n) = f(n) -g(n) ,

18
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(iv) x nas a quasi-inverse.

Statements (i)-(iii) are almost immediate. As far as (iv) is concerned, we

observe that X = J , since each side is a subset of the other side

In the proof that the right side is included in the left side we use the fact

that if k(x) € «(cO and £(x) € f (g) , then k(x) € *(a U 3) and

€. ¥(a U B) by T2. Define

U for x € x > then

x€X k(x)

6Q GQ €Q •

Thus x-1 . a well-defined mapping from x e into Q . Moreover, for

x 6 xe and a € Q ,

k(x) € «(o) § £(x)

C a Ca .

This completes the proof of (iv) and thereby of the affirmative answer to (A).

Re (B). Put x(°0 = **(<*) » for a € Q . We claim that for a,g £ Q ,

(i) X(a) £ Q ,

11) a =

(iii) n) = fg(n) ,

(iv) X has a quasi-inverse

Statements (i) and (ii) are immediate, while (iii) follows from

= g(n) = fg(n) = fx(n)

19
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As far as (iv) is concerned, we note that

defined § $"1Cx) C

For assume the hypothesis, say x €$¥(a) , where a 6 Q • Then $" (x) is

defined and $"1(x) C Via) , hence . Define

we have for x anc* a £ Q .

for x € XE» then

x 6

(Vy) ~ • (x)

(Vy)

y €

This completes the proof of (iv) and thereby of the affirmative answer to (B)

We mention another theorem of this type: if f(m,n) is a

combinatorial function of two variables and g(m),h(n) are combinatorial

functions of one variable, then f[g(m),h(n)] is a combinatorial function

of two variables. All these theorems are special cases of a general theorem

[5, Prop. (6.4), p. 381] which deals with the composition of combinatorial

functions of any number of variables.

20
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