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SPECTRAL THEOREMS ASSOCIATED WITH
THE RIEMANN-LIOUVILLE-WIGNER

LOCALIZATION OPERATORS

HATEM MEJJAOLI AND KHALIFA TRIMÈCHE

ABSTRACT. We introduce the notion of localization op-
erators associated with the Riemann-Liouville-Wigner trans-
form, and we give a trace formula for the localization op-
erators associated with the Riemann-Liouville-Wigner trans-
form as a bounded linear operator in the trace class from
L2(dνα) into L2(dνα) in terms of the symbol and the two
admissible wavelets. Next, we give results on the bound-
edness and compactness of localization operators associated
with the Riemann-Liouville-Wigner transform on Lp(dνα),
1 ≤ p ≤ ∞.

1. Introduction. The spherical means are of great importance in
many ways and have been widely studied. For example, harmonic
functions are characterized by the fact that they coincide with their
spherical mean values. We can also view the spherical mean value
operator as a generalized Radon transform that is self dual in the
context of Helgason’s double fibration. The spherical mean operator
has many important physical applications, namely, in image processing
of synthetic aperture radar data and acoustics [10, 15].

The study of spherical means has a very long history. The classic
work of John [16] dealt with various applications of the spherical means
to the theory of partial differential equations. Fourier analysis was
utilized, along with the renowned theorem of Stein on the spherical
analogue of the Lebesgue differentiation theorem.

In [22], the second author generalized the spherical mean operator
on R2 by introducing, for the first time in the literature, the permu-
tation operator which commutes with some partial differential opera-
tors. In the same paper, Trimèche studied the harmonic analysis as-
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sociated with this permutation operator. We note that the authors in
[1, 2, 13, 14, 19] used this operator under the name Riemann-Liouville
and the harmonic analysis associated to it.

Time-frequency localization operators are a mathematical tool for
defining a restriction of functions to a region in the time-frequency
plane that is compatible with the uncertainty principle and to extract
time-frequency features. In this sense, they have been introduced and
studied by Daubechies [6, 7] and Ramanathan and Topiwala [20], and
they are now extensively investigated as an important mathematical
tool in signal analysis and other applications [5, 8, 9, 12, 23].

Since the harmonic analysis associated with the Riemann-Liouville
operator has known remarkable development, it is a natural question
whether there exists an equivalent of the theory of localization oper-
ators in the framework of the theory associated with the Riemann-
Liouville operator.

In our paper, we are mainly concerned with the Wigner transform
under the Riemann-Liouville operator setting. More precisely, our main
aim is to expose and study the boundedness and compactness of two-
wavelet localization operators associated with the Riemann-Liouville-
Wigner transform.

The reason for the extension from one wavelet to two wavelets comes
from the extra degree of flexibility in signal analysis and imaging when
the localization operators are used as time-varying filters. It turns out
that localization operators with two admissible wavelets have a richer
mathematical structure than the one-wavelet analogues.

The remainder of this paper is arranged as follows. In Section 2,
we recall the main results of the harmonic analysis associated with
the Riemann-Liouville operator and Schatten-von Neumann classes. In
Section 3, we introduce and study the localization operators associated
with the Riemann-Liouville-Wigner transform. More precisely, the
Schatten-von Neumann properties of these two localization wavelet
operators are established, and for trace class Riemann-Liouville two-
wavelet localization operators, the traces and the trace class norm
inequalities are presented. Section 4 is devoted to giving results on
the Lp boundedness and compactness of these two-wavelet localization
operators, under suitable conditions on the symbols and two admissible
wavelets.
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2. Preliminaries. This section gives an introduction to the har-
monic analysis associated with the Riemann-Liouville operator, Schatten-
von Neumann classes, and the wavelet transform associated with the
Riemann-Liouville operator. The main references are [14, 22, 23].

2.1. Harmonic analysis associated with the Riemann-Liouville
operator. We denote by

• C∗(R2) the space of continuous functions on R2, even with respect
to the first variable;

• C∗,c(R2) the subspace of C∗(R2) formed by functions with compact
support;

• E∗(R2) the space of infinitely differentiable functions on R2, even
with respect to the first variable;

• S∗(R2) the Schwartz space of rapidly decreasing functions on R2,
even with respect to the first variable;

• S1 the unit sphere in R2,

S1 = {(η, ξ) ∈ R2 : η2 + ξ2 = 1};

• R2
+ = {(r, x) ∈ R2 : r ≥ 0}.

It is well known [22] that, for all (µ, λ) ∈ C2, the system
∆1u(r, x) = −iλu(r, x),

∆2u(r, x) = −µ2u(r, x),

u(0, 0) = 1, (∂u/∂r)(0, x) = 0 for all x ∈ R,

admits a unique solution φµ,λ, given by

φµ,λ(r, x) = jα
(
r
√

µ2 + λ2
)
e−iλx,

where ∆1 and ∆2 are the singular partial differential operators, given
by

∆1 =
∂

∂x
,

∆2 =
∂2

∂r2
+

2α+ 1

r

∂

∂r
− ∂2

∂x2
, (r, x) ∈ R2

+, α > 0,
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and jα is the normalized Bessel function defined by, for all z ∈ C,

jα(z) = Γ(α+ 1)
∞∑
k=0

(−1)k

k!Γ(k + 1 + α)
(z/2)2k.

Definition 2.1. The Riemann-Liouville operator is defined on C∗(R2)
by, for all (r, x) ∈ R2

+,

Rαf(r, x)

=


(α/π)

∫ 1

−1

∫ 1

−1
f
(
rs
√
1−t2, x+rt

)
(1−t2)α−1/2(1−s2)α−1dt ds,

if α > 0,

(1/π)
∫ 1

−1
f(r

√
1− t2, x+ rt)(1− t2)−1/2dt,

if α = 0.

Remark 2.2.

(i) The function φµ,λ, (µ, λ) ∈ C2, can be written as, for all
(r, x) ∈ R2

+,

φµ,λ(r, x) = Rα(cos(µ·)e−iλ.)(r, x).

(ii) For all ν ∈ N2, (r, x) ∈ R2
+ and z = (µ, λ) ∈ C2,

(2.1) |Dν
zφµ,λ(r, x)| ≤ ||(r, x)|||ν| exp(2||(r, x)|| ||Imz||),

where

Dν
z =

∂|ν|

∂zν1
1 ∂zν2

2

and |ν| = ν1 + ν2.

In particular, for all ν ∈ N2, (r, x) ∈ R2
+ and z = (µ, λ) ∈ C2

(2.2) |φµ,λ(r, x)| ≤ 1.

Now, let Γ be the set

Γ := {(µ, λ) ∈ C× R : µ ∈ R, or µ = it, t ∈ R, |t| ≤ |λ|}

and Γ+ the subset of Γ, given by

Γ+ := {(µ, λ) ∈ C× R : µ ≥ 0, orµ = it, t ∈ R, 0 ≤ t ≤ |λ|}.
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We have, for all (µ, λ) ∈ Γ,

sup
(r,x)∈R2

|φµ,λ(r, x)| = 1.

In the following, we denote by

• dνα(r, x) the measure defined on R2
+ by

dνα(r, x) = kαr
2α+1dr ⊗ dx,

with

kα =
1

2αΓ(α+ 1)(2π)1/2
;

• for p ∈ [1,∞], p′ denotes, as in all that follows, the conjugate
exponent of p;

• Lp(dνα), 1 ≤ p ≤ ∞, the space of measurable functions on R2
+,

satisfying

∥f∥Lp(dνα) =

(∫
R2

+

|f(r, x)|pdνα(r, x)
)1/p

< ∞, 1 ≤ p < ∞,

∥f∥L∞(dνα) = ess sup
(r,x)∈R2

+

|f(r, x)| < ∞, p = ∞;

for p = 2, we provide this space L2(dνα) with the scalar product

⟨f, g⟩L2(dνα) =

∫
R2

+

f(r, x)g(r, x)dνα(r, x);

• BΓ+ the σ-algebra defined on Γ+ by

BΓ+
= {θ−1(B) : B ∈ BBor(R2

+)},

where θ is defined on the set Γ+ by θ(µ, λ) = (
√
µ2 + λ2, λ);

• dγα the measure defined on BΓ+ by, for all A ⊂ BΓ+ ,

γα(A) = να(θ(A));

• Lp(dγα), 1 ≤ p ≤ ∞, the space of measurable functions on Γ+,
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satisfying

∥f∥Lp(dγα) =

(∫
Γ+

|f(µ, λ)|pdγα(µ, λ)
)1/p

< ∞, 1 ≤ p < ∞,

∥f∥L∞(dγα) = ess sup
(µ,λ)∈Γ+

|f(µ, λ)| < ∞, p = ∞.

We have the following properties.

Proposition 2.3.

(i) For every nonnegative measurable function f on Γ+, we have∫
Γ+

f(µ, λ)dγα(µ, λ) = kα

[ ∫
R2

+

f(µ, λ)(µ2 + λ2)αµdµα dλ

+

∫
R

∫ |λ|

0

f(iµ, λ)(λ2 − µ2)αµdµα dλ

]
.

(ii) For every nonnegative measurable function f on R2
+ (respectively,

integrable on R2
+ with respect to the measure dνα), f ◦θ is a measurable

nonnegative function on Γ+ (respectively, integrable on Γ+ with respect
to the measure dγα), and we have

(2.3)

∫
Γ+

f ◦ θ(µ, λ) dγα(µ, λ) =
∫
R2

+

f(r, x) dνα(r, x).

Remark 2.4. The eigenfunction φµ,λ, satisfies the following product
formula

φµ,λ(r, x)φµ,λ(s, y)

=
Γ(α+ 1)√
πΓ(α+ 1/2)

∫ π

0

φµ,λ

(√
r2 + s2 + 2rs cos θ, x+ y

)
sin2α θ dθ.

This allows us to define the translation operator as follows.

Definition 2.5. Let f be in Lp(dνα), p ∈ [1,∞], for all (r, x) ∈ R2
+.

We define the generalized translation operator τ(r,x) associated with
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the Riemann-Liouville operator by

τ(r,x)(f)(s, y)

(2.4)

=
Γ(α+ 1)√
πΓ(α+ 1/2)

∫ π

0

f
(√

r2 + s2 + 2rs cos θ, x+ y
)
sin2α θ dθ,

for all (s, y) ∈ R2
+.

Proposition 2.6. For every f ∈ Lp(dνα), 1 6 p 6 ∞ and (r, x) ∈ R2
+,

the function τ(r,x)(f) belongs to Lp(dνα), and we have

(2.5) ∥τ(r,x)(f)∥Lp(dνα) 6 ∥f∥Lp(dνα).

Definition 2.7. The generalized convolution product of f, g ∈ L1(dνα)
is defined by
(2.6)

f ∗α g(r, x) =

∫
R2

+

τ(r,x)(f̌)(s, y)g(s, y) dνα(s, y) for all (r, x) ∈ R2
+,

where f̌(s, y) = f(s,−y).

Proposition 2.8. Let 1 ≤ p, q, r ≤ ∞, be such that 1/p+1/q−1/r = 1.
If f is a function in Lp(dνα) and g an element of Lq(dνα), then f ∗α g
belongs to Lr(dνα), and we have

(2.7) ∥f ∗α g∥Lr(dνα) ≤ ∥f∥Lp(dνα)∥g∥Lq(dνα).

We consider the generalized Fourier transform Fα associated with
the Riemann-Liouville operator Rα.

Definition 2.9. The Fourier transform associated with the Riemann-
Liouville operator is defined on L1(dνα) by, for all (µ, λ) ∈ Γ,

(2.8) Fα(f)(µ, λ) =

∫
R2

+

f(r, x)φµ,λ(r, x) dνα(r, x).

In the following, we recall some properties on the Fourier trans-
form Fα.
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For all f ∈ L1(dνα),

(2.9) ||Fα(f)||L∞(dγα) ≤ ||f ||L1(dνα).

For f ∈ L1(dνα) such that Fα(f) ∈ L1(dγα), we have the inversion
formula for Fα: for almost every (r, x) ∈ R2

+,

(2.10) f(r, x) =

∫
Γ+

Fα(f)(µ, λ)φµ,λ(r, x)dγα(µ, λ).

Theorem 2.10.

(i) (Plancherel’s formula). For every f in S∗(R2), we have

(2.11)

∫
Γ+

|Fα(f)(λ, µ)|2dγα
(λ, µ) =

∫
R2

+

|f(r, x)|2dνα(r, x).

In particular, the Fourier transform Fα can be extended to an isometric
isomorphism from L2(dνα) onto L2(dγα).

(ii) (Parseval’s formula for Fα). For all f, g in L2(dνα), we have
(2.12)∫

Γ+

Fα(f)(λ, µ)Fα(g)(λ, µ) dγα(λ, µ) =

∫
R2

+

f(r, x)g(r, x) dνα(r, x).

2.2. The Riemann-Liouville-Wigner transform. In this subsec-
tion, we recall some results introduced and proven in [14].

In the following, we denote by

• S∗(R2) the space of infinitely differentiable functions on R2 rapidly
decreasing together with all their derivatives, even with respect to the
first variable;

• S∗(Γ) the space of functions f : Γ → C infinitely differentiable,
even with respect to the first variable and rapidly decreasing together
with all their derivatives, i.e., for all k1, k2, k3 ∈ N,

sup
(µ,λ)∈Γ

(1 + |µ|2 + |λ|2)k1

∣∣∣∣( ∂

∂µ

)k2
(

∂

∂λ

)k3

f(µ, λ)

∣∣∣∣ < ∞,
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where

∂

∂µ
f(µ, λ) =


∂

∂r
f(r, λ) if µ = r ∈ R,

1

i

∂

∂t
f(it, λ) if µ = it, |t| ≤ |λ|;

• S∗(R2×R2) the space of infinitely differentiable functions f(r, x; s, y)
on R2 ×R2 even with respect to the variables r and s, and rapidly de-
creasing together with all their derivatives;

• S∗(R2×Γ) the space of infinitely differentiable functions f(r, x;µ, λ)
on R2 × Γ even with respect to the variables r and µ, and rapidly de-
creasing together with all their derivatives.

Each of these spaces is equipped with its usual topology.

• dµα(r, x;µ, λ) := dνα(r, x) dγα(µ, λ), for all (r, x;µ, λ) ∈ R2
+ × Γ;

• Lp(dµα), 1 ≤ p ≤ ∞, the space of measurable functions f on
R2

+ × Γ satisfying

∥f∥Lp(dµα) =

(∫
Γ

∫
R2

+

|f(r, x;µ, λ)|pdνα(r, x) dγα(µ, λ)
)1/p

< ∞,

1 ≤ p < ∞,

∥f∥L∞(dµα) = ess sup
(r,x;µ,λ)∈R2

+×Γ

|f(r, x;µ, λ)| < ∞, p = ∞·

Definition 2.11. The Riemann-Liouville-Wigner transform V is de-
fined on S∗(R2)× S∗(R2) by, for all (r, x;µ, λ) ∈ R2

+ × Γ,

V(f, h)(r, x;µ, λ) =
∫
R2

+

φµ,λ(s, y)f(s, y)τ(r,x)h(s, y) dνα(s, y)(2.13)

= ⟨f, φµ,λ τ(r,x)h⟩L2(dνα).

Remark 2.12. The transform V can also be written in the following
form:

(2.14) V(f, h)(r, x;µ, λ) = Fα(fτ(r,x)h)(µ, λ) = h ∗α ((f̌ φ̌µ,λ))(r, x),

where ǧ is the function defined by, for all (r, x) ∈ R2
+,

ǧ(r, x) = g(r,−x).
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Proposition 2.13.

(i) The transform V is a bilinear mapping from S∗(R2)×S∗(R2) into
S∗(R2 × Γ).

(ii) For all f, h in L2(dνα), we have V(f, h) ∈ L2(dµα)
∩
L∞(dµα),

and

∥V(f, h)∥L2(dµα) ≤ ∥f∥L2(dνα)∥h∥L2(dνα),(2.15)

∥V(f, h)∥L∞(dµα) ≤ ∥f∥L2(dνα)∥h∥L2(dνα).(2.16)

Remark 2.14.

(i) If h ∈ Lp(dνα), and f ∈ Lp′
(dνα), p ∈ [1,∞], we define the

Riemann-Liouville-Wigner transform V(f, h) by the relation (2.14).

(ii) Let h ∈ Lp(dνα), p ∈ [1,∞]. Then, from relations (2.7) and

(2.14), for all f in Lp′
(dνα), we have

(2.17) ∥V(f, h)∥L∞(dµα) ≤ ∥f∥Lp′ (dµα)∥h∥Lp(dµα).

We proceed as in [17] and prove the following.

Proposition 2.15.

(i) For all f in Lp(dνα) and h in Lp′
(dνα), p > 2, the Riemann-

Liouville-Wigner transform V(f, h) belongs to Lp(dµα) and satisfies the
following inequality

(2.18) ∥V(f, h)∥Lp(dµα) ≤ ∥f∥Lp(dµα)∥h∥Lp′ (dµα).

(ii) Let r > 2. Suppose that f in Lp(dνα), h in Lp′
(dνα), and

r′ ≤ p, p′ ≤ r. Then, V(f, h) belongs to Lr(dµα) and satisfies the
following inequality

(2.19) ∥V(f, h)∥Lr(dµα) ≤ ∥f∥Lp(dµα)∥h∥Lp′ (dµα).

2.3. Schatten-von Neumann classes. In the following, we denote
by

• lp(N), 1 ≤ p ≤ ∞, the set of all infinite sequences of real (or
complex) numbers x := (xj)j∈N, such that
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||x||p :=

( ∞∑
j=1

|xj |p
)1/p

< ∞ if 1 ≤ p < ∞,

||x||∞ := sup
j∈N

|xj | < ∞.

For p = 2, we provide this space l2(N) with the scalar product

⟨x, y⟩2 :=
∞∑
j=1

xjyj .

• B(Lp(dνα)), 1 ≤ p ≤ ∞, the space of bounded operators from
Lp(dνα) into itself.

Definition 2.16.

(i) The singular values (sn(A))n∈N of a compact operator A in
B(L2(dνα)) are the eigenvalues of the positive self-adjoint operator

|A| =
√
A∗A.

(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact
operators whose singular values lie in lp(N). The space Sp is equipped
with the norm

(2.20) ||A||Sp :=

( ∞∑
n=1

(sn(A))p
)1/p

.

Remark 2.17. We note that the space S2 is the space of Hilbert-
Schmidt operators, and S1 is the space of trace class operators.

Definition 2.18. The trace of an operator A in S1 is defined by

(2.21) tr(A) =

∞∑
n=1

⟨Avn, vn⟩L2(dνα),

where (vn)n is any orthonormal basis of L2(dνα).

Remark 2.19. If A is positive, then

(2.22) tr(A) = ||A||S1 .
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Moreover, a compact operator A on the Hilbert space L2(dνα) is
Hilbert-Schmidt, if the positive operator A∗A is in the space of trace
class S1. Then,

(2.23) ||A||2HS := ||A||2S2
= ||A∗A||S1 = tr(A∗A) =

∞∑
n=1

||Avn||2L2(dνα)

for any orthonormal basis (vn)n of L2(dνα).

Definition 2.20. We define S∞ := B(L2(dνα)), equipped with the
norm

(2.24) ||A||S∞ := sup
v∈L2(dνα):||v||L2(dνα)=1

||Av||L2(dνα).

Remark 2.21. It is obvious that Sp ⊂ Sq, 1 ≤ p ≤ q ≤ ∞.

3. Localization operator associated with the Riemann-Liou-
ville-Wigner transform. In this section, we will derive a host of suf-
ficient conditions for the boundedness and Schatten class of the Rie-
mann Liouville two-wavelet localization operators associated with the
Riemann-Liouville-Wigner transform in terms of properties of the sym-
bol σ and the windows u and v.

3.1. Preliminaries.

Definition 3.1. Let u and v be measurable functions on R2
+, σ a

measurable function on R2
+ × Γ, and we define the localization opera-

tor associated with the Riemann-Liouville-Wigner transform noted by
Lu,v(σ), on Lp(dνα), 1 ≤ p ≤ ∞, by

(3.1) Lu,v(σ)(f)(s, y)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)V(f, u)(r, x;µ, λ)φµ,λ(s, y)τs,yv(r, x) dµα(r, x;µ, λ),

(s, y) ∈ R2
+.

In accordance with the different choices of the symbols σ and the
different continuities required, we need to impose different conditions
on u and v. Then, we obtain an operator on Lp(dνα).
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It is often more convenient to interpret the definition of Lu,v(σ) in

a weak sense, that is, for f in Lp(dνα), p ∈ [1,∞], and g in Lp′
(dνα),

⟨Lu,v(σ)(f), g⟩L2(dνα)

(3.2)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)V(f, u)(r, x;µ, λ)V(g, v)(r, x;µ, λ) dµα(r, x;µ, λ).

In what follows, the operator Lu,v(σ) will be named the localization
operator for the sake of simplicity.

Proposition 3.2. Let p ∈ [1,∞). Formally, we assume that we have

Lu,v(σ) : L
p(dνα) −→ Lp(dνα).

Then, its adjoint is the linear operator Lv,u(σ) : L
p′
(dνα) → Lp′

(dνα).

Proof. For all f in Lp(dνα) and g in Lp′
(dνα), it immediately follows

from (3.2) that

⟨Lu,v(σ)(f), g⟩L2(dνα)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)V(f, u)(r, x;µ, λ)V(g, v)(r, x;µ, λ) dµα(r, x;µ, λ)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)V(f, u)(r, x;µ, λ)V(g, v)(r, x;µ, λ) dµα(r, x;µ, λ)

= ⟨Lv,u(σ)(g), f⟩L2(dνα) = ⟨f,Lv,u(σ)(g)⟩L2(dνα).

Thus, we get

�(3.3) L∗
u,v(σ) = Lv,u(σ).

In the sequel of this section, u and v will be any functions in L2(dνα)
such that

∥u∥L2(dνα) = ∥v∥L2(dνα) = 1.

3.2. Boundedness for Lu,v(σ) on S∞. The main result of this
subsection is to prove that the linear operators

Lu,v(σ) : L
2(dνα) −→ L2(dνα)
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are bounded for all symbols σ ∈ Lp(dµα), 1 ≤ p ≤ ∞. We consider
first this problem for σ in L1(dµα) and next in L∞(dµα), and then, we
conclude by using interpolation theory.

Proposition 3.3. Let σ be in L1(dµα). Then, the localization operator
Lu,v(σ) is in S∞, and we have

(3.4) ||Lu,v(σ)||S∞ 6 ∥σ∥L1(dµα).

Proof. For every function f and g in L2(dνα), from (3.2), we have

|⟨Lu,v(σ)(f), g⟩L2(dνα)|

6
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)|

× |V(f, u)(r, x;µ, λ)V(g, v)(r, x;µ, λ)| dµα(r, x;µ, λ)

6 ∥V(f, u)∥L∞(dµα)∥V(g, v)∥L∞(dµα)∥σ∥L1(dµα).

Using relation (2.16), we get

∥V(f, u)∥L∞(dµα) ≤ ∥u∥L2(dνα)∥f∥L2(dνα),

∥V(g, v)∥L∞(dµα) ≤ ∥v∥L2(dνα)∥g∥L2(dνα).

Hence, we deduce that

|⟨Lu,v(σ)(f), g⟩L2(dνα)| 6 ∥f∥L2(dνα)∥g∥L2(dνα)∥σ∥L1(dµα).

Thus,
||Lu,v(σ)||S∞ 6 ∥σ∥L1(dµα). �

Proposition 3.4. Let σ be in L∞(dµα). Then, the localization opera-
tor Lu,v(σ) is in S∞, and we have

||Lu,v(σ)||S∞ 6 ∥σ∥L∞(dµα).

Proof. For all functions f and g in L2(dνα), we have, from Cauchy-
Schwarz’s inequality,

|⟨Lu,v(σ)(f), g⟩L2(dνα)|

6
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)||V(f, u)(r, x;µ, λ)|
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× |V(g, v)(r, x;µ, λ)| dµα(r, x;µ, λ)

6 ∥σ∥L∞(dµα)∥V(f, u)∥L2(dµα)∥V(g, v)∥L2(dµα).

Using formula (2.15), we get

|⟨Lu,v(σ)(f), g⟩L2(dνα)| 6 ∥σ∥L∞(dµα)∥f∥L2(dνα)∥g∥L2(dνα).

Thus,
||Lu,v(σ)||S∞ 6 ∥σ∥L∞(dµα). �

We can now associate a localization operator

Lu,v(σ) : L
2(dνα) −→ L2(dνα)

to every symbol σ in Lp(dµα), 1 ≤ p ≤ ∞ and prove that Lu,v(σ) is in
S∞. The precise result is the following theorem.

Theorem 3.5. Let σ be in Lp(dµα), 1 ≤ p ≤ ∞. Then, there exists
a unique bounded linear operator Lu,v(σ) : L2(dνα) → L2(dνα), such
that

||Lu,v(σ)||S∞ 6 ∥σ∥Lp(dµα).

Proof. Let f be in L2(dνα). We consider the following operator

T : L1(dµα)
∩

L∞(dµα) −→ L2(dνα),

given by
T (σ) := Lu,v(σ)(f).

Then, by Proposition 3.3 and Proposition 3.4,

(3.5) ||T (σ)||L2(dνα) 6 ||f ||L2(dνα)∥σ∥L1(dµα)

and

(3.6) ||T (σ)||L2(dνα) ≤ ||f ||L2(dνα)∥σ∥L∞(dµα).

Therefore, by (3.5), (3.6) and the Riesz-Thorin interpolation theorem
(see [21, Theorem 2] and [23, Theorem 2.11]), T may be uniquely
extended to a linear operator on Lp(dµα), 1 ≤ p ≤ ∞, and we have

(3.7) ||Lu,v(σ)(f)||L2(dνα) = ||T (σ)||L2(dνα) ≤ ||f ||L2(dνα)∥σ∥Lp(dµα).

Since (3.7) is true for arbitrary functions f in L2(dνα), we then obtain
the desired result. �



262 HATEM MEJJAOLI AND KHALIFA TRIMÈCHE

3.3. Traces of Lu,v(σ). The main result of this subsection is to prove
that the localization operator Lu,v(σ) : L2(dνα) → L2(dνα) is in the
Schatten class Sp.

Proposition 3.6. Let σ be in L1(dµα). Then, the localization operator
Lu,v(σ) is in S2, and we have

∥Lu,v(σ)∥S2 6 ∥σ∥L1(dµα).

Proof. Let {ϕj , j = 1, 2, . . .} be an orthonormal basis for L2(dνα).
Then, by (3.2), Fubini’s theorem, Parseval’s identity and (3.3), we have

∞∑
j=1

||Lu,v(σ)(ϕj)||2L2(dνα)

=
∞∑
j=1

⟨Lu,v(σ)(ϕj),Lu,v(σ)(ϕj)⟩L2(dνα)

=

∞∑
j=1

∫
Γ

∫
R2

+

σ(r, x;µ, λ)⟨ϕj , φµ,λτ(r,x)u⟩L2(dνα)

× ⟨Lu,v(σ)(ϕj), φµ,λ τ(r,x)v⟩L2(dνα)
dµα(r, x;µ, λ)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)
∞∑
j=1

⟨L∗
u,v(σ)(φµ,λ τ(r,x)v), ϕj⟩L2(dνα)

× ⟨ϕj , τ(r,x)uφµ,λ⟩L2(dνα) dµα(r, x;µ, λ)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)

× ⟨L∗
u,v(σ)(τ(r,x)v φµ,λ), φµ,λ τ(r,x)u⟩L2(dνα) dµα(r, x;µ, λ).

Thus, from (3.4), we obtain

∞∑
j=1

||Lu,v(σ)(ϕj)||2L2(dνα)(3.8)

≤
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)| ||L∗
u,v(σ)||S∞dµα(r, x;µ, λ)

≤ ∥σ∥2L1(dµα) < ∞.
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Hence, by (3.8) and [23, Proposition 2.8],

Lu,v(σ) : L
2(dνα) −→ L2(dνα)

is in the Hilbert-Schmidt class S2, and hence, compact. �

Proposition 3.7. Let σ be a symbol in Lp(dµα), 1 6 p < ∞. Then,
the localization operator Lu,v(σ) is compact.

Proof. Let σ be in Lp(dµα), and let (σn)n∈N be a sequence of
functions in L1(dµα)

∩
L∞(dµα) such that σn → σ in Lp(dµα) as

n → ∞. Then, by Theorem 3.5,

||Lu,v(σn)− Lu,v(σ)||S∞ ≤ ||σn − σ||Lp(dµα).

Hence, Lu,v(σn) → Lu,v(σ) in S∞ as n → ∞. On the other hand, as
by Proposition 3.6, Lu,v(σn) is in S2, hence compact, it follows that
Lu,v(σ) is compact. �

Theorem 3.8. Let σ be in L1(dµα). Then,

Lu,v(σ) : L
2(dνα) −→ L2(dνα)

is in S1, and we have

(3.9) ∥σ̃∥L1(dµα) 6 ∥Lu,v(σ)∥S1 6 ∥σ∥L1(dµα),

where σ̃ is given by

σ̃(r, x;µ, λ) = ⟨Lu,v(σ)φµ,λ τ(r,x)u, φµ,λ τ(r,x)v⟩L2(dνα),

(r, x;µ, λ) ∈ R2
+ × Γ.

Proof. Since σ is in L1(dµα), by Proposition 3.6, Lu,v(σ) is in S2.
Using [23, Theorem 2.2], there exists an orthonormal basis {ϕj , j =
1, 2, . . .} for the orthogonal complement of the kernel of the operator
Lu,v(σ), consisting of eigenvectors of |Lu,v(σ)|, and {hj , j = 1, 2, . . .}
an orthonormal set in L2(dνα), such that

(3.10) Lu,v(σ)(f) =
∞∑
j=1

sj⟨f, ϕj⟩L2(dνα)hj ,
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where sj , j = 1, 2, . . . , are the positive singular values of Lu,v(σ)
corresponding to ϕj . Then, we get

∥Lu,v(σ)∥S1 =
∞∑
j=1

sj =
∞∑
j=1

⟨Lu,v(σ)(ϕj), hj⟩L2(dνα).

Thus, by (2.2), (2.5), (2.13), (2.16), (3.2), Fubini’s theorem, Par-
seval’s identity, Bessel’s inequality, Cauchy-Schwarz’s inequality, and
||u||L2(dνα) = ||v||L2(dνα) = 1, we obtain

∥Lu,v(σ)∥S1

=
∞∑
j=1

⟨Lu,v(σ)(ϕj), hj⟩L2(dνα)

=
∞∑
j=1

∫
Γ

∫
R2

+

σ(r, x;µ, λ)V(ϕj , u)(r, x;µ, λ)

× V(hj , v)(r, x;µ, λ) dµα(r, x;µ, λ)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)
∞∑
j=1

⟨ϕj , φµ,λ τ(r,x)u⟩L2(dνα)

× ⟨φµ,λ τ(r,x)v, hj⟩L2(dνα) dµα(r, x;µ, λ)

≤
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)| ||φµ,λ τ(r,x)u||L2(dνα)

× ||φµ,λ τ(r,x)v||L2(dνα) dµα(r, x;µ, λ) 6 ∥σ∥L1(dµα).

Hence, ∥Lu,v(σ)∥S1 6 ∥σ∥L1(dµα).

We now prove that Lu,v(σ) satisfies the first member of (3.9). It is
easy to see that σ̃ belongs to L1(dµα), and, using formula (3.10), we
get

|σ̃(r, x;µ, λ)|
= |⟨Lu,v(σ)(φµ,λ τ(r,x)u), φµ,λ τ(r,x)v⟩L2(dνα)|

=

∣∣∣∣ ∞∑
j=1

sj⟨ φµ,λ τ(r,x)u, ϕj⟩L2(dνα)⟨hj , φµ,λ τ(r,x)v⟩L2(dνα)

∣∣∣∣
6 1

2

∞∑
j=1

sj(|⟨φµ,λ τ(r,x)u, ϕj⟩L2(dνα)|2 + |⟨φµ,λ τ(r,x)v, hj⟩L2(dνα)|2).



RIEMANN-LIOUVILLE-WIGNER OPERATORS 265

By Fubini’s theorem, we obtain∫
Γ

∫
R2

+

|σ̃(r, x;µ, λ)|dµα(r, x;µ, λ)

≤ 1

2

∞∑
j=1

sj

(∫
Γ

∫
R2

+

|⟨φµ,λ τ(r,x)u, ϕj⟩L2(dνα)|2dµα(r, x;µ, λ)

+

∫
Γ

∫
R2

+

|⟨φµ,λ τ(r,x)v, hj⟩L2(dνα)|2dµα(r, x;µ, λ)

)
.

Thus, using the formula given by relation (2.15), we have∫
Γ

∫
R2

+

|σ̃(r, x;µ, λ)|dµα(r, x;µ, λ) ≤
∥u∥2L2(dνα)+∥v∥2L2(dνα)

2

∞∑
j=1

sj

≤ ∥Lu,v(σ)∥S1
.

The proof is complete. �

Corollary 3.9. For σ in L1(dµα), we have the following trace formula

tr(Lu,v(σ))

(3.11)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)⟨φµ,λ τ(r,x)u, φµ,λ τ(r,x)v⟩L2(dνα) dµα(r, x;µ, λ).

Proof. Let {ϕj , j = 1, 2, . . .} be an orthonormal basis for L2(dνα).
From Theorem 3.8, the localization operator Lu,v(σ) belongs to S1.
Then, by the definition of the trace given by relation (2.21), Fubini’s
theorem and Parseval’s identity, we have

tr(Lu,v(σ))

=

∞∑
j=1

⟨Lu,v(σ)(ϕj), ϕj⟩L2(dνα)

=
∞∑
j=1

∫
Γ

∫
R2

+

σ(r, x;µ, λ)⟨ϕj , φµ,λ τ(r,x)u⟩L2(dνα)

× ⟨ϕj , φµ,λ τ(r,x)v⟩L2(dνα)
dµα(r, x;µ, λ)
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=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)
∞∑
j=1

⟨ϕj , φµ,λ τ(r,x)u⟩L2(dνα)

× ⟨φµ,λ τ(r,x)v, ϕj⟩L2(dνα)
dµα(r, x;µ, λ)

=

∫
Γ

∫
R2

+

σ(r, x;µ, λ)⟨φµ,λ τ(r,x)v, φµ,λ τ(r,x)u⟩L2(dνα) dµα(r, x;µ, λ),

and the proof is complete. �

In the following, we give the main result of this section.

Corollary 3.10. Let σ be in Lp(dµα), 1 6 p 6 ∞. Then, the local-
ization operator

Lu,v(σ) : L
2(dνα) −→ L2(dνα)

is in Sp, and we have

∥Lu,v(σ)∥Sp 6 ∥σ∥Lp(dµα).

Proof. The result follows from Proposition 3.4, Theorem 3.8, and by
interpolation [23, Theorems 2.10, 2.11]. �

Remark 3.11. If u = v, and, if σ is a real-valued and nonnegative
function in L1(dµα), then

Lu,v(σ) : L
2(dνα) −→ L2(dνα)

is a positive operator. Thus, by (2.22) and Corollary 3.9,
(3.12)

||Lu,v(σ)||S1 =

∫
Γ

∫
R2

+

σ(r, x;µ, λ)||φµ,λ τ(r,x)u||2L2(dνα)dµα(r, x;µ, λ).

Now, we state a result concerning the trace of products of localiza-
tion operators.

Corollary 3.12. Let σ1 and σ2 be any real-valued and non-negative
functions in L1(dµα). We assume that u = v is a function in L2(dνα)
such that ||u||L2(dνα) = 1. Then, the localization operators Lu,v(σ1),
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Lu,v(σ2) are positive trace class operators, and

||(Lu,v(σ1)Lu,v(σ2))
n||S1 = tr(Lu,v(σ1)Lu,v(σ2))

n

≤ (tr(Lu,v(σ1)))
n(tr(Lu,v(σ2)))

n

= ||Lu,v(σ1)||nS1
||Lu,v(σ2)||nS1

,

for all natural numbers n.

Proof. By [18, Theorem 1], we know that, if A and B are in the
trace class S1 and are positive operators, then, for all n ∈ N,

tr(AB)n ≤ (tr(A))n(tr(B))n.

Thus, if we takeA = Lu,v(σ1), B = Lu,v(σ2) and we invoke the previous
remark, the proof is complete. �

4. Lp Boundedness and compactness of Lu,v(σ).

4.1. Boundedness for symbols in Lp(dµα). For 1 ≤ p ≤ ∞, let

σ ∈ L1(dµα), v ∈ Lp(dνα) and u ∈ Lp′
(dνα).

We shall show that Lu,v(σ) is a bounded operator on Lp(dνα). We
start with the following propositions.

Proposition 4.1. Let σ be in L1(dµα), u ∈ L∞(dνα) and v ∈ L1(dνα).
Then, the localization operator Lu,v(σ) : L1(dνα) → L1(dνα) is a
bounded linear operator, and we have

||Lu,v(σ)||B(L1(dνα)) 6 ∥u∥L∞(dνα)∥v∥L1(dνα)∥σ∥L1(dµα).

Proof. For every function f in L1(dνα), we have from the relations
(2.2), (2.5) (2.17) and (3.1),

||Lu,v(σ)(f)||L1(dνα)

6
∫
R2

+×Γ

∫
R2

+

|σ(r, x;µ, λ)| |V(f, u)(r, x;µ, λ)|

× |τ(r,x)v(s, y)φµ,λ(s, y)| dµα(r, x;µ, λ) dνα(s, y)

6 ∥f∥L1(dνα)||u||L∞(dνα)||v||L1(dνα)∥σ∥L1(dµα).

Thus,

||Lu,v(σ)||B(L1(dνα)) 6 ||u||L∞(dνα)||v||L1(dνα)∥σ∥L1(dµα). �
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Proposition 4.2. Let σ be in L1(dµα), u ∈ L1(dνα) and v ∈ L∞(dνα).
Then, the localization operator Lu,v(σ) : L∞(dνα) → L∞(dνα) is a
bounded linear operator, and we have

||Lu,v(σ)||B(L∞(dνα)) 6 ∥u∥L1(dνα)∥v∥L∞(dνα)∥σ∥L1(dµα).

Proof. Let f in L∞(dνα). As above, from relations (2.2), (2.5),
(2.17) and (3.1), for all (s, y) ∈ R2

+,

|Lu,v(σ)(f)(s, y)|

6
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)|

× |V(f, u)(r, x;µ, λ)| |τ(r,x)v(s, y)φµ,λ(s, y)| dµα(r, x;µ, λ)

6 ∥f∥L∞(dνα)||u||L1(dνα)||v||L∞(dνα)∥σ∥L1(dµα).

Thus,

||Lu,v(σ)||B(L∞(dνα)) 6 ||u||L1(dνα)||v||L∞(dνα)∥σ∥L1(dµα). �

Remark 4.3. Proposition 4.2 is also a corollary of Proposition 4.1
since the adjoint of

Lv,u(σ) : L
1(dνα) −→ L1(dνα)

is Lu,v(σ) : L
∞(dνα) → L∞(dνα).

Using an interpolation of Propositions 4.1 and 4.2, we obtain the
following result.

Theorem 4.4. Let u and v be functions in L1(dνα)∩L∞(dνα). Then,
for all σ in L1(dµα), there exists a unique bounded linear operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα), 1 ≤ p ≤ ∞,

such that

||Lu,v(σ)||B(Lp(dνα))

6 ∥u∥1/p
′

L1(dνα)∥v∥
1/p
L1(dνα)∥u∥

1/p
L∞(dνα)∥v∥

1/p′

L∞(dνα)∥σ∥L1(dµα).
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With a Schur technique, we can obtain an Lp-boundedness re-
sult as in the previous theorem, but the estimate for the norm
||Lu,v(σ)||B(Lp(dνα)) is cruder.

Theorem 4.5. Let σ be in L1(dµα), u and v in L1(dνα) ∩ L∞(dνα).
Then, there exists a unique bounded linear operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα), 1 ≤ p ≤ ∞

such that

||Lu,v(σ)||B(Lp(dνα))

6 max(∥u∥L1(dνα)∥v∥L∞(dνα), ∥u∥L∞(dνα)∥v∥L1(dνα))∥σ∥L1(dµα).

Proof. Let Kα be the function defined on R2
+ × R2

+ by

Kα(s, y; t, z) =

∫
Γ

∫
R2

+

σ(r, x;µ, λ)φµ,λ(s, y)τ(s,y)v(r, x)φµ,λ(t, z)(4.1)

× τ(r,x)u(t, z) dµα(r, x;µ, λ).

We have

Lu,v(σ)(f)(s, y) =

∫
R2

+

Kα(y, z)f(t, z) dνα(t, z).

By simple calculations, it is easy to see that∫
R2

+

|Kα(s, y; t, z)| dνα(s, y)

≤ ∥u∥L∞(dνα)∥v∥L1(dνα)∥σ∥L1(dµα), (t, z) ∈ R2
+,

and ∫
R2

+

|Kα(s, y; t, z)|dνα(t, z)

≤ ∥u∥L1(dνα)∥v∥L∞(dνα)∥σ∥L1(dµα), (s, y) ∈ R2
+.

Thus, by the Schur lemma, cf., [11], we can conclude that

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)
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is a bounded linear operator for 1 ≤ p ≤ ∞, and we have

||Lu,v(σ)||B(Lp(dνα))

6 max(∥u∥L1(dνα)∥v∥L∞(dνα), ∥u∥L∞(dνα)∥v∥L1(dνα))∥σ∥L1(dµα).�

Remark 4.6. Theorem 4.5 tells us that the unique bounded linear
operator on Lp(dνα), 1 ≤ p ≤ ∞, obtained by interpolation in Theorem
4.4, is, in fact, the integral operator on Lp(dνα) with kernel Kα given
by (4.1).

We can give another version of the Lp-boundedness. Firstly, we
generalize and improve Proposition 4.2.

Proposition 4.7. Let σ be in L1(dµα), v ∈ Lp(dνα) and u ∈ Lp′
(dνα),

for 1 < p ≤ ∞. Then, the localization operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)

is a bounded linear operator, and we have

||Lu,v(σ)||B(Lp(dνα)) 6 ∥u∥Lp′ (dνα)∥v∥Lp(dνα)∥σ∥L1(dµα).

Proof. For any f ∈ Lp(dνα), consider the linear functional

If : Lp′
(dνα) −→ C

g 7−→ ⟨g,Lu,v(σ)(f)⟩L2(dνα).

From relation (3.2),

|⟨Lu,v(σ)(f), g⟩L2(dνα)|

6
∫
Γ

∫
R2

+

|σ(r, x;µ,λ)||V(f, u)(r, x;µ,λ)||V(g, v)(r, x;µ,λ)|dµα(r, x;µ,λ)

6 ∥σ∥L1(dµα)∥V(f, u)∥L∞(dµα)∥V(g, v)∥L∞(dµα).

Using relation (2.17), we get

|⟨Lu,v(σ)(f), g⟩L2(dνα)|
6 ∥σ∥L1(dµα)∥u∥Lp′ (dνα)∥v∥Lp(dνα)∥f∥Lp(dνα)∥g∥Lp′ (dνα).

Thus, the operator If is a continuous linear functional on Lp′
(dνα),

and the operator norm

||If ||B(Lp′ (dνα)) 6 ∥u∥Lp′ (dνα)∥v∥Lp(dνα)∥f∥Lp(dνα)∥σ∥L1(dµα).
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As If (g) = ⟨g,Lu,v(σ)(f)⟩L2(dνα), by the Riesz representation theorem,
we have

||Lu,v(σ)(f)||Lp(dνα) = ||If ||B(Lp′ (dνα))

6 ∥u∥Lp′ (dνα)∥v∥Lp(dνα)∥f∥Lp(dνα)∥σ∥L1(dµα),

which establishes the proposition. �

Combining Proposition 4.1 and Proposition 4.7, we have the follow-
ing theorem.

Theorem 4.8. Let σ be in L1(dµα), v ∈ Lp(dνα) and u ∈ Lp′
(dνα),

for 1 ≤ p ≤ ∞. Then, the localization operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)

is a bounded linear operator, and we have

||Lu,v(σ)||B(Lp(dνα)) 6 ∥u∥Lp′ (dνα)∥v∥Lp(dνα)∥σ∥L1(dµα).

We can now state and prove the main results in this subsection.

Theorem 4.9. Let σ be in Lr(dµα), r ∈ [1, 2], and u, v belong to
L1(dνα) ∩L2(dνα) ∩ L∞(dνα). Then, there exists a unique bounded
linear operator Lu,v(σ) : L

p(dνα) → Lp(dνα) for all p ∈ [r, r′], and we
have

(4.2) ||Lu,v(σ)||B(Lp(dνα)) 6 Ct
1C

1−t
2 ∥σ∥Lr(dµα),

where

C1 = (∥u∥L∞(dνα)∥v∥L1(dνα))
2/r−1(∥u∥L2(dνα)∥v∥L2(dνα))

1/r′ ,

C2 = (∥u∥L1(dνα)∥v∥L∞(dνα))
2/r−1(∥u∥L2(dνα)∥v∥L2(dνα))

1/r′ ,

and
t

r
+

1− t

r′
=

1

p
.

Proof. Consider the linear functional

I : (L1(dµα) ∩ L2(dµα))×(L1(dνα) ∩ L2(dνα)) −→ L1(dνα) ∩ L2(dνα)

(σ, f) 7−→ Lu,v(σ)(f).



272 HATEM MEJJAOLI AND KHALIFA TRIMÈCHE

Then, by Proposition 4.1 and Theorem 3.5,

(4.3) ||I(σ, f)||L1(dνα) 6 ∥u∥L∞(dνα)∥v∥L1(dνα)||f ||L1(dνα)∥σ∥L1(dµα)

and

(4.4) ||I(σ, f)||L2(dνα) ≤ ∥u∥L2(dνα)∥v∥L2(dνα)||f ||L2(dνα)∥σ∥L2(dµα).

Therefore, by (4.3), (4.4) and the multi-linear interpolation theory
[4, subsection 10.1], we obtain a unique bounded linear operator
I : Lr(dµα)× Lr(dνα) → Lr(dνα) such that

(4.5) ||I(σ, f)||Lr(dνα) ≤ C1||f ||Lr(dνα)∥σ∥Lr(dµα),

where

C1 = (∥u∥L∞(dνα)∥v∥L1(dνα))
θ(∥u∥L2(dνα)∥v∥L2(dνα))

(1−θ)/2

and
θ

1
+

1− θ

2
=

1

r
.

By the definition of I, we have

||Lu,v(σ)||B(Lr(dνα)) 6 C1∥σ∥Lr(dµα).

As the adjoint of Lu,v(σ) is Lv,u(σ), so Lu,v(σ) is a bounded linear map

on Lr′(dνα) with its operator norm

(4.6) ||Lu,v(σ)||B(Lr′ (dνα)) = ||Lv,u(σ)||B(Lr(dνα)) ≤ C2∥σ∥Lr(dµα),

where

C2 = (∥u∥L1(dνα)∥v∥L∞(dνα))
θ(∥u∥L2(dνα)∥v∥L2(dνα))

(1−θ)/2.

Using an interpolation of (4.5) and (4.6), we have that, for any p belongs
to [r, r′],

||Lu,v(σ)||B(Lp(dνα)) 6 Ct
1C

1−t
2 ∥σ∥Lr(dµα),

with
t

r
+

1− t

r′
=

1

p
. �

In the remainder of this subsection, we prove different versions of Lp

boundedness for the localization operators.
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Theorem 4.10. Let σ be in Lr(dµα), r ∈ [1, 2), and u, v belong

to Lr(dνα)
∩

Lr′(dνα). Then, there exists a unique bounded linear
operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)

for all p ∈ [r, r′], and we have

||Lu,v(σ)||B(Lp(dνα))

(4.7)

6 (∥u∥Lr(dνα)∥v∥Lr′ (dνα))
t(∥u∥Lr′ (dνα)∥v∥Lr(dνα))

1−t∥σ∥Lr(dµα),

where

t =
r − p

p(r − 2)
.

Proof. For every function f in Lr′(dνα) and g in Lr(dνα), from (3.2)
we have

|⟨Lu,v(σ)(f), g⟩L2(dνα)|

6
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)| |V(f, u)(r, x;µ, λ)V(g, v)(r, x;µ, λ)| dµα(r, x;µ, λ)

6 ∥V(f, u)∥Lr′ (dµα)∥V(g, v)∥L∞(dµα)∥σ∥Lr(dµα).

Using relations (2.17) and (2.18), we get

∥V(f, u)∥Lr′ (dµα) ≤ ∥u∥Lr(dνα)∥f∥Lr′ (dνα),

∥V(g, v)∥L∞(dµα) ≤ ∥v∥Lr′ (dνα)∥g∥Lr(dνα).

Hence, we deduce that

|⟨Lu,v(σ)(f), g⟩L2(dνα)|
6 ∥u∥Lr(dνα)∥v∥Lr′ (dνα)∥f∥Lr′ (dνα)∥g∥Lr(dνα)∥σ∥Lr(dµα).

Thus,

(4.8) ||Lu,v(σ)||B(Lr′ (dνα)) 6 ∥u∥Lr(dνα)∥v∥Lr′ (dνα)∥σ∥Lr(dµα).

As the adjoint of Lv,u(σ) is Lu,v(σ), so Lu,v(σ) is a bounded linear map
on Lr(dνα) with its operator norm

(4.9) ||Lu,v(σ)||B(Lr(dνα)) ≤ ∥u∥Lr′ (dνα)∥v∥Lr(dνα)∥σ∥Lr(dµα).

Using an interpolation of (4.8) and (4.9), we deduce the result. �
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Proposition 4.11. Let p, r ∈ [1,∞] be such that p ∈ [2r/(r + 1), 2].
Let σ be in Lr(dµα), u belongs to L2(dνα)∩L∞(dνα), and v belongs to
L1(dνα)∩L2(dνα). Then, there exists a unique bounded linear operator
Lu,v(σ) : L

p(dνα) → Lp(dνα), and we have
(4.10)
||Lu,v(σ)||B(Lp(dνα))6∥u∥1−t

L∞(dνα)∥v∥
1−t
L1(dνα)∥u∥

t
L2(dνα)∥v∥

t
L2(dνα)∥σ∥Lr(dµα),

where

t =
(r − 1)q

(q − 1)r
, with q =

(2p− 2)r

p− (2− p)r
.

Proof. The proof follows from Theorem 4.8 with p = 1, Theorem 3.5
with q instead of p, and interpolation theory. �

Theorem 4.12. Let σ be in Lr(dµα), r ∈ [1,∞], and u, v belong to
L1(dνα)∩L∞(dνα). Then, there exists a unique bounded linear operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)

for all p ∈ [2r/(r + 1), 2r/(r − 1)], and we have
(4.11)

||Lu,v(σ)||B(Lp(dνα)) 6 C
t/r
3 C

(1−t)/r
4 ∥u∥1/r

′

L2(dνα)∥v∥
1/r′

L2(dνα)∥σ∥Lr(dµα),

where

C3 = ∥v∥L∞(dνα)∥u∥L1(dνα),

C4 = ∥v∥L1(dνα)∥u∥L∞(dνα),

and

t =
r + 1

2
− r

p
.

In order to prove this theorem, we need the following lemmas.

Lemma 4.13. Let σ be in Lr(dµα), r ∈ [1,∞], u ∈ L2(dνα)∩L∞(dνα),
and v belongs in L1(dνα)∩L2(dνα). Then, there exists a unique bound-
ed linear operator

Lu,v(σ) : L
2r/(r+1)(dνα) −→ L2r/(r+1)(dνα),
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and we have

||Lu,v(σ)||B(L2r/(r+1)(dνα))(4.12)

6 ∥u∥1/rL∞(dνα)∥v∥
1/r
L1(dνα)∥u∥

1/r′

L2(dνα)∥v∥
1/r′

L2(dνα)∥σ∥Lr(dµα).

Proof. Consider the linear functional

I : L1(dµα) ∩ L∞(dµα) −→ B(L1(dνα)) ∩B(L2(dνα))

σ 7−→ Lu,v(σ).

Then, by Proposition 4.1 and Theorem 3.5,

(4.13) ||I||B(L1(dµα),B(L1(dνα))) 6 ∥u∥L∞(dνα)∥v∥L1(dνα)

and

(4.14) ||I||B(L∞(dµα),B(L2(dνα))) 6 ∥u∥L2(dνα)∥v∥L2(dνα),

where || ||B(Lp(dµα),B(Lq(dνα))) denotes the norm in the Banach space
of the bounded linear operators from Lp(dµα) into B(Lq(dνα)), with
1 ≤ p, q ≤ ∞. Using an interpolation of (4.13) and (4.14), we obtain
the result. �

Lemma 4.14. Let σ be in Lr(dµα), r ∈ [1,∞], v ∈ L2(dνα)
∩

L∞(dνα),
and u belongs in L1(dνα)

∩
L2(dνα). Then, there exists a unique bound-

ed linear operator

Lu,v(σ) : L
2r/(r−1)(dνα) −→ L2r/(r−1)(dνα),

and we have

||Lu,v(σ)||B(L2r/(r−1)(dνα))(4.15)

6 ∥v∥1/rL∞(dνα)∥u∥
1/r
L1(dνα)∥u∥

1/r′

L2(dνα)∥v∥
1/r′

L2(dνα)∥σ∥Lr(dµα).

Proof. As the adjoint of Lv,u(σ) is Lu,v(σ), so the result follows from
duality and the previous lemma. �

Proof of Theorem 4.12. Using an interpolation of (4.12) and (4.15),
we have that, for any p ∈ [2r/(r + 1), 2r/(r − 1)],

||Lu,v(σ)||B(Lp(dνα)) 6 C
t/r
3 C

(1−t)/r
4 ∥u∥1/r

′

L2(dνα)∥v∥
1/r′

L2(dνα)∥σ∥Lr(dµα),
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with

t =
r + 1

2
− r

p
. �

Proposition 4.15. Let σ be in Lr(dµα), r > 2, and let u belongs

to L(θ′r′)′(dνα) and v ∈ Lθr′(dνα), where θ ∈ [1,∞] is such that
min{θr′, θ′r′} > 2. Then, there exists a unique bounded linear operator

Lu,v(σ) : L
θ′r′(dνα) −→ Lθr′(dνα),

and we have

||Lu,v(σ)||B(Lθ′r′ (dνα),Lθr′ (dνα))(4.16)

6 ∥u∥L(θ′r′)′ (dνα)∥v∥Lθr′ (dνα)∥σ∥Lr(dµα),

where || ||B(Lθ′r′ (dνα),Lθr′ (dνα)) is the norm in the Banach space of all

bounded linear operators from Lθ′r′(dνα) into Lθr′(dνα).

Proof. For every function f in Lθ′r′(dνα) and g in L(θr′)′(dνα), from
Hölder’s inequality and (3.2), we have

|⟨Lu,v(σ)(f), g⟩L2(dνα)|

6
∫
Γ

∫
R2

+

|σ(r, x;µ, λ)| |V(f, u)(r, x;µ, λ)V(g, v)(r, x;µ, λ)| dµα(r, x;µ, λ)

6 ∥V(f, u)∥Lθ′r′ (dµα)∥V(g, v)∥Lθr′ (dµα)∥σ∥Lr(dµα).

As min{θr′, θ′r′} > 2, from Proposition 2.15,

V(·, u) : Lθ′r′(dνα) −→ Lθ′r′(dµα)

and

V(·, v) : L(θr′)′(dνα) −→ Lθr′(dµα),

and, by relation (2.19), we get

|⟨Lu,v(σ)(f), g⟩L2(dνα)|
6 ∥u∥L(θ′r′)′ (dνα)∥v∥Lθr′ (dνα)∥f∥Lθ′r′ (dνα)∥g∥L(θr′)′ (dνα)∥σ∥Lr(dµα),

and the proof is complete. �
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Now, by the same scheme as above, by duality and interpolation
arguments, we obtain the following result.

Theorem 4.16. Let σ be in Lr(dµα), r ∈ [1,∞], and u, v belong to
L2r/(r+1)(dνα)

∩
L2r/(r−1)(dνα). Then, there exists a unique bounded

linear operator Lu,v(σ) : Lp(dνα) → Lp(dνα) for all p ∈ [2r/(r + 1),
2r/(r − 1)], and we have

||Lu,v(σ)||B(Lp(dνα))(4.17)

6 ∥u∥1−t
L2r/(r+1)(dνα)

∥u∥tL2r/(r−1)(dνα)∥v∥
1−t
L2r/(r−1)(dνα)

× ∥v∥tL2r/(r+1)(dνα)∥σ∥Lr(dµα),

where

t =
r

p
− r − 1

2
.

Remark 4.17. Theorem 4.16 gives the same boundedness result as
in Theorem 4.12, but under slightly less restrictive conditions on the
windows. On the other hand, it does not cover Theorem 4.12 because
of the presence of a different constant in the estimate.

4.2. Compactness of Lu,v(σ).

Proposition 4.18. Under the same hypotheses as Theorem 4.4, the
localization operator

Lu,v(σ) : L
1(dνα) −→ L1(dνα)

is compact.

Proof. Let (fn)n∈N ∈ L1(dνα) be such that fn ⇀ 0 weakly in
L1(dνα) as n → ∞. It is sufficient to prove that

lim
n→∞

||Lu,v(σ)(fn)||L1(dνα) = 0.

We have

||Lu,v(σ)(fn)||L1(dνα)6
∫
R2

+

∫
Γ

∫
R2

+

|σ(r, x;µ, λ)| |⟨fn, τ(r,x)uφµ,λ⟩L2(dνα)|

(4.18)

× |τ(r,x)v(s, y)φµ,λ(s, y)| dµα(r, x;µ, λ) dνα(s, y).
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Now, using the fact that fn ⇀ 0 weakly in L1(dνα), we deduce that,
for all (r, x), (s, y) ∈ R2

+, (µ, λ) ∈ Γ,
(4.19)

lim
n→∞

|σ(r, x;µ, λ)| |⟨fn, φµ,λ τ(r,x)u⟩L2(dνα)| |τ(r,x)v(s, y)φµ,λ(s, y)| = 0.

On the other hand, since fn ⇀ 0 weakly in L1(dνα) as n → ∞, then
there exists a positive constant C such that

||fn||L1(dνα) ≤ C.

Hence, by simple calculations, we get, for all (r, x), (s, y) ∈ R2
+, (µ, λ)

∈ Γ,

(4.20) |σ(r, x;µ, λ)| |⟨fn, φµ,λ τ(r,x)u⟩L2(dνα)| |τ(r,x)v(s, y)φµ,λ(s, y)|
≤ C|σ(r, x;µ, λ)| ||u||L∞(dνα) |v(s, y)|.

Moreover, from Fubini’s theorem and relation (2.17), we have∫
R2

+

∫
Γ

∫
R2

+

|σ(r, x;µ, λ)| |⟨fn, φµ,λτ(r,x)u⟩L2(dνα)|(4.21)

× |τ(r,x)v(s, y)φµ,λ(s, y)| dµα(r, x;µ, λ) dνα(s, y)

≤ C||u||L∞(dνα)

∫
Γ

∫
R2

+

|σ(r, x;µ, λ)|

×
∫
R2

+

|v(s, y)| dνα(s, y) dµα(r, x;µ, λ)

≤ C||u||L∞(dνα)||v||L1(dνα)∥σ∥L1(dµα) < ∞.

Thus, from relations (4.18), (4.19), (4.20), (4.21) and the Lebesgue
dominated convergence theorem, we deduce that

lim
n→∞

||Lu,v(σ)(fn)||L1(dνα) = 0,

and the proof is complete. �

In the following, we give two results for compactness of the localiza-
tion operator.
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Theorem 4.19. Under the hypotheses of Theorem 4.4, the bounded
linear operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)

is compact for 1 ≤ p ≤ ∞.

Proof. From the previous proposition, we only need show that the
conclusion holds for p = ∞. In fact, the operator

Lu,v(σ) : L
∞(dνα) −→ L∞(dνα)

is the adjoint of the operator Lv,u(σ) : L1(dνα) → L1(dνα), which is
compact by the previous proposition. Thus, by the duality property,
Lu,v(σ) : L

∞(dνα) → L∞(dνα) is compact. Finally, by an interpolation
of the compactness on L1(dνα) and on L∞(dνα) such as that given in
[3, pages 202, 203], the proof is complete. �

The following result is an analogue of Theorem 4.9 for compact
operators.

Theorem 4.20. Under the hypotheses of Theorem 4.9, the bounded
linear operator

Lu,v(σ) : L
p(dνα) −→ Lp(dνα)

is compact for all p ∈ [r, r′].

Proof. The result is an immediate consequence of an interpolation
of Corollary 3.10 and Proposition 4.18. See, again, [3, pages 202, 203]
for the interpolation used. �
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