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APPROXIMATE AMENABILITY AND A VARIANT
OF CONTINUOUS HOCHSCHILD COHOMOLOGY

KAZUHIRO KAWAMURA

ABSTRACT. We study a variant of continuous Hochschild
cohomology of a Banach algebra in connection with a higher-
dimensional analogue of the approximate amenability of
the algebra. Some results on higher-dimensional amenability
have natural analogues in our context. Alternating cocycles,
due to Johnson [18], are studied, and a previous result of the
author [17] on Lipschitz algebras over compact metric spaces
is improved.

1. Introduction and preliminaries. The notion of amenable Ba-
nach algebras was introduced by Johnson [16] and, since then, Ba-
nach algebras satisfying the amenability condition or its variants have
been extensively studied. A higher-dimensional analogue of amenabil-
ity was introduced and studied by Effros-Kishimoto, Paterson, Smith,
and Lykova et al. [4, 21, 22, 23], etc. In [5], Ghahramani and Loy
introduced the notion of approximate amenability, which was subse-
quently studied in [6, 7, 8, 10], etc.

This paper studies a variant of the continuous cohomology intro-
duced by Pourabbas and Shirinkalam [24], here denoted by H

n
(A,X)pt,

of a Banach algebra A and a Banach A-bimodule X. The approximate

amenability of A is equivalent to the condition H
1
(A,X∗)pt = 0 for the

dual module X∗ of an arbitrary Banach A-bimodule X [24, Example
3.2]. It is defined by taking the quotient of the space of cocycles by the
closure of the subspace of coboundaries with respect to an appropriate
topology on the cocycle space.

In Section 2, we define the group H
n
(A,X)pt for an arbitrary

Banach algebra A and an arbitrary A-bimodule X, and we study some
basic properties. First, we give an alternative proof of a theorem
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of [24], stating that A is approximately amenable if and only if

H
n
(A,X∗)pt = 0 for each n ≥ 1, and for each Banach A-bimodule X.

This naturally leads to the notion of approximate n-amenability. There
exists a canonical surjection Hn(A,X∗) → H

n
(A,X∗)pt, and every n-

amenable algebra is approximately n-amenable. We characterize unital
approximately n-amenable Banach algebras by the existence of a net of
certain (n − 1)-cochains, which is a natural counterpart to the virtual
n-diagonal introduced in [17, 22] (also see [4, 23]). In view of the
notion of the pseudo-amenability due to Ghahramani and Zhang [10],
the condition so obtained could be called the “approximate n-pseudo-
amenability,” which is a subject of future study.

In Section 3, we consider alternating cocycles, due to Johnson [18],
in our context and study cohomology of the Lipschitz algebra LipK
over a compact metric space K. We prove that, if the space K has the
property (seq) in the sense of [19], then dimC H

n
(LipK, (LipK)∗)pt =

∞ for each n ≥ 1. This improves a result of [19].

Most of our proofs are straightforward modifications of the existing
arguments; we hope that these results may shed light on approximate
amenability and its higher-dimensional analogue.

The remainder of this section sets notation and recounts some basic
facts. For a Banach space Z, ∥ · ∥Z denotes the norm of Z. For a
Banach algebra A and a Banach A-bimodule X, recall the following
inequality:

(1.1) ∥a · x∥X ≤ ∥a∥A∥x∥X , a ∈ A, x ∈ X.

A Banach A-bimodule X of a Banach algebra A with unit e is said
to be unital if e · x = x · e = x for each x ∈ X. The dual space X∗,
endowed with the operator norm, is a Banach A-bimodule, where the
A-module structure is given by

(a · ξ)(x) = ξ(xa), (ξ · a)(x) = ξ(ax),(1.2)

a ∈ A, ξ ∈ X∗, x ∈ X.

It is sometimes convenient to use the notation

(1.3) ⟨ξ, x⟩ := ξ(x)

for an element x of a Banach spaceX and an element ξ of the dual space
X∗. A continuous linear operator D : A → X is called a derivation if
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it satisfies the formula:

(1.4) D(ab) = a ·Db+Da · b, a, b ∈ A.

For an element x ∈ X, an inner derivation is a derivation adx : A → X
defined by adx(a) = a · x− x · a, a ∈ A. A Banach algebra is said to be
amenable if each derivation D : A → X∗ of A to the dual module X∗

of an arbitrary Banach A-bimodule X is an inner derivation.

Definition 1.1 ([5]). A Banach algebra A is said to be approximately
amenable if, for each derivation D : A → X∗ of A to the dual module
X∗ of an arbitrary Banach A-bimodule X, there exists a net (ξν) in
X∗ such that

lim
ν

∥D(a)− adξν (a)∥X∗ = 0 for each a ∈ A.

For Banach spaces X and Y , let L(X,Y ) be the space of bounded
linear operators of X to Y equipped with the operator norm. The

projective tensor product of X and Y is denoted by X ⊗̂Y , and X ⊗̂n

denotes the n-fold projective tensor product of X. For a Banach
algebra A and a Banach A-bimodule X, let Cn(A,X) be the space
of n-cochains, that is, the space of bounded n-linear, n ≥ 1, operators
of A to X, endowed with the norm given by

∥f∥ = sup

{
∥f(a1, . . . , an)∥∏n

i=1 ∥ai∥

∣∣∣ (a1, . . . , an) ∈ (A \ {0})n
}

for f ∈ Cn(A,X). Also, let C0(A,X) = X. By definition, C1(A,X) =
L(A,X). We recall the following basic facts (see, for example, [15]).

Lemma 1.2. Let A and X be Banach spaces.

(i) Let Φ : Cn−1(A,L(A,X)) → Cn(A,X) be the linear operator
defined by

Φ(f)(a1, . . . , an) = (f(a1, . . . , an−1))(an)

f ∈ Cn−1(A,L(A,X)), (a1, . . . , an) ∈ An.

Then, Φ is an isometric isomorphism of Banach spaces.

(ii) Let Ψ : (A ⊗̂X)∗ → L(A,X∗) be the linear operator defined by

⟨Ψ(ξ)(a), x⟩ = ξ(a⊗ x), ξ ∈ (A ⊗̂X)∗, a ∈ A, x ∈ X.
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Then, Ψ is an isometric isomorphism of Banach spaces.

(iii) Let Θ : Cn(A,X) → L(A ⊗̂n, X) be the linear operator defined
by

Θ(f)(a1 ⊗ · · · ⊗ an) = f(a1, . . . , an), a1 ⊗ · · · ⊗ an ∈ A ⊗̂n.

Then, Θ is an isometric isomorphism of Banach spaces.

We use the A-module structure of X to define the coboundary
operator δn : Cn(A,X) → Cn+1(A,X):

δnf(a1, . . . , an+1) = a1 · (f(a2, . . . , an+1))

+

n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1)(1.5)

+ (−1)n+1f(a1, . . . , an) · an+1

for f ∈ Cn(A,X) and (a1, . . . an+1) ∈ An+1. Then, Zn(A,X) =
Ker δn, Bn(A,X) = Im δn−1, and the continuous Hochschild coho-
mology is defined by Hn(A,X) = Zn(A,X)/Bn(A,X). The first coho-
mology H1(A,X) is isomorphic to the space of derivations modulo the
inner derivations. Thus, A is amenable if and only if H1(A,X∗) = 0
for the dual X∗ of an arbitrary Banach A-bimodule X [15, 16]. The
operator δn is often denoted by δ for simplicity.

2. A variant of Hochschild cohomology and approximate
amenability. Let A be a Banach algebra, and let X be a Banach
A-bimodule. We consider the strong operator topology on the space of
n-cochains Cn(A,X), that is, the coarsest topology such that the map

Cn(A,X) −→ X; f 7−→ f(a1, . . . , an), f ∈ Cn(A,X),

is continuous for each a1, . . . , an ∈ A. The space Cn(A,X) endowed
with this topology is denoted by Cn(A,X)pt (referring to the “point-
wise convergence topology”). It is a locally convex Hausdorff topo-
logical vector space, and the coboundary operator δn : Cn(A,X)pt →
Cn+1(A,X)pt is continuous. Hence, the space Zn(A,X) of the n-co-
cycles is closed, while the space Bn(A,X) of the n-coboundaries need
not be a closed subspace. Let

B
n
(A,X)pt = the closure of Bn(A,X) in Cn(A,X)pt,
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and define H
n
(A,X)pt by

(2.1) H
n
(A,X)pt = Zn(A,X)/B

n
(A,X)pt.

In [24, Definition 3.1], the above group is denoted by Hn
app(A,X). In

order to indicate the topology on the cocycle space under consideration,
we choose the above notation. An n-cocycle f ∈ Zn(A,X) represents

a trivial element of H
n
(A,X)pt if and only if there exists a net (gν) in

Cn−1(A,X) such that, for each (a1, . . . , an) ∈ An, we have

lim
ν

∥f(a1, . . . , an)− δn−1gν(a1, . . . , an)∥X = 0.

A few observations are in order.

Remark 2.1.

(1) There exists a continuous surjection Hn(A,X) → H
n
(A,X)pt,

for each Banach algebra A, and for each Banach A-bimodule X.

(2) For each finite-dimensional algebra A, and for each finite-

dimensional A-bimodule X, we have the equality: Hn(A,X) = H
n
(A,

X)pt.

(3) For a finite-dimensional Banach algebra A, H
n
(A,X)pt = 0 for

each Banach A-bimoduleX if and only if Hn(A,X) = 0 for each Banach
A-bimodule X.

Proof. Statement (1) directly follows from the definition, cf., [24,
Propositions 2, 3]). If a Banach algebra A and a Banach A-bimodule X
are finite-dimensional, then Cn(A,X) is finite-dimensional, Cn(A,X)
with the operator-norm topology coincides with the space Cn(A,X)pt,
and the space Bn(A,X) is closed in Cn(A,X)pt. This implies state-
ment (2). For statement (3), assume that A is finite-dimensional and

H
n
(A,X)pt = 0 for each Banach A-bimodule X. Each f ∈ Zn(A,X) is

regarded as a cocycle f ∈ Zn(A,X0) for some finite-dimensional sub-
module X0 of X. Then, the assumption and (2) imply f = δg for some
g ∈ Cn−1(A,X0) ⊂ Cn−1(A,X). This proves Hn(A,X) = 0. �

For a Banach algebra A, it is known that

Hn(A,X∗) = 0 for each Banach A-bimodule X if and only if

(2.2)

Hm(A,X∗) = 0 for each Banach A-bimoduleX and for each m ≥ n.
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In particular, A is amenable if and only if Hn(A,X∗) = 0 for each
Banach A-bimodule X and for each n ≥ 1 [16, pages 8–9]. The next
theorem is an analogue of this result in our context.

Theorem 2.2 ([24, Theorem 3.8]). For a Banach algebra A, the
following two conditions are equivalent.

(i) H
n
(A,X∗)pt = 0 for each Banach A-bimodule X.

(ii) H
m
(A,X∗)pt = 0 for each m ≥ n and for each Banach A-

bimodule X.

Proof. Only the implication (i) ⇒ (ii) requires a proof. We follow
the proof of [16, pages 8-9], taking into account the topology. For a
Banach A-module X, the space L(A,X) is endowed with the A-module
structure, given by

(a · f)(b) = a · (f(b)), (f · a)(b) = f(ab)− (f(a)) · b

for f ∈ L(A,X) and a, b ∈ A. Let Φ : Cn−1(A,L(A,X)) → Cn(A,X)
be the isometric isomorphism of Lemma 1.2 (i). First, we verify that
it induces a surjection

(2.3) Φ : H
n−1

(A,L(A,X))pt −→ H
n
(A,X)pt.

Note that the isomorphism Φ, with the above A-bimodule structure on
L(A,X), commutes with the coboundary operators. Also, we see that
the bijection

Φ : Cn−1(A,L(A,X))pt −→ Cn(A,X)pt

is continuous: if (fν)ν is a net in Cn−1(A,L(A,X))pt such that

lim
ν

∥fν(a1, . . . , an−1)∥Cn−1(A,L(A,X)) = 0, (a1, . . . , an−1) ∈ An,

then we have

∥Φ(fν)(a1, . . . , an)∥X = ∥fν(a1, . . . , an−1)(an)∥X
≤ ∥fν(a1, . . . , an−1)∥Cn−1(A,L(A,X))∥an∥A,

which implies limν ∥Φ(fν)(a1, . . . , an)∥X = 0. Hence, we have the
inclusion

Φ(B
n
(A,L(A,X))pt) ⊂ Φ(Bn(A,L(A,X)))

pt

= Bn(A,X)
pt

= B
n
(A,X)pt,
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where Φ(Bn(A,L(A,X)))
pt

denotes the closure of Φ(Bn(A,L(A,X)))
in Cn(A,X)pt. Hence, the induced map Φ is a surjection.

Next, we apply Lemma 1.2 (ii) to take the isometry Ψ : (A ⊗̂X)∗ →
L(A,X∗), which induces an A-bimodule structure on (A ⊗̂X)∗ so that
the map Ψ is an A-module isomorphism. It induces a topological
isomorphism

Ψ♯ : C
n−1(A, (A ⊗̂X)∗))pt −→ Cn−1(A,L(A,X∗))pt,

which commutes with the coboundary operators. Hence, Ψ induces an
isomorphism

Ψ : H
n−1

(A, (A ⊗̂X)∗)pt −→ H
n−1

(A,L(A,X))pt.

Thus, we have a surjection

Φ ◦Ψ : H
n−1

(A, (A ⊗̂X)∗)pt −→ H
n
(A,X∗)pt,

and the proof is complete by induction. �

Remark 2.3. The inverse operator

Φ−1 : Cn(A,X) −→ Cn−1(A,L(A,X))

is an isometry with respect to operator norms, while it is not necessarily
a continuous operator

Φ−1 : Cn(A,X)pt −→ Cn−1(A,L(A,X))pt.

If it happens to be continuous, then we obtain the isomorphism

H
n−1

(A, (A ⊗̂X)∗)pt ∼= H
n
(A,X∗)pt.

As a higher-dimensional analogue of the amenability, Paterson [22]
introduced the notion of n-amenability: a Banach algebra A is said to
be n-amenable if Hn(A,X∗) = 0 for each Banach A-bimodule X. This
has a natural analogue in the present context.

Definition 2.4. Let n ≥ 1. A Banach algebra A is said to be
approximately n-amenable if H

n
(A,X∗)pt = 0 for each Banach A-

bimodule X.
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The approximate 1-amenability coincides with the approximate
amenability.

Remark 2.5.

(1) Every n-amenable Banach algebra is approximately n-amenable.
For every finite-dimensional Banach algebra, the converse holds.

(2) Every approximately n-amenable Banach algebra is approxi-
mately m-amenable for each m ≥ n. There exists an approximately
n-amenable, but not approximately (n− 1)-amenable, Banach algebra.

(3) There exists an approximately n-amenable Banach algebra which
is not n-amenable.

Proof. Statement (1) is a direct consequence of Remark 2.1. The first
statement of (2) follows from Theorem 2.2. Paterson and Smith [23,
Theorem 4.2] gave an example of a finite-dimensional matrix algebra,
denoted by Bn, which is n-amenable, but not (n− 1)-amenable. From
(1), we see that Bn serves as an example for the second statement of
(2). For statement (3), take a norm-closed subalgebra A of L(H,H)
for some Hilbert space H, which is approximately amenable but not
amenable, given by Choi [2]. From the construction, we see that the
algebra A fails to have the total reduction property, see [11], and hence,
H1(A,L(H,H)) ̸= 0 for some A-bimodule structure on L(H,H), [11,
Theorem 2.1]. Take the (n − 1)-fold suspension Sn−1(A) in the sense
of Gilfeather and Smith [12]. Then, we have

H1(A,L(H,H)) ∼= Hn(Sn−1(A),L(H,H)) ̸= 0.

Furthermore, the proof of [12] shows that there exists a continuous
surjection

H
1
(A,L(H,H))pt −→ H

n
(Sn−1(A),L(H,H))pt.

By the approximate amenability of A, we have H
1
(A,L(H,H))pt = 0;

thus, we obtain H
n
(Sn−1(A),L(H,H))pt = 0. Hence, Sn−1(A) is

approximately n-amenable, but not n-amenable. �

Next, we give an approximate analogue of the characterization
theorem of n-amenable unital Banach algebras in terms of higher-

dimensional virtual diagonals, [4, 17, 22, 23]. Let Cn(A) = A ⊗̂n
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and recall the natural isomorphism Cn(A,X) ∼= L(Cn(A), X), Lemma
1.2 (iii). Let πn : Cn(A) → Cn−1(A) be the map defined by

(2.4) πn(a1 ⊗ · · · ⊗ an) =

n−1∑
i=1

(−1)i+1a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

for a1 ⊗ · · · ⊗ an ∈ Cn(A). We have πn−1 ◦ πn = 0. Let ik : Ck(A) →
Ck(A)

∗∗ be the canonical injection, and note that

(2.5) π∗∗
n ◦ in = in−1 ◦ πn

for each n ≥ 1.

Definition 2.6 ([22]). Let A be a Banach algebra with unit e, and
let n ≥ 1. A cocycle M ∈ Zn−1(A,Cn+1(A)∗∗) is called a virtual
n-diagonal if, for each (a1, . . . , an−1) ∈ An−1, we have

π∗∗
n+1M(a1, . . . , an−1) = in(πn+1(e⊗ a1 ⊗ · · · ⊗ an−1 ⊗ e)).

For n = 1, this notion coincides with the virtual diagonal in the sense
of Johnson [17]. The n-amenability of a unital Banach algebra A is
equivalent to the existence of a virtual n-diagonal [4, 17], and a similar
characterization for general, not necessarily unital, Banach algebras has
been proved by Paterson [22, Theorem 3.2]. The latter proof relies on
the machinery of homological algebra which is not currently known to
be available for the present cohomology H

n
(A,X)pt. Also, it is shown

in [22, Theorem 4.2] (also, see [23, Theorem 3.1]) that a Banach
algebra is n-amenable (n ≥ 1) if and only if there exists a virtual
(n+ 1)-diagonal which is a coboundary.

The next theorem is an approximate analogue of these theorems
for unital algebras. Our proof is a straightforward modification of
those of [4, Theorem 3.1] and [22, Theorem 4.2] with the aid of [23,
Theorem 3.1]. For a net (ξν) in the dual space X∗ of a Banach space X,
limν ξν = ξ means limν ∥ξν − ξ∥X∗ = 0, the convergence with respect to
the operator norm on X∗.

Theorem 2.7. Let A be a Banach algebra with unit e. For n ≥ 1, the
following conditions are equivalent :

(i) the algebra A is approximately n-amenable;
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(ii) there exists a net (Mν)ν in Cn−1(A,Cn+1(A)
∗∗) such that, for

each (a1, . . . , an) ∈ An and for each (b1, . . . , bn−1) ∈ An−1, we have

(a) limν δM
ν(a1, . . . , an) = 0; and

(b) limν π
∗∗
n+1M

ν(b1, . . . , bn−1) = in(πn+1(e⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ e));

(iii) there exists a net (Lν)ν in Cn(A,Cn+2(A)∗∗) such that

(a) there exists a cochain W ν ∈ Cn−1(A,Cn+2(A)∗∗) such that
limν L

ν(a1, . . . , an) = limν δW
ν(a1, . . . , an) for each (a1, . . . , an−1) ∈

An−1;

(b) limν π
∗∗
n+2L

ν(b1, . . . , bn) = in+1(πn+2(e ⊗ b1 ⊗ · · · ⊗ bn ⊗ e)) for
each (b1, . . . , bn) ∈ An.

We follow the proofs of [4, Theorem 3.1] and [22, Theorem 4.2].
For a Banach algebra A with unit e and, for k ≥ 1, we define a cochain
hk ∈ Ck(A,Ck+2(A)) ∼= L(Ck(A), Ck+2(A)) by

(2.6) hk(a1 ⊗ · · · ⊗ ak) = e⊗ a1 ⊗ · · · ⊗ ak ⊗ e

for a1 ⊗ · · · ⊗ ak ∈ Ck(A). In addition, let h0 = e ⊗ e ∈ C2(A). As
proven in [4], we have

Lemma 2.8 ([4, page 272]). For each m ≥ 1, we have

πm+2(hm) = δhm−1 ∈ Cm(A,Cm+1(A)).

Proof of Theorem 2.7.

(i) ⇔ (ii). First, assume that A is approximately n-amenable, and
consider the cochain hn−1 ∈ Cn−1(A,Cn+1(A)). From Lemma 2.8, we
have π∗∗

n+1(in+1(δhn−1)) = (in ◦ πn+1)(πn+2(hn)) = 0, and thus, we
have

in+1(δhn−1) ∈ Cn(A,Kerπ∗∗
n+1) ⊂ Cn(A,Cn+1(A)

∗∗).

Let Imπ∗
n+1 be the closure of the subspace Imπ∗

n+1 of Cn+1(A)∗ with

respect to the operator-norm topology, and let V = Cn+1(A)∗/Imπ∗
n+1

for which we have V ∗ ∼= Kerπ∗∗
n+1. Since A is approximate n-amenable,

we have a net (fν) ∈ Cn−1(A, V ∗) = Cn−1(A,Kerπ∗∗
n+1) such that

limν δf
ν(a1, . . . , an) = in+1(δhn−1) for each (a1, . . . , an) ∈ An. Let
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Mν be the (n− 1)-cochain, defined by

Mν = in+1(hn−1)− fν ∈ Cn−1(A,Cn+1(A)∗∗).

Then, we have

lim
ν

δMν = in+1(δ(hn−1))− lim
ν

δfν = 0,

and

lim
ν

π∗∗
n+1M

ν = π∗∗
n+1in+1(hn−1)− lim

ν
π∗∗
n+1f

ν

= π∗∗
n+1(in−1(hn−1)) = in(πn+1(hn−1)).

Thus, (Mν) is the desired net, cf., [4].

The proof of the implication (ii) ⇒ (i) is divided into two steps.

Step 1. For an arbitrary unital Banach A-bimodule V , we construct
a net (P ν : Cn−1(A, V ∗) → Cn−1(A, V ∗)) of bounded linear operators
which satisfies the following conditions:

(a) for each (a1, . . . , an) ∈ An, we have limν δP
ν(a1, . . . , an) = 0;

and

(b) for each f ∈ Zn−1(A, V ∗), and for each (b1, . . . , bn−1) ∈ An−1,
we have f(b1, . . . , bn−1) = limν P

νf(b1, . . . , bn−1).

For a cochain f ∈ Cn−1(A, V ∗), we follow [4, page 273] to define an
(n+ 1)-cochain Ff ∈ Cn+1(A, V ∗) by

Ff (a1, . . . , an+1) = a1 · (f(a2, . . . , an)) · an+1,(2.7)

(a1, . . . , an+1) ∈ An+1.

For v ∈ V , let F v
f ∈ Cn+1(A)

∗ be the element defined by

(2.8) (F v
f )(a1 ⊗ · · · ⊗ an+1) = ⟨Ff (a1, . . . , an+1), v⟩.

For each a ∈ A and for each v ∈ V , we have the equalities:

(2.9) F a·v
f = a · F v

f , F v·a
f = F v

f · a.

The operator P ν : Cn−1(A, V ∗) → Cn−1(A, V ∗) is then defined by

(2.10) ⟨P ν(f)(a1, . . . , an−1), v⟩ = ⟨Mν(a1, . . . , an−1), F
v
f ⟩, v ∈ V.
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We verify that (P ν) satisfies conditions (a) and (b). Direct computation
using (2.9) reveals

(2.11) ⟨δP ν(f)(a1, . . . , an), v⟩ = ⟨δMν(a1, . . . , an), F
v
f ⟩

for each (a1, . . . , an) ∈ An, v ∈ V . It follows from this that

|⟨δP ν(f)(a1, . . . , an), v⟩| ≤ ∥δMν(a1, . . . , an)∥Cn+1(A)∗∗

· ∥F v
f ∥Cn+1(A)∗

≤ ∥δMν(a1, . . . , an)∥Cn+1(A)∗∗

· ∥f∥Cn−1(A,V ∗) · ∥v∥V ,

where we use (2.7), (2.8) and (1.1) for the second inequality. This and
condition (ii) (a) of the hypothesis imply:

lim
ν

∥δP ν(f)(a1, . . . , an)∥V ∗

≤ ∥f∥Cn−1(A,V ∗)

(
lim
ν

∥δMν(a1, . . . , an)∥Cn+1(A)∗∗

)
= 0,

and hence, condition (a) follows. For condition (b), we introduce
another cochain Gf ∈ Cn(A, V ∗) by

(2.12) Gf (a1, . . . , an) = f(a1, . . . , an−1) · an, (a1, . . . , an) ∈ An.

For each v ∈ V , let Gv
f ∈ Cn+1(A)

∗ be the element given by

Gv
f (a1, . . . , an) = ⟨Gf (a1, . . . , an), v⟩.

Take a cocycle f ∈ Zn−1(A,Cn+1(A)
∗∗). As in [4, page 274], we obtain

(2.13) F v
f = π∗

n+1G
v
f

by making use of the cocycle condition (δf)(a1, . . . , an) = 0. Then, we
have

⟨P ν(f)(a1, . . . , an−1), v⟩ = ⟨Mν(a1, . . . , an−1), F
v
f ⟩(2.14)

= ⟨π∗∗
n+1M

ν(a1, . . . , an−1), G
v
f ⟩.

Since V is a unital module, we may use the cocycle condition

(δf)(e, a1, . . . , an−1) = 0

to obtain the equality
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(2.15)
n−2∑
i=1

(−1)i+1f(e, a1, . . . , aiai+1, . . . , an−1)

+ (−1)nf(e, a1, . . . , an−2) · an−1 = 0

for each (a1, . . . , an−1) ∈ An−1. Combining (2.15) with Lemma 2.8, we
have

Gf (πn+1(hn−1)(a1, . . . , an−1))

= Gf (δhn−2(a1, . . . , an−1))

= Gf (a1, . . . an−1, e) +

n−2∑
i=1

(−1)iGf (a1, . . . , aiai+1, . . . an−1)

+ (−1)n−1Gf (e, a1, . . . , an−1)

= f(a1, . . . , an−1) +
n−2∑
i=1

(−1)if(e, a1, . . . , aiai+1, . . . , an−1)

+ (−1)n−1f(e, a1, . . . , an−2) · an−1

= f(a1, . . . , an−1) (by (2.15)).

In other words, ⟨Gf , πn+1(hn−1)⟩ = f , and thus,

⟨inπn+1(hn−1), Gf ⟩ = ⟨π∗∗
n+1in+1(hn−1), Gf ⟩ (by (2.5))(2.16)

= ⟨in+1(hn−1), π
∗
n+1Gf ⟩

= ⟨Gf , πn+1(hn−1)⟩ = f.

Using (2.10) and (2.16) we have, for b1, . . . , bn−1 ∈ A,

∥P ν(f)(b1, . . . , bn−1)− f(b1, . . . , bn−1)∥V ∗

= ∥⟨π∗∗
n+1M

ν(b1, . . . , bn−1)

− in+1(πn+1(hn−1(b1, . . . , bn−1))), Gf ⟩∥V ∗

≤ ∥π∗∗
n+1M

ν(b1, . . . , bn−1)

− in+1(πn+1(hn−1(b1, . . . , bn−1)))∥Cn+1(A)∗∗∥Gf∥Cn+1(A)∗ .

By condition (ii) (b) of the hypothesis, the last term converges to 0 and

lim
ν

P ν(f)(b1, . . . , bn−1) = f(b1, . . . , bn−1), (b1, . . . , bn−1) ∈ An−1.

Thus, we obtain condition (b).
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Step 2. In order to prove H
n
(A,X∗)pt = 0, the standard reduction

[18, page 12] allows us to assume that the Banach A-bimodule X
is unital. We take the composition of the linear isomorphisms of
Lemma 1.2:

ω = Ψ ◦ Φ : Cn(A,X∗) −→ Cn−1(A,L(A,X∗)) −→ Cn−1(A, (A ⊗̂X)∗)

⟨ω(f)(a1, . . . , an−1), a⊗ x⟩ = ⟨f(a1, . . . , an−1, a), x⟩
f ∈ Cn(A,X∗), (a1, . . . , an−1) ∈ An−1, a⊗ x ∈ A ⊗̂X.

The map ω is an A-bimodule isomorphism where the A-bimodule
structure of (A ⊗̂X)∗ is given by

⟨a · ξ · b, c⊗ x⟩ = ⟨ξ, b · c⊗ x · a⟩ − ⟨ξ, b⊗ c · x · a⟩

for a, b ∈ A, ξ ∈ (A ⊗̂X)∗, c ⊗ x ∈ A ⊗̂X so that the isometry
Ψ is an A-module isomorphism (see the beginning of the proof of
Theorem 2.2). We apply Step 1 to V = A ⊗̂X and obtain a net (P ν :
Cn−1(A, (A ⊗̂X)∗) → Cn−1(A, (A ⊗̂X)∗))ν , satisfying conditions (a)
and (b).

For each f ∈ Zn(A,X∗) we have ω(f) ∈ Zn−1(A, (A ⊗̂X)∗). From
condition (b), we see

ω(f)(a1, . . . , an−1) = lim
ν

P ν(f)(a1, . . . , an−1)

= lim
ν
⟨Mν(a1, . . . , an−1), Fω(f)⟩

for (a1, . . . , an−1) ∈ An−1. For a ∈ A, define ε(a) : (A ⊗̂X)∗ → X∗ by

⟨ε(a)(γ), x⟩ = ⟨γ, a⊗ x⟩

for γ ∈ (A ⊗̂X)∗, x ∈ X. We follow the computation of [4, page 275]
to have:

f(a1, . . . , an) = lim
ν

ε(an)(⟨Mν(a1, . . . , an−1), Fω(f)⟩)(2.17)

= lim
ν
⟨Mν(a1, . . . , an−1), ε(an) ◦ Fω(f)⟩.

Let Kf ∈ Cn+1(A,X∗) be the cochain defined by

Kf (a1, . . . , an+1) = a1 · (f(a2, . . . , an+1)), (a1, . . . , an+1) ∈ An+1,

and, for v ∈ X, let Kv
f be the element of Cn+1(A)

∗∗ given by

Kv
f (a1, . . . , an+1) = ⟨Kf (a1, . . . , an+1), v⟩.



CONTINUOUS HOCHSCHILD COHOMOLOGY 115

We obtain, as in [4, page 275], that

ε(an) ◦ Fω(f)(b1, . . . , bn+1)(2.18)

= (an ·Kf )(b1, . . . , bn+1)−Kf (b1, . . . , bn+1) · an,
(b1, . . . , bn+1) ∈ An+1.

Using (2.18), we obtain from (2.17)

f(a1, . . . , an) = lim
ν

{
⟨Mν(a1, . . . , an−1), an ·Kf ⟩(2.19)

− ⟨Mν(a1, . . . , an−1),Kf · an⟩
}

= lim
ν

{
⟨Mν(a1, . . . , an−1) · an,Kf ⟩

− ⟨Mν(a1, . . . , an−1),Kf ⟩ · an
}
.

Let gνf ∈ Cn−1(A,X∗) be the cochain defined by

⟨gνf (a1, . . . , an−1), v⟩ = ⟨Mν(a1, . . . , an−1),K
v
f ⟩,

v ∈ X, (a1, . . . , an−1) ∈ An−1.

In what follows, we compare (−1)nf with δgν . First, it follows directly
from the definition that

Kv·a
f = Kv

f · a, v ∈ X, a ∈ A,

from which we conclude

(2.20) a1 · ⟨Mν(a2, . . . , an),Kf ⟩ = ⟨a1 ·Mν(a2, . . . , an),Kf ⟩.

Using (2.20) with the coboundary formula:

(δMν)(a1, . . . , an) = a1 · (Mν(a2, . . . , an))

+

n−1∑
i=1

(−1)iMν(a1, . . . , aiai+1, . . . , an)

+ (−1)nMν(a1, . . . , an−1) · an,

we obtain, as in [22, page 276],

(−1)nf(a1, . . . , an)

= lim
ν
⟨(δMν)(a1, . . . , an),Kf ⟩
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− lim
ν

{
a1 · ⟨Mν(a2, . . . , an),Kf ⟩

+
n−1∑
i=1

(−1)i⟨Mν(a1, . . . , aiai+1, . . . , an),Kf ⟩

+ (−1)n⟨Mν(a1, . . . , an−1),Kf ⟩ · an
}

= lim
ν
⟨(δMν)(a1, . . . , an),Kf ⟩ − lim

ν
δgν(a1, . . . , an)

= − lim
ν

δgν(a1, . . . , an).

Therefore, f ∈ B
n
(A,X∗)pt. This proves H

n
(A,X∗)pt = 0. �

For the proof of equivalence (i) ⇔ (iii), we follow the argument [22,
Theorem 4.2] with the aid of [23, Theorem 3.1].

Lemma 2.9 ([23, Theorem 3.1]). Let A be a unital Banach algebra.
For n ≥ 1, there exists a cochain Z ∈ Cn−1(A,Cn+2(A)

∗∗) such that

π∗∗
n+2((δZ)(a1, . . . , an)− e⊗ a1 ⊗ · · · ⊗ an−1 ⊗ e⊗ an) = 0,

for each (a1, . . . , an) ∈ An.

For F ∈ Ck(A)
∗∗ and a ∈ A, let F ⊗ a ∈ Ck+1(A)

∗∗ be the element
defined by

⟨F ⊗ a, ξ⟩ = ⟨F, γa,ξ⟩, ξ ∈ Ck(A)
∗,

where γa,ξ ∈ Ck(A)
∗ is the element given by

⟨w, γa,ξ⟩ = ⟨w ⊗ a, ξ⟩, w ∈ Ck(A).

For a cochain N ∈ Cn(A,Cn+2(A)
∗∗) and a ∈ A, let N ⊗ a ∈

Cn(A,Cn+3(A)
∗∗) be the cochain defined by

(N ⊗ a)(a1, . . . , an) = N(a1, . . . , an)⊗ a

for (a1, . . . , an) ∈ An.

Lemma 2.10 (cf. [22, Proposition 4.1]). Let n ≥ 1, and let (Nν) be
a net in Cn−1(A,Cn+1(A)

∗∗) satisfying conditions (ii) (a) and (ii) (b)
of Theorem 2.7. Then, we have the equality

lim
ν

π∗∗
n+2

{
δ(Nν ⊗ e)(a1, . . . , an) + (−1)nin+2(e⊗ a1 ⊗ · · · ⊗ an ⊗ e)

}
= (−1)nin+1(πn+2(e⊗ a1 ⊗ · · · an−1 ⊗ e⊗ an))

for each (a1, . . . , an) ∈ An.
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Proof. The net (Nν)ν ⊂ Cn−1(A,Cn+1(A)
∗∗) satisfies the following

conditions:

(i) limν(δN
ν)(a1, . . . , an) = 0 for each (a1, . . . , an) ∈ An;

(ii) limν π
∗∗
n+1N

ν(b1, . . . , bn−1) = πn+1(e⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ e) for
each b1, . . . , bn−1 ∈ A.

As in [22, Proposition 4.1 (4.1)], we have

δ(Nν ⊗ e)(a1, . . . , an) = (δNν)(a1, . . . , an)⊗ e

+ (−1)n+1Nν(a1, . . . , an−1) · an ⊗ e+ (−1)nNν(a1, . . . , an−1)⊗ an.

By direct computation, we obtain

γa,π∗
n+2ξ

= π∗
n+1γa,ξ + (−1)na · ξ, a ∈ A, ξ ∈ Cn+1(A)

∗.

It then follows that

π∗∗
n+2(L⊗ a) = (π∗∗

n+1L)⊗ a+ (−1)nL · a,(2.21)

L ∈ Cn+1(A)
∗∗, a ∈ A.

Applying (2.21) and using that π∗∗
n+1 is an A-module homomorphism,

we obtain

π∗∗
n+2(N

ν(a1, . . . , an−1) · an ⊗ e)

(2.22)

= π∗∗
n+1(N

ν(a1, . . . , an−1) · an)⊗ e+ (−1)nNν(a1, . . . , an−1) · an
= π∗∗

n+1(N
ν(a1, . . . , an−1)) · an ⊗ e+ (−1)nNν(a1, . . . , an−1) · an.

We use (2.21) to obtain

(2.23) π∗∗
n+2(N

ν(a1, . . . , an−1)⊗ an)

= π∗∗
n+1(N

ν(a1, . . . , an−1))⊗ an + (−1)nNν(a1, . . . , an−1) · an.

Then, by (2.22) and (2.23), we have

π∗∗
n+2(δ(N

ν ⊗ e))(a1, . . . , an)

= π∗∗
n+2((δN

ν)(a1, . . . , an)⊗ e)

+ (−1)n+1
{
π∗∗
n+1(N

ν(a1, . . . , an−1)) · an
⊗ e− π∗∗

n+1(N
ν(a1, . . . , an−1))⊗ an

}
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for each (a1, . . . , an) ∈ An. Taking the limit and using condition (a),
we have

(−1)n+1 lim
ν

π∗∗
n+2(δ(N

ν ⊗ e)(a1, . . . , an))(2.24)

= lim
ν

{
π∗∗
n+1(N

ν(a1, . . . , an−1) · an ⊗ e)

− π∗∗
n+1(N

ν(a1, . . . , an−1))⊗ an)
}

= inπn+1(e⊗a1⊗· · ·⊗an−1⊗e)

·an⊗e−inπn+1(e⊗a1⊗· · ·⊗an−1⊗e)⊗an.

We carry out the same computation as that in [22, Proposition 4.1] to
see that the last term of (2.24) is equal to:

(2.25) in+1πn+2(e⊗ a1 ⊗ · · · ⊗ an ⊗ e)

− in+1(πn(e⊗ a1 ⊗ · · · ⊗ an−1)⊗ e⊗ an).

On the other hand, we see by direct computation:

(2.26) πn+2(e⊗ a1 ⊗ · · · ⊗ an−1 ⊗ e⊗ an)

= πn(e⊗ a1 ⊗ · · · ⊗ an−1)⊗ e⊗ an.

Using (2.26) in (2.25), we obtain the following:

lim
ν

π∗∗
n+2(δ(N

ν ⊗ e)(a1, . . . , an))

= (−1)n+1
{
in+1πn+2(e⊗ a1 ⊗ · · · ⊗ an ⊗ e)

− in+1(πn+2(e⊗ a1 ⊗ · · · ⊗ an−1 ⊗ e⊗ an))
}
,

which completes the proof of Lemma 2.10. �

Proof of Theorem 2.7.

(i) ⇔ (iii). Assume first that A is approximately n-amenable. By
equivalence (i) ⇔ (ii), we may choose a net (Mν)ν in Cn−1(A,Cn+1

(A)∗∗) such that, for each (a1, . . . , an) ∈ An, (b1, . . . , bn−1) ∈ An−1, we
have

(i) limν δN
ν(a1, . . . , an) = 0; and

(ii) limν π
∗∗
n+1N

ν(b1, . . . , bn−1) = in(πn+1(e⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ e)).

Let Z ∈ Cn−1(A,Cn+2(A)∗∗) be the cochain as in Lemma 2.9:

(2.27) π∗∗
n+2((δZ)(a1, . . . , an)− e⊗ a1 ⊗ · · · ⊗ an−1 ⊗ e⊗ an) = 0.
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Let W ν = (−1)n+1Nν ⊗ e + Z ∈ Cn−1(A,Cn+2(A)
∗∗), and let Lν =

δW ν ∈ Bn(A,Cn+2(A)
∗∗). We show that (Lν) is the desired net. It

suffices to verify condition (iii) (b). We use Lemma 2.10 and (2.27) to
obtain

lim
ν

π∗∗
n+2L

ν(b1, . . . , bn)

= (−1)n+1 lim
ν

π∗∗
n+2δ(N

ν ⊗ e)(b1, . . . , bn) + π∗∗
n+2(δZ)(b1, . . . , bn)

= πn+2(e⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ e⊗ bn),

for each (b1, . . . , bn) ∈ An. This verifies condition (iii) (b) and proves
statement (iii).

Conversely, assume that there exists a net (Nν)ν ∈Cn(A,Cn+2(A)
∗∗)

such that

(iii) there exists a cochain W ν ∈ Cn−1(A,Cn+2(A)
∗∗) such that

lim
ν

Nν(a1, . . . , an) = lim
ν

δW ν(a1, . . . , an)

for each a1, . . . , an ∈ A; and

(iv) limν π
∗∗
n+1N

ν(b1, . . . , bn) = in(πn+2(e ⊗ b1 ⊗ · · · ⊗ bn ⊗ e)) for
each (b1, . . . , bn) ∈ An.

By the continuity of π∗∗
n+2, (iii) and (iv) imply

(2.28) lim
ν

π∗∗
n+2(δW

µ)(b1, . . . , bn) = in(πn+2(e⊗ b1 ⊗ · · · ⊗ bn ⊗ e))

for each (b1, . . . , bn)∈An. Recall the cochain hn−1∈Cn−1(A,Cn+1(A)
∗∗)

from (2.6). By Lemma 2.8, we have

(2.29) δ(hn−1) = πn+2(hn).

Let V ν ∈ Cn−1(A,Cn+1(A)
∗∗) be the cochain defined by

V ν(a1, . . . , an−1) = −π∗∗
n+2(W

ν(a1, . . . , an−1))

+ in+1(hn−1(a1, . . . , an−1)), (a1, . . . , an) ∈ An.

We have from (2.28) and (2.29)

lim
ν
(δV ν)(a1, . . . , an) = − lim

ν
π∗∗
n+2(δW

ν)(a1, . . . , an)

+ in+1(δ(hn−1)(a1, . . . , an)) = 0
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for each (a1, . . . , an) ∈ An. Also, we have, using π∗∗
n+1 ◦ π∗∗

n+2 = 0,

lim
ν

π∗∗
n+1V

ν(a1, . . . , an−1) = πn+1hn−1(a1, . . . , an−1)

= in(πn+1(e⊗ a1 ⊗ · · · ⊗ an−1 ⊗ e)).

Therefore, again by equivalence (i) ⇔ (ii), we see that A is approxi-
mately n-amenable. This completes the proof of Theorem 2.7. �

In a similar manner, we can prove the following theorem.

Theorem 2.11. Let A be a Banach algebra with unit e. For n ≥ 1,
the following conditions are equivalent.

(i) H
n
(A,X)pt = 0 for each Banach A-bimodule X;

(ii) there exists a net (Lν)ν in Cn−1(A,Cn+1(A)) such that, for each
(a1, . . . , an) ∈ An and for each (b1, . . . , bn−1) ∈ An−1, we have

(a) limν ∥δLν(a1, . . . , an)∥Cn+1(A) = 0; and

(b) limν ∥πn+1L
ν(b1, . . . , bn−1)−πn+1(e⊗b1⊗· · ·⊗bn−1⊗e)∥Cn+1(A)

= 0.

For n = 1, conditions (ii) (a) and (ii) (b) reduce to approximate
contractibility in the sense of Ghahramani and Loy [5, Definition 1.3].
It is proven in [7, Theorem 2.1] that approximate contractibility is
equivalent to approximate amenability. It is natural to ask whether
the same equivalence holds for n ≥ 2. If the space Cn−1(A,Cn+1(A))
is weak*-dense in the space Cn−1(A,Cn+1(A)

∗∗), then the proof of
[7, Theorem 2.1] works to prove the desired equivalence. The general
case is unknown to the author. Note that Cn+1(A) is weak*-dense in
Cn+1(A)

∗∗ by the Goldstein theorem.

Sketch of proof. The proof of Theorem 2.11 is almost identical to
that of equivalence (i) ⇔ (ii) of Theorem 2.7. For the proof of
implication (ii) ⇒ (i), we define, for a Banach A-bimodule V , a net

(P̃ ν) of bounded linear operators Cn−1(A, V ) → Cn−1(A, V ), which
satisfies:

(ã) for each (a1, . . . , an) ∈ An, we have limν δP̃
ν(a1, . . . , an) = 0;

and
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(b̃) for each f ∈ Zn−1(A, V ), and for each (b1, . . . , bn−1) ∈ An−1,

we have f(b1, . . . , bn−1) = limν P̃
νf(b1, . . . , bn−1).

For a cochain f ∈ Cn−1(A, V ), we define a cochain F̃f ∈ Cn+1(A, V )

by the same formula as that of (2.7): F̃f (a1, . . . , an+1) = a1 ·
(f(a2, . . . , an)) · an+1. For a net (Lν) in Cn−1(A,Cn+1(A)) we define

P̃ ν : Cn−1(A,Cn+1(A)) → Cn−1(A,Cn+1(A)) by

P̃ ν(f)(a1, . . . , an−1) = F̃f (L
ν(a1, . . . , an−1)),

f ∈ Cn−1(A,Cn+1(A)), (a1, . . . , an−1) ∈ An−1.

We may proceed in the same way as that of Step 1 in Theorem 2.7,

by replacing P ν with P̃ ν . A cocyle G̃f ∈ Cn(A, V ) is defined in a

similar manner to (2.12) so that P̃ ν(f) = G̃f ◦ πn+1 ◦ Lν . Using these

cocycles, we can show that P̃ ν(f) satisfies conditions (ã) and (b̃). A
similar modification enables us to carry out the same proof as that of
Step 2 in Theorem 2.7 to derive the desired conclusion. We omit the
details. �

3. Alternating cocycles in Lipschitz algebras. A complex-
valued function f : K → C defined on a compact metric space (K, d) is
called a Lipschitz function if the Lipschitz constant L(f) of f is finite:

L(f) := sup

{
|f(x)− f(y)|

d(x, y)

∣∣∣x, y ∈ X, x ̸= y

}
< ∞.

The Lipschitz algebra, the Banach algebra of all Lipschitz functions
over (K, d) with the pointwise addition/multiplication, with the norm
defined by

∥f∥L = sup
p∈K

|f(p)|+ L(f), f ∈ LipK,

is denoted by LipK. The little Lipschitz algebra lipK is the subalgebra
of LipK, defined by

lipK =

{
f ∈ LipK

∣∣∣ lim
d(x,y)→0

f(x)− f(y)

d(x, y)
= 0

}
.

The amenability of LipK and lipK have been studied in [1, 3, 13,
18, 25], etc. For an infinite compact metric space K, LipK is not
amenable [13, 25], and lipK is not approximately amenable [3]. Here,

we improve a result of [19] by proving dimC H
n
(LipK, (LipK)∗)pt =
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∞ for each n ≥ 1 if K is a compact metric space which has the
property (seq) at a point of K (see definition below). In particular,
LipK for such a space K is not approximately amenable. As in
[19], we construct alternating cocyles [18] which remain non-trivial

in H
n
(LipK, (LipK)∗)pt.

The symmetric group Sn acts on the space of n-cochains Cn(A,X)
of a Banach algebra A and its bimodule X by

(σ · f)(a1, . . . , an) = f(aσ(1), . . . , aσ(n)),

σ ∈ Sn, f ∈ Cn(A,X), (a1, . . . , an) ∈ An.

Definition 3.1 ([18]). A cochain f ∈ Cn(A,X) is said to be alternat-
ing if

f(aσ(1), . . . , aσ(n)) = (sgn σ)f(a1, . . . an), (a1, . . . , an) ∈ An,

for each σ ∈ Sn, where sgn σ denotes the signature of σ ∈ Sn.
The space of all alternating n-cochains is denoted by Cn

alt(A,X). In
addition, let Zn

alt(A,X) := Zn(A,X) ∩ Cn
alt(A,X) be the space of all

alternating cocycles.

The following is an analogue of [18, Proposition 2.9]. An A-bi-
module X of a Banach algebra A is said to be symmetric if a ·x = x · a
for each (a, x) ∈ A×X.

Proposition 3.2. Let A be a commutative Banach algebra, and let X
be a symmetric Banach A-bimodule. Let qn : Zn(A,X) → H

n
(A,X)pt

be the projection of the space of n-cocycles onto H
n
(A,X)pt. Then, the

restriction qn|Zn
alt(A,X) is injective.

We follow the proof of Johnson [18, Theorem 2.9]. For a cochain
f ∈ Cn(A,X), let znf ∈ Cn

alt(A,X) be the cochain defined by

(znf)(a1, . . . , an) =
1

n!

∑
σ∈Sn

(sgn σ)f(aσ(1), . . . , aσ(n)),

(a1, . . . , an) ∈ An.

Then, we have the next lemma by direct computation:
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Lemma 3.3 ([18, Theorem 2.9]). Let A be a commutative Banach
algebra, and let X be a symmetric Banach A-bimodule.

(i) For each σ ∈ Sn we have:

σ(znf) = zn(σf) = (sgn σ)znf

for each f ∈ Cn(A,X). In particular, znf is alternating.

(ii) A cochain f ∈ Cn(A,X) is alternating if and only if znf = f .

Lemma 3.4 ([18, Proof of Theorem 2.9]). Let f ∈ Cn−1(A,X) be an
(n− 1)-cochain. Then, we have zn(δf) = 0.

Proof. By the coboundary formula, we have

(δf)(a1, . . . an) = a1 · f(a2, . . . an)

+

n−1∑
i=1

(−1)if(a1, . . . , aiai+1, . . . an)(3.1)

+ (−1)nf(a1, . . . , an) · an

for f ∈ Cn(A,X) and (a1, . . . an+1) ∈ An+1. Let Kf be the (n + 1)-
cochain, defined by

Kf (a1, . . . , an) = a1 · (f(a2, . . . , an)), (a1, . . . , an) ∈ An.

Let τ = (n, n − 1, . . . , 2, 1) be the cyclic permutation n 7→ n − 1, . . . ,
2 7→ 1, 1 7→ n which has the signature (−1)n+1. Since X is a symmetric
A-bimodule, we see

(3.2) a1 · (f(a2, . . . , an)) + (−1)nf(a1, . . . , an−1) · an
= (Kf + (−1)n(τKf ))(a1, . . . , an).

and thus, by Lemma 3.3 (i), we have

(3.3) (zn(Kf + (−1)nτKf ))(a1, . . . , an)

= (zn + (−1)2n+1zn)Kf (a1, . . . , an) = 0.

For i = 1, . . . , n − 1, let U i
f (a1, . . . , an) = f(a1, . . . , aiai+1, . . . , an),

and let σi = (i, i + 1) be the transposition of i and i + 1. Since A is
commutative, we see that σiU

i
f = U i

f . Using Lemma 3.3 (ii), we have
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znU
i
f = zn(σiU

i
f ) = (sgn σi)znU

i
f = −znU

i
f . Thus, we obtain

(3.4) znU
i
f = 0.

By (3.3) and (3.4), we conclude that

zn(δf) = zn(Kf + (−1)nKf ) +
n−1∑
i=1

(−1)iznU
f
i = 0. �

Proof of Proposition 3.2. Our proof follows that of [18, Theorem 2.9].
Take an alternating cocycle f ∈ Zn

alt(A,X), and assume that there ex-
ists a net (gν)ν in Cn−1(A,X) such that f(a1, . . . , an) = limν(δg

ν)(a1,
. . . , an) for each (a1, . . . , an) ∈ An. By Lemma 3.4, we see

(znf)(a1, . . . , an) = lim
ν
(zn(δg

ν))(a1, . . . , an) = 0.

Since f is alternating, we have f = znf by Lemma 3.3 (i), and hence,
f = 0. �

We say that a sequence {rn | n ≥ 1} on the real line R has
Property (♯) if limn rn = 0, and it satisfies the following two conditions:

(s) (i) r1 > r2 > · · · > rn > rn+1 > · · · → 0,

(s) (ii) |r1 − r2| > |r2 − r3| > · · · > |rn − rn+1| > |rn+1 − rn+2| >
· · · → 0.

A metric space (K, d) is said to have the property (seq) at a point p ∈ K
if there exists an isometric embedding α : {rn | n ≥ 1} ∪ {0} → K of a
sequence {rn | n ≥ 1} with Property (♯) such that α(0) = p. Riemann-
ian manifolds and the Cantor ternary set in [0, 1] ⊂ R are examples
of metric spaces with the property (seq) at some points. In [19], we
proved that, for each compact metric space K with the property (seq),
dimC Hn(LipK,Cp) = ∞ and dimC Hn(LipK, (LipK)∗) = ∞ by apply-
ing [18, Proposition 2.9]. Here, Cp denotes the complex number field
which is a Banach Lip(K)-bimodule with the module structure:

f · z = z · f = f(p)z, f ∈ LipK, z ∈ C.

The result may be improved as follows, by replacing [18, Proposi-
tion 2.9] with Proposition 3.2.



CONTINUOUS HOCHSCHILD COHOMOLOGY 125

Theorem 3.5. Let (X, d) be a compact metric space with the property
(seq) at a point p. Then, we have

dimC H
n
(LipK,Cp)pt = ∞,

and

dimC H
n
(LipK, (LipK)∗)pt = ∞.

Proof. It is shown in [19, Theorem 3.5] that dimC Zn
alt(LipK,Cp) =

∞, and also, there exists an injection

E♯ : Z
n
alt(LipK,Cp) −→ Zn

alt(LipK, (LipK)∗).

By Proposition 3.2, the natural projection

qn : Zn
alt(LipK, (LipK)∗) −→ H

n
(LipK, (LipK)∗)pt

is injective. Hence, the composition qn ◦E♯ injects Z
n
alt(LipK,Cp) into

H
n
(LipK, (LipK)∗)pt. Thus, the conclusion follows. �

It is not currently known whether there exists an infinite compact
metric space K such that dimC Hn(LipK,Cp) < ∞ for some n ≥ 1 and
for a point p ∈ K. Likewise, it is unknown whether there exists a space
L such that dimC H

n
(LipL,Cq)pt < ∞ for some n ≥ 1 and for a point

q ∈ L.

In addition, at the time of this writing, it is unknown whether the
present cohomology H

n
(A,X)pt is well behaved so that the machinery

of homological algebra is applicable. For example, we do not know
whether cohomology long exact sequence is available in its full gener-
ality (cf., [20, Example 1.19]). It seems that an additional argument
might be required in order to complete the proof of [24, Theorem 3.5].
Also, tensor products of approximately amenable algebras need not be
approximately amenable [6], which suggests that the Künneth formula
[14] might not hold in general.
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