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ON THE STABILITY OF TWO NEURON
POPULATIONS INTERACTING WITH EACH OTHER

BERRAK ÖZGÜR AND ALİ DEMİR

ABSTRACT. In this study, we deal with stability for the
linearized neural field model for two neuron populations. We
determine the asymptotic stability region by using the D-
subdivision method for different delay terms including time
delays. Also, we find the number of unstable characteristic
exponents for the unstable regions. We observe that the
stability region for the model becomes smaller as the delay
term τ increases.

1. Introduction. Neural field models are used to model the brain
activity at the level of neural tissue. Mathematically, they show the
activity of neural populations consisting of infinitely many neurons.
Neural field models are represented by using nonlocal integral or integro
differential equations. Due to the finite speed of propagation of an
action potential and the time for release of the neurotransmitter, delay
terms are added in these models.

Studies about the neural field models made by Wilson and Cowan
[13] and Amari [1] have an important role in the literature. Various
techniques are used to perform the stability analysis of these models
and to study the existence and uniqueness of their solutions. Stability
changes of the model are studied by using some numerical methods in
[2, 5], a center manifold result is given, and the effect of the delay is
considered on the qualitative changes for the model in [11], while the
effect of an added delay term is studied in [3, 4, 6, 9, 10, 12].

In this study, we are interested in the stability of a neural field
model for two neuron populations. We find the asymptotic stability
region for this model. We also investigate the change on stability for
different delay terms τ .
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2. Stability analysis. The neural field model for the p neural
population on the space Ω ⊂ Rd, which presents the dynamics of mean
membrane potential, is given in [11, 12] as
(2.1)(

d

dt
+ li

)
Vi(t, r) =

p∑
j=1

∫
Ω

Jij(r, r)S[σj(Vj(t− τij(r, r), r)− hj)] dr

+ Iexti (r, t), t ≥ 0, 1 ≤ i ≤ p,

Vi(t, r) = ϕi(t, r), t ∈ [−τmax, 0].

Here, we study the model for two neuron populations (p = 2),
which is defined on a finite piece of cortex Ω ⊂ R. We consider
the case when nearby neurons inhibit each other (recurrent inhibition)
while more distant neurons excite each other (lateral excitation), i.e.,
J11(x, y) = J22(x, y) = 0. For this model,

x, y ∈
[
−π

2
,
π

2

]
,

and the boundary conditions are periodic. The functions V1(x, t) and
V2(x, t) describe the synaptic inputs for a large group of neurons at
position x and time t, and the time derivatives of these functions are
given by

d

dt
V1(x, t) and

d

dt
V2(x, t).

The function S is a sigmoid function, which is a differentiable and
monotonic activation function, playing an important role in the neural
field models. The synaptic connectivity function Jij(x, y) is an even
function which is π periodic. Here, J12(x, y) describes how neurons in
the second neural population at position y affect the neurons in the first
population at position x, and J21(x, y) describes how neurons in the
first neural population at position y affect the neurons in the second
population at position x. The stability of the solutions of this model
can be determined by linearizing (2.1) about (0, 0) and using the D-
subdivision method. Here, we define the synaptic inputs for a large
group of neurons at position x and time t by functions U1(x, t) and
U2(x, t) for the linearized system. Hence, the system is the following:
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(2.2)

d

dt
U1(x, t) + l1U1(x, t) = σ2s1

π/2∫
−π/2

J12(x, y)U2(y, t− τ12(x− y)) dy,

d

dt
U2(x, t) + l2U2(x, t) = σ1s1

π/2∫
−π/2

J21(x, y)U1(y, t− τ21(x− y)) dy.

For simplicity, we take K1 = σ1s1, K2 = σ2s1. The delay terms
show the propagation delay for the first and second populations. We
assume τ(x−y) = τ , a constant delay. In order to find the characteristic
equation, we take

U1(x, t) = u1(t)e
ikx = c1e

λteikx,

and

U2(x, t) = u2(t)e
ikx = c2e

λteikx;

hence, we obtain

λeikxu1(t) + l1e
ikxu1(t)−K2e

−λτu2(t)

π/2∫
−π/2

J12(x, y)e
ikydy = 0,

λeikxu2(t) + l2e
ikxu2(t)−K1e

−λτu1(t)

π/2∫
−π/2

J21(x, y)e
ikydy = 0.

For x = 0, the system of equations becomes

(2.3)
λu1(t) + l1u1(t)−K2u2(t)e

−λτF1 = 0,

λu2(t) + l2u2(t)−K1u1(t)e
−λτF2 = 0,

where

F1 =

π/2∫
−π/2

J12(x, y)e
ikydy and F2 =

π/2∫
−π/2

J21(x, y)e
ikydy.
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Hence, the characteristic values λ satisfy the equation

(2.4) λ2 + λl2 + λl1 + l1l2 −K1K2e
−2λτF1F2 = 0.

Writing λ = µ+ iν in (2.4), then, for the real and imaginary parts,
we have

Re : µ2 − ν2 + µl2 + µl1 + l1l2 −K1K2e
−2µτ cos(2τν)F1F2 = 0,(2.5)

Im : 2µν + νl2 + νl1 +K1K2e
−2µτ sin(2τν)F1F2 = 0.(2.6)

To obtain the D-curves, we take µ = 0, and then we have

P (ν, l1,K) = −ν2 + l1l2 −K1K2 cos(2τν)F1F2 = 0,(2.7)

R(ν, l1,K) = νl2 + νl1 +K1K2 sin(2τν)F1F2 = 0.(2.8)

Since we choose the parameter space (l1,K1), we have the following
expressions for F1F2K2 ̸= 0

(2.9)

l1 =
ν2 sin(2τν)− νl2 cos(2τν)

l2 sin(2τν) + ν cos(2τν)
,

K1 =
−νl22 − ν3

l2K2 sin(2τν)F1F2 + νK2 cos(2τν)F1F2
,

as the boundaries of D regions. In addition, we have the singular line

(2.10) l2l1 −K2F1F2K1 = 0

for ν = 0 as a boundary of D regions.

In order to determine the asymptotic stability region of this model,
we use the properties of D-curves. It is obvious from (2.9) that
l2 sin(2τν) + ν cos(2τν) ̸= 0. Hence, we need to determine the roots of
tan(2τν) = −ν/l2. Let α denote the least positive root of this equation.
The regions have been specified where the D-curves are sketched in the
following form:

I0 = (0, α), In =

(
α+

(n− 1)π

2τ
, α+

nπ

2τ

)
, n = 1, 2, . . . .

Lemma 2.1. The D-curves given in (2.9) do not intersect each other.
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Proof. Let 2τνa ∈ Ia, 2τνb ∈ Ib, a ̸= b. If we consider l1(2τνa) =
l1(2τνb) and K1(2τνa) = K1(2τνb) for the D-curves, we get νa = νb.
Hence, we conclude that the D-curves do not intersect each other. �

Lemma 2.2. The D-curves given in (2.9) intersect the line l1 = 0
only once. The K1 coordinates of the D-curves above the l1 axis are
increasing as n increases, and the K1 coordinates of the D-curves below
the l1 axis are decreasing as n increases.

Proof. For each 2τνn ∈ In , considering that l1 = 0, we obtain the
K1n coordinates as

K1n =
−ν2n

K2F1F2 cos(2τνn)
.

Hence, the K1n coordinates for the D-curves are uniquely determined.
The condition l1 = 0 yields

tan(2τν) =
l2
ν

> 0

since l2 > 0 in the model. When determining the sign of K1n coordi-
nates, the conditions sin(2τνn) > 0, cos(2τνn) > 0 and sin(2τνn) < 0,
cos(2τνn) < 0 must be satisfied. For the first curve C0,

2τν0 ∈
(
0,

π

4

)
,

and the sign for the K1 coordinate is negative. In a similar manner,
for the second curve C1,

2τν1 ∈
(
π

2
,
3π

4

)
,

and the sign for the K1 coordinate is positive. Hence, we conclude that
the K1 coordinates of the D-curves above the l1 axis are increasing as n
increases, and the K1 coordinates of the D-curves below the l1 axis are
decreasing as n increases. �

Lemma 2.3. The following limits are satisfied for the D-curves:

lim
2τν→α−

l1(2τν) = +∞, lim
2τν→α−

K1(2τν) = −∞,

lim
2τν→α+(2zπ−/2τ)

l1(2τν) = +∞, lim
2τν→α+(2zπ+/2τ)

l1(2τν) = −∞,
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lim
2τν→α+(2zπ−/2τ)

K1(2τν)=−∞, lim
2τν→α+(2zπ+/2τ)

K1(2τν)=+∞,

lim
2τν→α+((2z+1)π−/2τ)

l1(2τν)=+∞, lim
2τν→α+((2z+1)π+/2τ)

l1(2τν)=−∞,

lim
2τν→α+((2z+1)π+/2τ)

K1(2τν)=−∞, lim
2τν→α+((2z+1)π−/2τ)

K1(2τν)=+∞.

Proof. The proof follows from (2.9). �

Lemma 2.4. The only intersection point for the curve C0 and the
singular line C∗ is the limit point.

Proof.

lim
υ→0

l1(2τυ) =
−l2

2τ l2 + 1

lim
υ→0

K1(2τυ) =
−l22

K2F1F2(2τ l2 + 1)
.

Hence, the intersection point is(
−l2

2τ l2 + 1
,

−l22
K2F1F2(2τ l2 + 1)

)
. �

Now, we sketch the graph of D-curves for the parameters K2 = F1 =
F2 = l2 = 1, and we investigate the affect of the delay term τ on the
stability of system (2.2).

To find the number of characteristic exponents with positive real
parts, we use Stépán’s formula [7, 8]. We use the functions P (ν, l1,K1)
and R(ν, l1,K1) on the parameter space (l1,K1) and choose a point
B(l0,K0) in any subregion determined by the D-curves.

Let the positive real roots of P (ν, l0,K0) be ω = ρj , j = 1, . . . , s,
such that ρ1 ≥ · · · ≥ ρs, and let the nonnegative real roots of
R(ν, l0,K0) be ω = σi, i = 1, . . . , s such that σ1 ≥ · · · ≥ σs = 0.

If the dimension of (2.2) is even (d = 2m, m ∈ Z+), then the number
of characteristic roots with positive real parts in this subregion is given
by

(2.11) k = m+ (−1)m
s∑

j=1

(−1)j+1 sgn(R(ρj , l0,K0)).
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If the dimension of (2.2) is odd (d = 2m+1, m ∈ Z+), then the number
of characteristic roots with positive real parts in this subregion is given
by
(2.12)

k=m+
1

2
+(−1)m

[
1

2
(−1)s sgn(P (0, l0,K0)+

s−1∑
j=1

(−1)j sgn(P (σi, l0,K0))

]
.

In the graphs (Figures 1–3), the regions where k = 0 denote the
asymptotic stability regions.

Figure 1. The stability region for τ = 0.5.

Figure 2. The stability region for τ = 1.
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Figure 3. The stability region for τ = 2.

As the delay term τ increases, the stability region becomes smaller.
As a result, the delay term plays an important role in the stability of
the system.

Now, we give a theorem using the above four lemmas and the
graphics to define the asymptotic stability region.

Theorem 2.5. The asymptotic stability region of system (2.2) is
determined by

l1 >
−l2

2τ l2 + 1

and

−νl22 − ν3

l2K2 sin(2τν)F1F2 + νK2 cos(2τν)F1F2
< K1 <

l2l1
K2F1F2

,

where ν ∈ I0.

Proof. The asymptotic stability region is determined by the limit
point (

−l2
2τ l2 + 1

,
−l22

K2F1F2(2τ l2 + 1)

)
,

the singular line C∗ and the D-curve C0. For the coordinates of the
asymptotic stability region, we write

l1 >
−l2

2τ l2 + 1
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and

−νl22 − ν3

l2K2 sin(2τν)F1F2 + νK2 cos(2τν)F1F2
< K1 <

l2l1
K2F1F2

,

where ν ∈ I0. �

3. Conclusions. In this study, we considered the neural field model
for two neural population. We assumed that the neurons of these
populations interact with each other. First, we linearized the system,
and then we used the D-subdivision method to sketch the region where
we investigated the stability of this system. After determining the D-
regions, we used the Stépán’s formula to find the asymptotic stability
region. We also determined the number of unstable characteristic
exponents for the unstable regions. As shown in the graphs, we
conclude that the change in the delay term affects the stability of the
system. The asymptotic stability region becomes smaller while the
delay term τ increases.
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