WEAKLY FACTORIAL PROPERTY OF A GENERALIZED REES RING $D[X, d / X]$

GYU WHAN CHANG

Abstract

Let D be an integral domain, X an indeterminate over $D, d \in D$, and $R=D[X, d / X]$ a subring of $D[X, 1 / X]$. In this paper, we show that R is a weakly factorial domain if and only if D is a weakly factorial GCDdomain and $d=0, d$ is a unit of D or d is a prime element of D. We also show that, if D is a weakly factorial GCDdomain, p is a prime element of D, and $n \geq 2$ is an integer, then $D\left[X, p^{n} / X\right]$ is an almost weakly factorial domain with $C l\left(D\left[X, p^{n} / X\right]\right)=\mathbb{Z}_{n}$.

1. Introduction. Let D be an integral domain, I a proper ideal of D and t an indeterminate over D. Then, $R=D\left[t I, t^{-1}\right]$ is a subring of $D\left[t, t^{-1}\right]$, called the generalized Rees ring of D with respect to I. In [19], Whitman proved that, if I is finitely generated, then R is a unique factorization domain (UFD) if and only if D is a UFD and t^{-1} is a prime element of R. Also, in [17, Proposition 3], Mott showed that R is a GCD-domain if and only if D is a GCD-domain and t^{-1} is a prime element of R. In [15, Corollary 3.10], the authors proved that R is a Prüfer v-multiplication domain ($\mathrm{P} v \mathrm{MD}$) if and only if D is a $\mathrm{P} v \mathrm{MD}$, under the assumption that t^{-1} is a prime element of R and $\bigcap_{n=1}^{\infty} I^{n}=(0)$. Let $I=d D$ for some $d \in D$ and $t^{-1}=X$; thus, $R=D[X, d / X]$. In [1], the authors studied several types of divisibility properties of R, including Krull domains, UFDs and GCD-domains.

An element $a \in D$ is said to be primary if the principal ideal $a D$ of D is a primary ideal, and we say that D is a weakly factorial domain (WFD) if each nonzero nonunit of D can be written as a finite product of primary elements of D. Clearly, a prime element of D is primary,

[^0]and D is a UFD if and only if every nonzero nonunit of D can be written as a finite product of prime elements of D. Hence, a UFD is a WFD, while a rank-one nondiscrete valuation domain is a WFD but not a UFD. It is known that $D[X]$ is a WFD if and only if D is a weakly factorial GCD-domain. More generally, if Γ is a torsionless, commutative, cancellative monoid whose quotient group satisfies the ascending chain condition on its cyclic subgroups, then the semigroup ring $D[\Gamma]$ is a WFD if and only if D is a weakly factorial GCD domain and Γ is a weakly factorial GCD-semigroup [10, Theorem 9]. In this paper, we study when $R=D[X, d / X]$ is a WFD.
1.1. Results. Let X be an indeterminate over $D, d \in D$, and $R=$ $D[X, d / X]$. In this paper, among other things, we show that R is a WFD if and only if R is a weakly factorial GCD-domain. The latter condition holds if and only if D is a weakly factorial GCD-domain and $d=0, d$ is a unit of D or d is a prime element of D. We also prove that R is a ring of Krull type if and only if D is a ring of Krull type. We finally prove that, if D is a weakly factorial GCD-domain, p is a prime element of D, and $n \geq 2$ is an integer, then $D\left[X, p^{n} / X\right]$ is an almost weakly factorial domain with $C l\left(D\left[X, p^{n} / X\right]\right)=\mathbb{Z}_{n}$.
1.2. Definitions. Let K be the quotient field of D and $F(D)$ the set of nonzero fractional ideals of D. For $I \in F(D)$, let $I^{-1}=\{x \in K \mid$ $x I \subseteq D\}, I_{v}=\left(I^{-1}\right)^{-1}$, and $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I\right.$ and $J \in F(D)$ is finitely generated $\}$. We say that $I \in F(D)$ is a t-ideal if $I_{t}=I$, and a t-ideal of D is a maximal t-ideal if it is maximal among proper integral t-ideals of D. Let t - $\operatorname{Max}(D)$ be the set of maximal t-ideals of D. It is known that $t-\operatorname{Max}(D) \neq \emptyset$ if D is not a field; each ideal in $t-\operatorname{Max}(D)$ is a prime ideal; each prime ideal minimal over a t-ideal is a t-ideal; and $D=\bigcap_{P \in t-\operatorname{Max}(D)} D_{P}$. We say that $t-\operatorname{dim}(D)=1$ if D is not a field and each prime t-ideal of D is a maximal t-ideal. An $I \in F(D)$ is said to be t-invertible if $\left(I I^{-1}\right)_{t}=D$. Let $T(D)$ be the set of t-invertible fractional t-ideals of D. Then, $T(D)$ is an abelian group under $I * J=(I J)_{t}$. Clearly, $\operatorname{Prin}(D)$, the set of nonzero principal fractional ideals of D, is a subgroup of $T(D)$, and $C l(D)=T(D) / \operatorname{Prin}(D)$ is called the $(t-)$ class group of D. Note that, if D is a Krull (respectively, Prüfer) domain, then $C l(D)$ is the usual divisor (respectively, ideal) class group of D.

Let $X^{1}(D)$ be the set of height-one prime ideals of D. We say that D is a weakly Krull domain if $D=\bigcap_{P \in X^{1}(D)} D_{P}$, and this
intersection has finite character, i.e., each nonzero nonunit of D is a unit in D_{P} except finitely many prime ideals in $X^{1}(D)$. In this case, $t-\operatorname{Max}(D)=X^{1}(D)$, and thus, $t-\operatorname{dim}(D)=1$ when D is a weakly Krull domain. Clearly, Krull domains are weakly Krull domains. An almost weakly factorial domain (AWFD) is an integral domain D in which, for each $0 \neq d \in D$, there is an integer $n=n(d) \geq 1$ such that d^{n} can be written as a finite product of primary elements of D. It is known that D is a WFD (respectively, an AWFD) if and only if D is a weakly Krull domain with $C l(D)=\{0\}$ (respectively, $C l(D)$ torsion) [5, Theorem] (respectively, [4, Theorem 3.4]); hence,

$$
\text { WFD } \Longrightarrow \text { AWFD } \Longrightarrow \text { weakly Krull domain. }
$$

It is easy to see that, if N is a multiplicative subset of a weakly Krull domain (respectively, WFD, an AWFD) D, then D_{N} satisfies the corresponding property. We say that D is a Prüfer v-multiplication domain ($\mathrm{P} v \mathrm{MD}$) if each nonzero finitely generated ideal of D is t invertible. It is known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if $D[X]$ is a $\mathrm{P} v \mathrm{MD}$ [18, Corollary 4] or, equivalently, $D[X, 1 / X]$ is a $\mathrm{P} v \mathrm{MD}[\mathbf{1 6}$, Theorem 3.10]. In addition, D is a GCD-domain if and only if D is a $\mathrm{P} v \mathrm{MD}$ with $C l(D)=\{0\}[\mathbf{9}$, Proposition 2].
2. Main results. Let D be an integral domain, X an indeterminate over $D, d \in D, R=D[X, d / X], S=\left\{X^{k} \mid k \geq 0\right\}$, and $T=\left\{(d / X)^{k} \mid\right.$ $k \geq 0\}$; thus, $R_{S}=D[X, 1 / X]$. Clearly, if $d=0$ (respectively, d is a unit of D), then $R=D[X]$ (respectively, $R=D[X, 1 / X]$). Also, if $d \neq 0$, then $R_{T}=D[X / d, d / X], R=R_{S} \cap R_{T}$, [1, Lemma 7(b)], and $R_{T} \cong D\left[y, y^{-1}\right]$ for an indeterminate y over D.

Lemma 2.1. Let A be a commutative ring with identity and X an indeterminate over A. Then, the zero ideal of A is primary if and only if the zero ideal of $A[X]$ is primary.

Proof. Let $N(B)$ (respectively, $Z(B)$) be the set of nilpotent elements (respectively, zero divisors) of a ring B. Clearly, $N(B) \subseteq Z(B)$, and the zero ideal of B is primary if and only if $N(B)=Z(B)$. Hence, it suffices to show that $Z(A) \subseteq N(A)$ if and only if $Z(A[X]) \subseteq N(A[X])$. Assume that $Z(A) \subseteq N(A)$, and let $f \in Z(A[X])$. Then, $f g=0$ for some $0 \neq g \in A[X]$. Hence, if $c(h)$ is the ideal of A generated by the coefficients of a polynomial $h \in A[X]$, then by the Dedekind-Mertens
lemma [12, Theorem 28.1], there is an integer $n \geq 1$ such that

$$
c(f)^{n+1} c(g)=c(f)^{n} c(f g)=(0)
$$

Note that $c(f) \subseteq Z(A)$ since $g \neq 0$, and $c(f)$ is finitely generated. Hence, by assumption, $c(f)^{m}=(0)$ for some integer $m \geq 1$. Thus,

$$
f^{m} \in(c(f)[X])^{m}=c(f)^{m}[X]=(0)
$$

and hence, $f \in N(A[X])$. The converse follows since $Z(A) \subseteq Z(A[X])$.

Proposition 2.2. The following statements are equivalent for $R=$ $D[X, d / X]$ with $0 \neq d \in D$.
(i) X is irreducible (respectively, prime, primary) in R;
(ii) d / X is irreducible (respectively, prime, primary) in R;
(iii) d is a nonunit (respectively, prime, primary) in D.

Proof. The properties of irreducible and prime appear in [1, Proposition 1]. For the primary property, note that

$$
(D / d D)[X] \cong D\left[X, \frac{d}{X}\right] /(X) \cong D\left[X, \frac{d}{X}\right] /\left(\frac{d}{X}\right)
$$

Also, note that an ideal I of a ring A is primary if and only if $Z(A / I)=$ $N(A / I)$. Thus, the result follows directly from Lemma 2.1.

Corollary 2.3. Let $d \in D$ be a nonzero nonunit and $R=D[X, d / X]$. If $d D$ is primary in D, then $\sqrt{X R}$ is a maximal t-ideal of R and $(X, d / X)_{v}=R$.

Proof. By Proposition 2.2, $X R$ is a primary ideal of R, and thus, $\sqrt{X R}$ is a maximal t-ideal [8, Lemma 2.1]. Next, note that

$$
R\left[\frac{1}{X}\right]=D\left[X, \frac{1}{X}\right]
$$

and $d D[X, 1 / X]$ is primary. Hence, if $Q=d D[X, 1 / X] \cap R$, then Q is primary. In addition, $d=X \cdot d / X$ and $X \notin \sqrt{Q}$ since $Q R[1 / X] \subsetneq$ $R[1 / X]$. Thus, $d / X \in Q$, and, since d / X is primary by Proposition 2.2 , $(X, d / X)_{v}=R$.

A nonzero prime ideal Q of $D[X]$ is called an upper to zero in $D[X]$ if $Q \cap D=(0)$, and we say that D is a UMT-domain if each upper to zero in $D[X]$ is a maximal t-ideal of $D[X]$. It is known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if D is an integrally closed UMT-domain [14, Proposition 3.2]. In addition, $D[X]$ is a weakly Krull domain if and only if $D[X, 1 / X]$ is a weakly Krull domain, which is exactly when D is a weakly Krull UMT-domain [3, Propositions 4.7, 4.11].

Proposition 2.4. Let $d \in D$ be a nonzero nonunit and $R=$ $D[X, d / X]$. Then, R is a weakly Krull domain if and only if D is a weakly Krull UMT-domain.

Proof. Let $S=\left\{X^{k} \mid k \geq 0\right\}$ and $T=\left\{(d / X)^{k} \mid k \geq 0\right\}$. If R is a weakly Krull domain, then $R_{S}=D[X, 1 / X]$ is a weakly Krull domain, and thus, D is a weakly Krull UMT-domain. Conversely, assume that D is a weakly Krull UMT-domain. Then, both

$$
R_{S}=D\left[X, \frac{1}{X}\right] \quad \text { and } \quad R_{T}=D\left[\frac{d}{X}, \frac{X}{d}\right]
$$

are weakly Krull domains. Note that $R=R_{S} \cap R_{T}$. Thus, R is a weakly Krull domain.

Let S be a saturated, multiplicative set of D and

$$
N(S)=\left\{d \in D \mid(s, d)_{v}=D \text { for all } s \in S\right\}
$$

Clearly, $D=D_{S} \cap D_{N(S)}$. We say that S is a splitting set if, for each $0 \neq d \in D$, we have $d=s t$ for some $s \in S$ and $t \in N(S)$. It is known that, if S is a splitting set of D generated by a set of prime elements, then $D_{N(S)}$ is a UFD and $C l(D)=C l\left(D_{S}\right)$ [2, Theorem 4.2].

Lemma 2.5. Let S be a splitting set of an integral domain D generated by a set of prime elements in D. Then, D is a WFD if (and only if) D_{S} is a WFD.

Proof. Since $C l(D)=C l\left(D_{S}\right)=\{0\}$, it suffices to show that D is a weakly Krull domain. Note that $D_{N(S)}$ is a UFD; thus, $D_{N(S)}$ is a weakly Krull domain. Hence, D is a weakly Krull domain since D_{S} is a weakly Krull domain, by assumption, and $D=D_{S} \cap D_{N(S)}$.

We next give the main result of this paper for which we recall from [10, Theorem 9] that the following three conditions are equivalent:
(i) $D[X]$ is a WFD;
(ii) $D[X, 1 / X]$ is a WFD; and
(iii) D is a weakly factorial GCD-domain.

Note also that D is a $\mathrm{P} v \mathrm{MD}$ if and only if D_{P} is a valuation domain for all $P \in t-\operatorname{Max}(D)[13$, Theorem 5].

Theorem 2.6. Let $R=D[X, d / X]$ with $d \in D$. Then, the following statements are equivalent.
(i) R is a WFD;
(ii) R is a weakly factorial GCD-domain;
(iii) D is a weakly factorial GCD-domain, and $d=0$, d is a unit of D or d is a prime element of D.
Proof.
(i) \Rightarrow (ii). If $d=0$ or d is a unit of D, then $R=D[X]$ or $R=D[X$, $1 / X]$, and hence, R is a weakly factorial GCD-domain.

Now, assume that d is a nonzero nonunit. It suffices to show that R is a $\mathrm{P} v \mathrm{MD}$ since a GCD-domain is a $\mathrm{P} v \mathrm{MD}$ with trivial class group. Let $Q \in t-\operatorname{Max}(R)$. Then, $\operatorname{ht} Q=1$. If $X \notin Q$, then $Q_{S} \subsetneq R_{S}$, where $S=\left\{X^{n} \mid n \geq 0\right\}$. Note that R_{S} is a WFD by (i) and $R_{S}=D[X, 1 / X]$; thus, D is a weakly factorial GCD-domain, and hence, R_{S} is a $\mathrm{P} v \mathrm{MD}$. Thus, $R_{Q}=\left(R_{S}\right)_{Q_{S}}$ is a rank-one valuation domain. Next, assume that $X \in Q$. Then, $d / X \notin Q$ by Corollary 2.3, and hence, if $T=\left\{(d / X)^{n} \mid n \geq 0\right\}$, then $R_{T}=D[d / X, X / d]$ and $Q_{T} \subsetneq R_{T}$. Note that D is a $\mathrm{P} v \mathrm{MD}$; thus, $D[d / X, X / d]$ is a $\mathrm{P} v \mathrm{MD}$. Note also that Q_{T} is a prime t-ideal of R_{T} since $\operatorname{ht}\left(Q_{T}\right)=1$. Hence, $R_{Q}=\left(R_{T}\right)_{Q_{T}}$ is a rank-one valuation domain. Thus, R is a $\mathrm{P} v \mathrm{MD}$.
(ii) \Rightarrow (iii). Note that $R[1 / X]=D[X, 1 / X]$ is a WFD. Hence, D is a weakly factorial GCD-domain. Assume that d is a nonzero nonunit. Then, X is irreducible in R by Proposition 2.2, and, since R is a GCDdomain, X is a prime in R. Thus, again by Proposition $2.2, d$ is a prime element of D.
(iii) \Rightarrow (i). If $d=0$, then $R=D[X]$, and hence, R is a WFD. Next, if d is a unit, then $R=D[X, 1 / X]$. Thus, R is a WFD. Finally, assume
that d is a prime element of D. Then, X is a prime element of R by Proposition 2.2. In addition, $\bigcap_{n=0}^{\infty} X^{n} R=\{0\}$ since $d D$ is a height-one prime ideal of D; thus, $S=\left\{X^{n} \mid n \geq 0\right\}$ is a splitting set of R [2, Proposition 2.6]. Note that $R_{S}=D[X, 1 / X]$. Hence, R_{S} is a WFD. Thus, R is a WFD by Lemma 2.5.

An integral domain D is a ring of Krull type if there is a set $\left\{V_{\alpha}\right\}$ of valuation overrings of D such that
(i) each $V_{\alpha}=D_{P}$ for some prime ideal P of D;
(ii) $D=\bigcap_{\alpha} V_{\alpha}$; and
(iii) this intersection has finite character.

Then D is a ring of Krull type if and only if D is a $\mathrm{P} v \mathrm{MD}$ of finite t-character (i.e., each nonzero nonunit of D is contained in only finitely many maximal t-ideals) [13, Theorem 7]. It is known that D is a ring of Krull type if and only if $D[X]$ is a ring of Krull type or, equivalently, $D[X, 1 / X]$ is a ring of Krull type (cf., [13, Propositions 9, 12]).

Theorem 2.7. Let $R=D[X, d / X]$ with $d \in D$. Then, R is a ring of Krull type if and only if D is a ring of Krull type.

Proof. If $d=0$ (respectively, d is a unit of D), then $R=D[X]$ (respectively, $R=D[X, 1 / X]$). Hence, we may assume that d is a nonzero nonunit of D. Let

$$
S=\left\{X^{n} \mid n \geq 0\right\} \quad \text { and } \quad T=\left\{\left.\left(\frac{d}{X}\right)^{n} \right\rvert\, n \geq 0\right\}
$$

Then

$$
R_{S}=D\left[X, \frac{1}{X}\right], \quad R_{T}=D\left[\frac{X}{d}, \frac{d}{X}\right]
$$

and $R=R_{S} \cap R_{T}$. Also, $D[X / d, d / X]$ is isomorphic to $D[y, 1 / y]$ for an indeterminate y over D.

If R is a ring of Krull type, then R_{S} is a ring of Krull type [13, Proposition 12], and thus, D is a ring of Krull type. Conversely, assume that D is a ring of Krull type. Then, both R_{S} and R_{T} are rings of Krull type. Let $A=\left\{P \in t-\operatorname{Spec}(R) \mid P_{S} \in t-\operatorname{Max}\left(R_{S}\right)\right\}$ and $B=\left\{P \in t-\operatorname{Spec}(R) \mid P_{T} \in t-\operatorname{Max}\left(R_{T}\right)\right\}$. Then, R_{P} is a valuation
domain for each $P \in A \cup B$,

$$
R=R_{S} \cap R_{T}=\left(\bigcap_{P \in A} R_{P}\right) \cap\left(\bigcap_{P \in B} R_{P}\right),
$$

and this intersection has finite character. Thus, R is a ring of Krull type.

A generalized Krull domain is an integral domain D such that
(i) D_{P} is a valuation domain for all $P \in X^{1}(D)$;
(ii) $D=\bigcap_{P \in X^{1}(D)} D_{P}$; and
(iii) this intersection has finite character.

Then, we have the following implications:

- Generalized Krull domain \Leftrightarrow ring of Krull type $+t$-dimension one \Leftrightarrow weakly Krull domain $+\mathrm{P} v \mathrm{MD} \Rightarrow$ weakly Krull domain,

However, in general, the reverse implications do not hold.
Corollary 2.8. Let $R=D[X, d / X]$ with $d \in D$. Then, R is a generalized Krull domain if and only if D is a generalized Krull domain.

Proof. Let the notation be as in the proof of Theorem 2.7, and note that a generalized Krull domain is merely a ring of Krull type with t-dimension one. Note also that R and D are $\mathrm{P} v$ MDs by Theorem 2.7; hence, $t-\operatorname{dim}(R)=1 \Leftrightarrow t-\operatorname{dim}\left(R_{S}\right)=t-\operatorname{dim}\left(R_{T}\right)=1 \Leftrightarrow t-\operatorname{dim}(D)=1$. Thus, again by Theorem 2.7, R is a generalized Krull domain if and only if D is a generalized Krull domain.

A Krull domain D is called an almost factorial domain if $C l(D)$ is torsion. It is known that a Krull domain D is an almost factorial domain if and only if D is an AWFD [11, Proposition 6.8]. In addition, if D is a UFD, p is a prime element of D, and $n \geq 1$ is an integer, then $D\left[X, p^{n} / X\right]$ is a Krull domain with $C l\left(D\left[X, p^{n} / X\right]\right)=\mathbb{Z}_{n}[\mathbf{1}$, Theorems

8 and 16]. The next result is an AWFD analog for which we first note that, if $R=D[X, d / X]$ with $d \in D$, then R is a \mathbb{Z}-graded integral domain with $\operatorname{deg}\left(a X^{n}\right)=n$ and $\operatorname{deg}\left(a(d / X)^{n}\right)=-n$ for $0 \neq a \in D$ and the integer $n \geq 0$. Let
$H=\left\{a X^{k} \mid 0 \neq a \in D\right.$ and $\left.k \geq 0\right\} \cup\left\{\left.a\left(\frac{d}{X}\right)^{k} \right\rvert\, 0 \neq a \in D\right.$ and $\left.k \geq 0\right\}$.
Then, H is the set of nonzero homogeneous elements of R, and, if Q is a maximal t-ideal of R with $Q \cap H \neq \emptyset$, then Q is generated by $Q \cap H$ [7, Lemma 1.2].

Corollary 2.9. Let D be a weakly factorial GCD-domain, p a prime element of D and $n \geq 2$ an integer. Then, $R=D\left[X, p^{n} / X\right]$ is an AWFD with $C l(R)=\mathbb{Z}_{n}$.

Proof. A generalized Krull domain is a weakly Krull $\mathrm{P} v \mathrm{MD}$, and thus, R is a weakly Krull $\mathrm{P} v \mathrm{MD}$ by Corollary 2.8. Hence, it suffices to show that $C l(R)=\mathbb{Z}_{n}$.

Let $Q=\sqrt{X R}, S=\left\{X^{k} \mid k \geq 0\right\}$, and note that Q is a unique maximal t-ideal of R with $Q \cap S \neq \emptyset$ since X is primary by Proposition 2.2. Let $\Lambda=\{P \in t-\operatorname{Max}(R) \mid P \cap S=\emptyset\}$. Then, t $\operatorname{Max}(R) \backslash \Lambda=\{Q\}$, and $R_{S}=D[X, 1 / X]$ is a WFD, so $C l\left(R_{S}\right)=\{0\}$. Thus, $C l(R)$ is generated by the classes of t-invertible Q-primary t ideals of R [3, Theorem 4.8].

Note that X is homogeneous, $\left(X, p^{n} / X\right)_{v}=R$, and $(a, p)_{v}=R$ for all $a \in D \backslash p D$. Hence, $Q=(X, p)_{v}$, and, since R is a $\mathrm{P} v \mathrm{MD}, Q$ is a t-invertible prime t-ideal. Note that

$$
\left(Q^{n}\right)_{t}=\left((X, p)^{n}\right)_{t}=\left(X^{n}, p^{n}\right)_{t}=\left(X^{n}, X \frac{p^{n}}{X}\right)_{v}=X R
$$

(see [6, Lemma 3.3] for the second equality), while $\left(Q^{k}\right)_{t}$ is not principal for $k=1, \ldots, n-1$. Note also that, if A is a Q-primary t-ideal of R, then $A=\left(Q^{m}\right)_{t}$ for some $m \geq 1$, and thus, $\left(A^{n}\right)_{t}=X^{m} R$. Hence, $C l(R)=\mathbb{Z}_{n}$.

We conclude this paper with some examples of weakly factorial GCD domains with prime elements.

Example 2.10.

(1) Let V be a rank-one nondiscrete valuation domain, y an indeterminate over V and $D=V[y]$. Then, D is a weakly factorial GCDdomain, and y is a prime of D. Thus, $R=D[X, y / X]$ is a WFD, and $D\left[X, y^{n} / X\right]$ is an AWFD with

$$
C l\left(D\left[X, \frac{y^{n}}{X}\right]\right)=\mathbb{Z}_{n}
$$

for all integers $n \geq 2$.
(2) Let D be a weakly factorial GCD-domain, X an indeterminate over D, and $S=\{f \in D[X] \mid f \neq X, f$ a prime in $D[X]\}$. Then, $D[X]_{S}$ is a one-dimensional weakly factorial GCD-domain with a prime element X. (For, if Q is a prime ideal of $D[X]$ with ht $Q \geq 2$, then Q contains a nonconstant prime polynomial since D is a GCD-domain.)

Acknowledgments. The author would like to thank the referee for a careful reading and valuable comments.

REFERENCES

1. D.D. Anderson and D.F. Anderson, The ring $R[X, r / X]$, Lect. Notes Pure Appl. Math. 171 (1995), 95-113.
2. D.D. Anderson, D.F. Anderson and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Alg. 74 (1991), 17-37.
3. D.D. Anderson, E. Houston and M. Zafrullah, t-linked extensions, the t-class group, and Nagata's theorem, J. Pure Appl. Alg. 86 (1993), 109-124.
4. D.D. Anderson, J.L. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. 6 (1992), 613-630.
5. D.D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisiblity, Proc. Amer. Math. Soc. 109 (1990), 907-913.
6. \qquad , Almost Bézout domains, J. Algebra 142 (1991), 141-309.
7. D.F. Anderson and G.W. Chang, Homogeneous splitiing sets of a graded integral domain, J. Algebra 288 (2005), 527-544.
8. D.F. Anderson, G.W. Chang and J. Park, Generalized weakly factorial domains, Houston J. Math. 29 (2003), 1-13.
9. A. Bouvier, Le groupe des classes d'un anneau intégré, Natl. Soc. Savantes, Brest 4 (1982), 85-92.
10. G.W. Chang, Semigroup rings as weakly factorial domains, Comm. Alg. 37 (2009), 3278-3287.
11. R. Fossum, The divisor class group of a Krull domain, Springer, New York, 1973.
12. R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
13. M. Griffin, Some results on v-multiplication rings, Canadian Math. J. 19 (1967), 710-722.
14. E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Alg. 17 (1989), 1955-1969.
15. H. Kim, T.I. Kwon and Y.S. Park, Factorization and divisibility in generalized Rees rings, Bull. Korean Math. Soc. 41 (2004), 473-482.
16. R. Matsuda, Torsion-free abelian semigroup rings, IV, Bull. Fac. Sci. Ibaraki Univ. 10 (1978), 1-27.
17. J. Mott, The group of divisibility of Rees rings, Math. Japonica 20 (1975), 85-87.
18. H. Uda, A characterization of Prfer v-multiplication domains in terms of polynomial grade, Hiroshima Math. J. 16 (1986), 115-120.
19. D. Whitman, A note on unique factorization in Rees rings, Math. Japonica 17 (1972), 13-14.

Incheon National University, Department of Mathematics Education, Incheon 22012, Korea
Email address: whan@inu.ac.kr

[^0]: 2010 AMS Mathematics subject classification. Primary 13A15, 13F15.
 Keywords and phrases. Weakly factorial domain, GCD-domain, generalized Rees ring $D[X, d / X]$.

 This work was supported by the Incheon National University Research Grant in 2017, grant No. 2017-0376.

 Received by the editors on November 7, 2017, and in revised form on March 26, 2018.

