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MONTELONGO-VÁZQUEZ, CARLOS DANIEL REYES-MORALES,
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ABSTRACT. In this paper, we find the genus field of
finite abelian extensions of the global rational function field.
We introduce the term conductor of constants for these
extensions and determine it in terms of other invariants.
We study the particular case of finite abelian p-extensions
and give an explicit description of their genus field.

1. Introduction. It was Gauss [11] who first considered what now
is known as the genus field. The work of Gauss was in the context
of binary quadratic forms. Later, this concept was translated into
the context of quadratic number fields. In this way, originally, the
definition of genus field was given for a quadratic extension of Q. We
have that, for a quadratic number field K, the genus field of K is the
maximal extension of K that is abelian over Q and which is unramified
over K. The Galois group of Kge/K, Kge denoting the genus field of
K, is isomorphic to the maximal subgroup of exponent 2 of the ideal
class group of K. It was proven by Gauss that, if s is the number of
different positive finite rational primes dividing the discriminant δK of
a quadratic number field K, then the 2-rank of the class group of K is
s− 2 if δK > 0, and there exists a prime p ≡ 3 mod 4 dividing δK , and
s− 1 otherwise.

Genus theory using class field theory was introduced by Hasse [12]
for the special case of quadratic number fields. Hasse translated
Gauss’s genus theory using characters. Leopoldt [18] generalized the
results of Hasse, determining the genus field Kge of an absolute abelian
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number field K. Leopoldt used Dirichlet characters to develop genus
theory of absolute abelian extensions and related the theory of Dirichlet
characters to the arithmetic of K.

The concept of genus fields for an arbitrary finite extension of the
field of rational numbers was introduced by Fröhlich [7, 8, 9]. Fröhlich
defined the genus field Kge of an arbitrary finite number field K/Q as
Kge := Kk∗, where k∗ is the maximal abelian number field such that
Kk∗/K is unramified. We have that k∗ is the maximal abelian number
field contained in Kge. The degree [Kge : K] is called the genus number
of K, and the Galois group Gal(Kge/K) is called the genus group of K.

We have that, if KH denotes the Hilbert class field of K, then
K ⊆ Kge ⊆ KH , and Gal(KH/K) is isomorphic to the class group ClK
of K. The genus field Kge corresponds to a subgroup GK of ClK , that
is, Gal(Kge/K) ∼= ClK/GK . The subgroup GK is called the principal
genus of K, and |ClK/GK | is equal to the genus number of K.

Zhang [29] gave a simple expression of Kge for any abelian extension
K of Q using Hilbert ramification theory. Ishida [15] described the
narrow genus field Kge of any finite extension of Q, that is, Ishida
allowed ramification at the infinite primes. Given a number field K,
Ishida found two abelian number fields k∗1 and k∗2 such that

k∗ = k∗1k
∗
2 and k∗1 ∩ k∗2 = Q.

The field k∗1 is related to the finite primes p such that at least one prime
in K above p is tamely ramified.

We are interested in genus theory for global function fields. There
is no direct proper notion of Hilbert class field since all of the constant
field extensions are abelian and unramified, and the maximal constant
extension is infinite abelian and unramified. On the other extreme,
if the class number of a congruence function field K is hK , then
there are exactly h := hK abelian extensions K1, . . . ,Kh of K such
that Ki/K are maximal unramified with exact field of constants of
each Ki, the same as that of K, Fq the finite field of q elements and
Gal(Ki/K) ∼= ClK,0 the group of classes of divisors of degree zero [2,
page 79, Chapter 8].

There have been different notions of genus fields according to differ-
ent Hilbert class field definitions. Rosen [24] gave a definition of Hilbert
class fields of K, fixing a nonempty finite set S∞ of prime divisors of K.
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Using Rosen’s definition of the Hilbert class field, it is possible to give
a proper concept of genus fields along the lines of number fields.

Clement [6] found a narrow genus field of a cyclic extension of
k = Fq(T ) of prime degree l dividing q − 1. She used the concept
of a Hilbert class field similar to that of a quadratic number field K:
it is the finite abelian extension of K such that the prime ideals of
the ring of integers OK of K splitting there are precisely the principal
ideals generated by an element whose norm is an l-power. Bae and Koo
[3] were able to generalize the results of Clement with the methods
developed by Fröhlich [9]. They defined the narrow genus field for
general global function fields and developed the analogue of the classical
genus theory. Anglès and Jaulent [1] used narrow S-class groups to
establish the fundamental results, using class field theory, for the genus
theory of finite extensions of global fields, where S is a finite set of
places.

Peng [23] explicitly described the genus theory for Kummer exten-
sions K of k := Fq(T ) of prime degree l, based on the global function
field analogue of Conner and Hurrelbrink’s exact hexagon. Wittman
[28] extended Peng’s results to the case l - q (q−1) and used his results
to study the l-part of the ideal class groups of cyclic extensions of prime
degree l of k. Hu and Li [14] explicitly described the genus field of an
Artin-Schreier extension of k.

In [19, 20], a theory of genus fields of congruence function fields
was developed using Rosen’s definition of Hilbert class field: given a
finite nonempty set S of places of a global function field K, the Hilbert
class field (relative to S) KH,S of K is defined as the maximal abelian
unramified extension of K such that the places in S fully decompose
in KH,S . The genus field Kge of K is the maximal extension of K such
that

K ⊆ Kge ⊆ KH,S

with Kge = Kk∗ and such that k∗/k is an abelian extension. In
the case where K/k is abelian, Kge simply is the maximal abelian
unramified extension of k such that the primes in S fully decompose
in Kge. The methods used there were based on the ideas of Leopoldt
using Dirichlet characters, and a general description of Kge in terms of
Dirichlet characters was given. The genus field Kge was obtained for an
abelian extension K of k and S the set of infinite primes. The method
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was used to give Kge explicitly when K/k is a cyclic extension of prime
degree l | q− 1 (Kummer) or l = p where p is the characteristic (Artin-
Schreier) and also when K/k is a p-cyclic extension (Witt). Later on,
the method was used in [5] to explicitly describe Kge when K/k is a
cyclic extension of degree ln, where l is a prime number and ln | q − 1.

In this paper, we consider a finite abelian extension K/k. We find
the genus field of K with respect to k. Special consideration is given
to the genus field of a finite abelian p-extension of k, where p is the
characteristic.

The study of elementary abelian p-extensions, and more generally
abelian p-extensions, has been considered by numerous authors. These
extensions appear in several contexts. In [22], Ore considered additive
polynomials using composition as multiplication. With this operation,
these polynomials are known as twisted polynomials, and this is one
of the bases for Drinfeld modules. Lachaud [17] obtained an analogue
of the Carlitz-Uchiyama bound for geometric BCH codes and some
consequences for cyclic codes. His results are part of the analysis of the
L-function of Artin-Schreier extensions. Garcia and Stichtenoth [10]
studied field extensions L/K given by an equation of the type

yq − y = f(x) ∈ K(x),

where q is a power of p and Fq ⊆ K. Using a result of Kani [16], they
obtained a formula relating the genus of the extension and the genus
of several subextensions of degree p. There are many fields of this
kind having the maximum number of rational places allowed by Weil’s
bound, but they proved that, for fixed K, the number of rational places
is asymptotically bad. They also used these extensions to find a family
of fields whose Weierstrass gap sequences are nonclassical.

In [4], we considered an additive polynomial f(X) whose roots
belong to the base field, and we proved results analogous to those
obtained by Garcia and Stichtenoth. More generally, we studied abelian
extensions of type Cn

pm , where Cj denotes a cyclic group of order j, and
such that the base field contains the finite field Fq, with q = pn. For
instance, given an additive polynomial f(X), we have that, if the roots
of f are in the base field, any elementary abelian p-extension can be
obtained by means of an equation of the type f(X) = u. Furthermore,
all the subextensions of degree p over the base field can be deduced
from the equation f(X) = u.
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We have studied genus fields in [19, 20, 21]. The general result
we present here goes along the lines of the proof we presented in [19],
but it is much simpler since, now, we consider in merely one step the
tame and the wild ramifications of the infinite prime. In [19], we first
studied the case of tame ramification of the infinite primes and then the
general case. It turns out that it is possible to consider the general case
in only one step and, in fact, this approach gives the genus field much
faster and in a more transparent manner. Furthermore, in [19], we
restricted ourselves to geometric extensions. Here, we consider general,
not necessarily geometric, finite abelian extensions.

Our objective in this paper is to give a full solution to the genus field
problem for finite abelian extensions K of k. We use this approach to
study finite abelian p-extensions of k. Obtaining the genus field of
this family of extensions is much more transparent than the manner in
which it was obtained in [19].

We use the following notation. Let k = Fq(T ) be a global rational
function field of characteristic p. Let RT = Fq[T ] be the polynomial
ring. Let R+

T denote the set of all monic irreducible polynomials in
RT . For N ∈ RT , k(ΛN ) denotes the Nth Carlitz cyclotomic function
field. Let P∞ be the pole of the principal divisor (T ) in k, which we
call the infinite prime. The maximal real subfield k(ΛN )+ of k(ΛN ) is
the decomposition field of the infinite prime. For any field L such that
k ⊆ L ⊆ k(ΛN ), the real subfield L+ of L is

L+ := k(ΛN )+ ∩ L.

General results on cyclotomic function fields can be consulted in [26,
Chapter 12]. Let K/k be a finite abelian extension. From the
Kronecker-Weber theorem, we have that there exist n,m ∈ N and
N ∈ RT such that

K ⊆ nk(ΛN )m := Lnk(ΛN )Fqm ,

where Ln denotes the subfield of k(Λ1/Tn+1) of degree qn and km :=
Fqm(T ) is the extension of constants of k of degree m. We have that
P∞ is totally and wildly ramified in Ln/k. We also have that P∞ is
totally inert in km/k.

For any finite abelian extension F of k, S∞(F ) denotes the set of
prime divisors of F above P∞. For any finite abelian field extension
E/F , let e∞(E/F ), f∞(E/F ) and h∞(E/F ) denote the ramification
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index, the inertia degree and the decomposition number of S∞(F ) in
E, respectively. For P ∈ R+

T , eP (E/F ) denotes the ramification index
of any prime in F above P in E/F . For any extension F/k, let Fge

denote the genus field of F over k with S = S∞(F ). When F/k is a
finite abelian extension, Fge is the maximal abelian extension contained
in the Hilbert class field of F . The symbol Cd will denote the cyclic
group of d elements.

Let M := Lnkm. Then,

(1.1) e∞(M/k) = qn, f∞(M/k) = m and h∞(M/k) = 1.

We have M ∩ k(ΛN ) = k.

Our first main result is stated later as Theorem 2.2.

Theorem 1.1. Let K/k be a finite abelian extension with the above
notation. Let

E := KM ∩ k(ΛN ).

Then,
Kge = EH1

ge K = (EgeK)H ,

where H is the decomposition group of any prime in S∞(K) in
EgeK/K, H1 := H|Ege

and H2 := H1|E.
Let d := f∞(EK/K). We have

H ∼= H1
∼= H2

∼= Cd

and d | q − 1. We also have that EgeK/Kge and EK/EH2K are
extensions of constants of degree d. Finally, the field of constants of
Kge is Fqt , where t is the degree of S∞(K) in K.

As a corollary, we obtain the general description of the genus field
of abelian p-extensions in Theorem 2.3.

In the classical case, the analogue to Theorem 1.1 is the following.

Theorem 1.2. Let K be an abelian extension of Q, and let X be the
group of Dirichlet characters corresponding to K. For any rational
prime p and each Dirichlet character χ, let χp be the pth component
of χ. Set

Xp = {χp | χ ∈ X}.
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Let
Y :=

∏
p∈P

Xp,

where the product runs through the set of rational primes P. Then, if
L is the field corresponding to Y , L is the maximal abelian extension
of Q containing K such that L/K is unramified at every finite rational
prime.

Our second main result is the description of what we call the conduc-
tor of constants of an abelian extension K/k. The classical Kronecker-
Weber theorem establishes that every finite abelian extension of Q, the
field of rational numbers, is contained in a cyclotomic field. Equiva-
lently, the maximal abelian extension of Q is the union of all cyclotomic
fields. In 1974, Hayes [13] proved the analogous result for rational con-
gruence function fields. He proved that the maximal abelian extension
of k is the composite of three linearly disjoint fields: the first is the
union of all cyclotomic function fields; the second is the union of all
constant extensions; and, the third is the union of all the subfields of
the corresponding cyclotomic function fields, where the infinite prime
is totally wildly ramified.

Given a finite abelian extension K/k, by the Kronecker-Weber
theorem, we have

K ⊆ nk(ΛN )m

for some n,m ∈ N and N ∈ RT . The minimum N and n can be
found by class field theory by means of the conductor related to the
finite primes and the infinite prime, respectively. However, m does
not belong to this category. In this paper, we define the conductor of
constants as the minimum m satisfying this condition and describe m
in terms of some other invariants of the extension. This is given in
Theorem 3.1.

The third main result is the explicit description of genus fields of
finite abelian p-extensions of rational function fields in the case where
we have enough constants. This is given in Theorem 5.1. More
precisely, in the notation of Witt vectors, if k = Fq(T ) and if Fv ⊆ Fq,
then any finite abelian p-extension K/k with Galois group of rank v
can be given as K(y⃗) where y⃗ is given by a Witt equation of the form

y⃗p
v •
− y⃗ = β⃗ ∈ Wm(k).

When Fv*Fq, the field K cannot be described by this type of equation.
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To describe the genus fields of finite abelian p-extensions of rational
function fields without sufficient constants, we first prove a result on
the genus field of a composite of finite abelian extensions of degree
relatively prime to the order of the multiplicative group of the field
of constants, which shows that the genus field of the composite is the
composite of the respective genus fields. The description of the genus
field of an arbitrary finite abelian extension of a global rational function
field of degree relatively prime to the order of the multiplicative group
of the field of constants is the final main result, Theorem 6.9.

2. The genus field. The general results on genus fields, as pre-
sented in the introduction, which are necessary throughout this paper,
can be found in [19, 20].

First, we present a new proof of the fact that, if K ⊆ k(ΛN ), then
Kge ⊆ k(ΛN ). For a group of Dirichlet characters X, and for P ∈ R+

T ,
we set

XP = {χP | χ ∈ X},

where χP is the P th component of χ. We refer to [26, Chapter 12] for
the use of Dirichlet characters.

Theorem 2.1. Let k ⊆ K ⊆ k(ΛN ) for some N ∈ R+
T . Then, Kge ⊆

k(ΛN ). Furthermore, if the group of Dirichlet characters of K is X,
and, if L is the field associated to Y =

∏
P∈R+

T
XP , then

Kge = KL+.

Proof. Let F/K be an unramified abelian extension so that the
elements of S∞(K) are fully decomposed in F/K. In particular,
P∞ is tamely ramified. By the Kronecker-Weber theorem, we have
F ⊆ K(ΛN ′)m for some N ′ ∈ R+

T , m ∈ N. Let I be the inertia group
of S∞(K) in k(ΛN ′)/k, and let B = k(ΛN ′)I . Since the elements of
S∞(B) are of degree 1, they are fully inert in Bm/B. Furthermore,
the elements of S∞(B) are fully ramified in k(ΛN ′)/B. Now, the
elements of S∞(K) are fully decomposed in B/K; thus, we obtain
that B is the decomposition field of S∞(K) in k(ΛN ′)m/K. It follows
that F ⊆ B ⊆ k(ΛN ′).
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Let Z be the group of Dirichlet characters associated to F . Since
F/K is unramified, it follows that X ⊆ Z ⊆ Y , that is, F ⊆ L since L
is the maximal abelian extension contained in some cyclotomic function
field such that L/K is unramified in the finite primes. In particular, we
may take N ′ = N . Therefore, Kge = LD, where D is the decomposition
group of S∞(K) in L/K. Now, S∞(K) fully decompose in KL+/K
since P∞ fully decomposes in L+/k. Since L/K is unramified, we have

KL+ ⊆ L

so that KL+/K is unramified. Hence, KL+ ⊆ Kge, and we obtain that

KL+ ⊆ Kge ⊆ L.

Finally, we see that S∞(KL+) is fully ramified in the extension
L/KL+. In fact, this follows from the facts that L+ ⊆ KL+ ⊆ L,
and S∞(L+) is totally ramified in L/L+. Since KL+ ⊆ Kge ⊆ L, and
Kge/KL+ is unramified, it follows that Kge = KL+ ⊆ k(ΛN ). �

Our first main result is the following.

Theorem 2.2. Let K/k be a finite abelian extension such that K ⊆
nk(ΛN )m. Let M = Lnkm, and let

E := KM ∩ k(ΛN ).
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Then,
Kge = EH1

ge K = (EgeK)H ,

where H is the decomposition group of any prime in S∞(K) in
EgeK/K, H1 := H|Ege

and H2 := H1|E. Let d := f∞(EK/K). We
have H ∼= H1

∼= H2
∼= Cd and d | q − 1. We also have that EgeK/Kge

and EK/EH2K are extensions of constants of degree d. Finally, the
field of constants of Kge is Fqt , where t is the degree of S∞(K) in K.

Proof. The proof that the field of constants of Kge is Fqt is the
same as that in [19, Lemma 4.1]. We repeat the argument for the
sake of completeness. Let Kr be the extension of constants of K
of degree r. Since the degree of any element of S∞(K) is t, the
elements of S∞(K) decompose into gcd(t, r) elements of Kr (see [26,
Theorem 6.2.1]). Therefore, the elements of S∞(K) fully decompose if
and only if gcd(t, r) = r if and only if r | t. The assertion follows.

Since k(ΛN ) ∩ M = k and E = KM ∩ k(ΛN ), from the Galois
correspondence, between k(ΛN )/k and k(ΛN )M/M , E corresponds to
KM . Hence, KM = EM corresponds to E. Thus,

KM = EM.

Now,

E ∩K ⊆ Ege ∩K ⊆ k(ΛN ) ∩K = (KM ∩ k(ΛN )) ∩ k(ΛN ) ∩K

= E ∩ k(ΛN ) ∩K = E ∩K.

Therefore,
E ∩K = Ege ∩K = k(ΛN ) ∩K.

We have [E : k] = [EM : M ] = [KM : M ] = [K : K ∩M ]. Thus,

(2.1) [K : k] = [E : k][K ∩M : k].

Next, we prove that EK/K is unramified. First, note that

E ⊆ EK ⊆ EKM = E · EM = EM.
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In the extension M/k, P∞ is the only ramified prime. Hence, in
KM/E, the only possible ramified primes are those in S∞(E). We
also have that, in the extension KM/K, the only possible ramified
primes are the elements of S∞(K) and, since K ⊆ EK ⊆ EM = KM ,
the only possible ramified primes in EK/K are those in S∞(K).
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From (1.1), we have

e∞(EK/K) | e∞(M/K ∩M)

and
e∞(M/K ∩M) | e∞(M/k) = qn.

On the other hand, we have

e∞(EK/K) | e∞(E/E ∩K)
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and
e∞(E/E ∩K) | e∞(k(ΛN )/k) = q − 1.

Thus,
e∞(EK/K) | gcd(qn, q − 1) = 1,

and EK/K is unramified.

Now, we have that

e∞(EK/K)f∞(EK/K) | e∞(E/E ∩K)f∞(E/E ∩K),

and e∞(EK/K) = 1, f∞(E/E ∩K) = 1. Hence,

f∞(EK/K) | e∞(E/E ∩K) and e∞(E/E ∩K) | q − 1.

Thus, f∞(EK/K) | q−1. Therefore, we have that EK/K is unramified,
the inertia degree of S∞(K) in EK/K is d = f∞(EK/K), and d | q−1.
Since Ege/E is unramified and S∞(E) fully decomposes in Ege/E, the
same holds in EgeK/EK. In this way, we obtain that EgeK/K is an
unramified extension, and the inertia degree of S∞(K) is d.

Recall that H is the decomposition group of any prime in S∞(K)
in EgeK/K, and let H1 := H|Ege

. Observe that |H| = d. Since
Ege ∩ K = E ∩ K, from the Galois correspondence, we obtain that
H ∼= H1, |H| = |H1| and EH1

ge K = (EgeK)H . Analogously, H2
∼= H1.

Furthermore, H1 ⊆ I∞(k(ΛN )/k) ∼= Cq−1, where I∞ denotes the
inertia group of P∞. Therefore, H is a cyclic group, H ∼= H1

∼= H2
∼=

Cd. Since S∞(K) fully decomposes in EH1
ge K/K, it follows that

EH1
ge K ⊆ Kge.

Let E1 := EEH1
ge ⊆ Ege. Now, H1 ⊆ I∞(E/E ∩ K), so S∞(EH1

ge )

is fully ramified in Ege/E
H1
ge . Therefore, S∞(E1) is fully ramified in

Ege/E1. On the other hand, S∞(E) fully decomposes in Ege/E. Hence,
S∞(E1) fully decomposes in Ege/E1, that is, S∞(E1) ramifies and fully
decomposes in Ege/E1. Therefore,

Ege = E1 = EEH1
ge .

It follows that

(EgeK)H = EH1
ge K ⊆ Kge and EEH1

ge = Ege.
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To prove the other containment, we define C := KgeM ∩k(ΛN ). We
have

E ⊆ EM = KM ⊆ KgeM, E ⊆ k(ΛN ).

Therefore,
E ⊆ KgeM ∩ k(ΛN ) = C,

that is, E ⊆ C. Furthermore, EH1
ge ⊆ EH1

ge K ⊆ Kge ⊆ KgeM and

EH1
ge ⊆ Ege ⊆ k(ΛN ). Thus, EH1

ge ⊆ KgeM ∩ k(ΛN ) = C. Hence,

EH1
ge ⊆ C. Therefore,

(2.2) Ege = EEH1
ge ⊆ C.

Since C = KgeM ∩ k(ΛN ), from the Galois correspondence, we have
CM = KgeM . Now, since Kge/K is unramified and S∞(K) fully de-
composes, it follows that

(2.3) CM/KM is unramified and S∞(KM) fully decomposes.

We now prove that C/E is unramified. From (2.3), it follows that
CM/KM is unramified. Now, in KM = EM over E, the only ramified
primes are those in S∞(E), and they have ramification index equal to
qn. It follows that the only ramified primes in CM/E are those in
S∞(E). Hence, the only possible ramified primes in C/E are those in
S∞(E). Now,

e∞(C/E) | e∞(CM/E) = qn

and
e∞(C/E) | e∞(k(ΛN )/k) = q − 1,

so that
e∞(C/E) | gcd(qn, q − 1) = 1.

Therefore, C/E is an unramified extension.

On the other hand, since S∞(E) is unramified in C/E, S∞(E) fully
decomposes in C/E since C ⊆ k(ΛN ). It follows that C ⊆ Ege. From
this and equation (2.2), we obtain

C = Ege and EgeM = CM = KgeM.

We have EgeK ⊆ EgeKge. Since Kge/K is unramified and S∞(K) fully
decomposes in Kge, the same holds in EgeKge/EgeK. In particular,
h∞(EgeKge/EgeK) = [EgeKge : EgeK].
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E ∩K K

k = k(ΛN) ∩M
e∞=qn, f∞=m

M

Now, in the extension EgeM/Ege, the only ramified primes are those
in S∞(Ege), and we have

e∞(EgeM/Ege) = qn and f∞(EgeM/Ege) = m

since e∞(Ege/k) | q − 1, which is relatively prime to q,

f∞(Ege/k) = 1, e∞(M/k) = qn and f∞(M/k) = m.

Ege EgeM

Ege ∩M = k
e∞=qn,f∞=m

M

Let F1 and F2 be two fields such that k ⊆ F1 ⊆ F2 ⊆ M . Let
Ri = EgeFi, i = 1, 2. Since f∞(Ege/k) = 1 and e∞(Ege/k) | q − 1, it
follows from the Galois correspondence between M/k and EgeM/Ege

that e∞(Ri/Ege) = e∞(Fi/k) and f∞(Ri/Ege) = f∞(Fi/k), i = 1, 2.
Therefore, e∞(F2/F1) = e∞(R2/R1) and f∞(F2/F1) = f∞(R2/R1).

Since h∞(M/k) = 1, we have h∞(R2/R1) = 1. In particular,

R1 ̸= R2 ⇐⇒ F1 ̸= F2 ⇐⇒ e∞(F2/F1) > 1 or f∞(F2/F1) > 1

⇐⇒ e∞(R2/R1) > 1 or f∞(R2/R1) > 1.(2.4)

Also, since

Ege ⊆ EgeK ⊆ EgeKge ⊆ KgeM = EgeM,
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S∞(EgeK) is unramified in EgeKge/EgeK, and S∞(EgeK) fully de-
composes; thus, we obtain that

e∞(EgeKge/EgeK) = 1 and f∞(EgeKge/EgeK) = 1.

From (2.4), it follows that

EgeKge = EgeK.

Therefore, Kge ⊆ EgeKge = EgeK. Since EgeK/K is unramified, if
D is the decomposition group of S∞(K) in EgeK/K, we obtain that
Kge = (EgeK)D. Then, we have

f∞(EgeK/K) = f∞(EgeK/EK)f∞(EK/K) = 1 · d = d.

Hence, D = H and Kge = (EgeK)D = (EgeK)H = EH1
ge K.

Finally, it remains to show that EgeK/Kge and EK/EH2K are
extensions of constants. Since KgeM = EgeM and EgeKge = EgeK,
we have

Kge = (EgeK)H ⊆ EgeK ⊆ EgeKge ⊆ EgeKgeM = EgeM.

Set F1 = Kge ∩M and F2 = EgeK ∩M . We have

d = [EgeK : Kge] = f∞(EgeK/Kge) = [F2 : F1]

= e∞(F2/F1)f∞(F2/F1)h∞(F2/F1).

Since e∞(F2/F1) | qn and h∞(F2/F1) = 1, it follows that

e∞(F2/F1) = e∞(EgeK/Kge) = 1

and
f∞(F2/F1) = f∞(EgeK/Kge) = d.

Therefore, k ⊆ F1 ⊆ F2 ⊆ M and e∞(F2/F1) = 1.

Let a and b be such that F2 ⊆ F1kbLa. Let Ai = Fikb ∩La, i = 1, 2.
Note that, since e∞(F2/F1) = 1 and Fikb = Aikb/Ai, i = 1, 2, are
extensions of constants, we have e∞(A2/A1) = 1. Since La/k is totally
ramified at P∞, it follows that A1 = A2. Therefore, F2kb = F1kb, and
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F2/F1 is an extension of constants.

La Lakb

A2 F2kb = A2kb

F2

sssssssssss

��
��
��
��
��
��
��
�

A1 F1kb = A1kb

F1

kkkkkkkkkkkkkkkkk

}}
}}
}}
}}

k kb

e∞(F2kb/F1kb) = e∞(F2/F1) = e∞(A2/A1) = 1.

Recall that F1 = Kge ∩ M . We consider Kge ⊆ EgeK ⊆ KgeM =
EgeM :

Kge EgeK KM = EgeM

F1 F2 M

Therefore, Kge ⊆ F2Kge = EgeK. It follows that EgeK/Kge is an
extension of constants of degree [EgeK : Kge] = |H| = d. The proof
that EK/EH2K is an extension of constants is completely similar. This
concludes the proof of the theorem. �

For the particular case of a finite abelian p-extension, we have that,
on one hand, d | q−1 and, on the other hand, d | [EK : K]. Since K/k
is a p-extension, we obtain from (2.1) that E/k is also a p-extension.
Finally, since

Gal(EK/k) −→ Gal(E/k)×Gal(K/k), σ 7→ (σ|E , σ|K)



GENUS FIELDS OF ABELIAN EXTENSIONS 2115

is injective, and it follows that EK/k is also a p-extension. Therefore,
d | pa for some a. Thus, d = 1. We have proved the following.

Theorem 2.3. With the above notation, let K/k be a finite abelian
p-extension. Let

E := KM ∩ k(ΛN ).

Then, Kge = EgeK and Kge/k is an abelian p-extension.

Proof. The last assertion follows from the fact that Ege/k is also an
abelian p-extension. �

With the same proof as that for Theorem 2.2, we obtain the follow-
ing.

Theorem 2.4. Let K/k be a finite abelian extension. Let

R := Km ∩ nk(ΛN ).

Then,
Kge = RH1

ge K = (RgeK)H,

where H is the decomposition group at infinity in RgeK/K, H1 :=
H|Rge

and H2 := H1|R.
Let d∗ := f∞(RK/K). We have H ∼= H1

∼= H2
∼= Cd∗ and

d∗ | q−1. We also have that RgeK/Kge and RK/RH2K are extensions
of constants of degree d∗. Finally, the field of constants of Kge is Fqt ,
where t is the degree of S∞(K) in K.

3. Conductor of constants. Let K be a finite abelian extension
of k. By the Kronecker-Weber theorem, we have that there exist
n,m ∈ N and N ∈ RT such that K ⊆ nk(ΛN )m. The minima n
and N satisfying this condition are given by class field theory using
local conductors of the extension K/k: n for P∞ and N for the finite
primes.

In this section, we will determine the minimum m satisfying the
above condition, and we will see that this m is related to the number d
given in Theorem 2.2. The number m will be called the conductor of
constants of the abelian extension K/k.
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Note that, in general, Fqm is neither the field of constants of K nor

that of Kge. For instance, let q ≡ 3 mod 4. Since
√
−1 /∈ Fq, we have

k(
√
−T ) ̸= K := k(

√
T ). The field of constants of K is Fq, and K is

not cyclotomic. In fact, K ⊆ k(ΛT )Fq2 , and m = 2 is the conductor of
constants of K. We also have, in this case, that Kge = K.

Now, let n,m ∈ N and N ∈ RT be such that K ⊆ nk(ΛN )m and
where m is the minimum with respect to this condition. Note that m
may depend on n and N . Consider the following diagram of Galois
extensions, that is, let U := nk(ΛN )K and km′ := U ∩ km. From the
Galois correspondence, we have that

U = nk(ΛN )K = nk(ΛN )km′ = nk(ΛN )m′ ⊇ K.

nk(ΛN ) U = nk(ΛN )K

rrr
rrr

rrr
rr

�
�
�
�
�
�
� nk(ΛN )m

K

ww
ww
ww
ww
ww

k km′ km

Since m is minimal, we obtain that m′ = m, that is, m is determined
by the equality

(3.1) nk(ΛN )K = nk(ΛN )m.

Now, we shall see that m is independent of n and N . Let ni ∈ N,
Ni ∈ RT and mi ∈ N be the minimum such that K ⊆ nik(ΛNi)mi ,
i = 1, 2. Let n0 := max{n1, n2}, N0 = lcm[N1, N2] and m0 ∈ N be
minimum such that K ⊆ n0k(ΛN0)m0 . From (3.1), it follows that

n0k(ΛN0)K = Ln0

(
nik(ΛNi)k(ΛN0)

)
K = Ln0

(
nik(ΛNi)K

)
k(ΛN0)

= Ln0

(
nik(ΛNi)mik(ΛN0)

)
= n0k(ΛN0)mi ,

and

n0k(ΛN0)K = n0k(ΛN0)m0 .

Therefore, m1 = m2 = m0.
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Hence, we consider K ⊆ nk(ΛN )m with m the minimum. Let
F := K ∩ nk(ΛN ), and consider the following Galois square (see (3.1)):

nk(ΛN )
m

nk(ΛN )m = nk(ΛN )K

F
m

K

hhhh
hhhh

hhhh
hhhh

hhhh
hhhh

k

Let t be the degree of S∞(K) in K, that is, t = f∞(K/k). We have

e∞(nk(ΛN )m/nk(ΛN )) = 1,

f∞(nk(ΛN )m/nk(ΛN )) = m.

In particular,

{1} = I∞(nk(ΛN )m/nk(ΛN )) ⊆ I∞(K/F ),

Cm
∼= D∞(nk(ΛN )m/nk(ΛN )) ⊆ D∞(K/F ).

Since [K : F ] = m and m ≤ |D∞(K/F )| ≤ [K : F ] = m, it follows
that |D∞(K/F )| = m and D∞(K/F ) ∼= Cm. In particular, we have
h∞(K/F ) = 1 and h∞(nk(ΛN )m/nk(ΛN )) = 1.

On the other hand, we have

t = f∞(K/k) = f∞(K/F )f∞(F/k) = f∞(K/F ) · 1 = f∞(K/F ),

that is, f∞(K/F ) = t. Furthermore,

e∞(K/F )f∞(K/F )h∞(K/F ) = e∞(K/F ) · t · 1 = m,

so that e∞(K/F ) = m/t. Hence,

m = [K : F ] = f∞(K/F )e∞(K/F ) = te∞(K/F )(3.2)

= t
e∞(K/k)

e∞(F/k)
.

Now, we shall investigate the relation between the numbers m and
d = f∞(EgeK/Kge), given in Theorem 2.2. Recall that M = Lnkm,
E = KM ∩ k(ΛN ) and EM = KM . We have

Ege ⊆ EgeK ⊆ EgeKLn ⊆ EgeKM = EgeEM = EgeM.
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Let A := EgeK ∩M and B := EgeKLn ∩M . From the Galois corres-
pondence, we have EgeK = EgeA and EgeKLn = EgeB.

Ege EgeK EgeKLn EgeM

k A B M

We also have Ln ⊆ EgeKLn ∩M = B ⊆ M = Lnkm. Therefore, B/Ln

is an extension of constants, say, B = Lnkm′ with m′ | m. From the
Galois correspondence, we obtain

K ⊆ EgeKLn = EgeB = EgeLnkm′ ⊆ k(ΛN )Lnkm′ = nk(Λn)m′ .

Since m is the minimum, m′ = m, B = M and EgeKLn = EgeM .

Now, Ege(ALn) = (EgeA)Ln = (EgeK)Ln = EgeM . Again, from
the Galois correspondence, it follows that ALn = M . We consider the
following Galois square:

Ln ALn = M = Lnkm

A ∩ Ln A

We have
f∞(ALn/Ln) = f∞(M/Ln) = m

and
e∞(ALn/Ln) = e∞(M/Ln) = 1.

Thus,

{1} = I∞(ALn/Ln) ⊆ I∞(A/A ∩ Ln)

and

Cm
∼= D∞(ALn/Ln) ⊆ D∞(A/A ∩ Ln).

Due to the fact that [A : A ∩ Ln] = [M : Ln] = m, it follows that

D∞(A/A ∩ Ln) ∼= Cm, e∞(A/A ∩ Ln) = 1

and f∞(A/A ∩ Ln) = m. Therefore,

f∞(EgeK/k)=f∞(EgeK/Kge)f∞(Kge/K)f∞(K/k)=d · 1 · t=dt= td.
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Thus,

f∞(EgeM/EgeK) =
f∞(EgeM/k)

f∞(EgeK/k)
=

m

td
.

Finally,

m

td
= f∞(EgeM/EgeK)|[EgeM : EgeK] = [M : A]

= [Ln : A ∩ Ln]|[Ln : k] = qn.

It follows that
m = tdps,

for some s ∈ N ∪ {0}. Furthermore, f∞(Km/K) = m/t = e∞(K/F ).
Note that

td = f∞(K/k)f∞(EK/K) = f∞(EK/k).

We computem in another way. Recall F = K∩nk(ΛN ), and consider
the following Galois squares:

nk(ΛN ) nk(ΛN )m

R Km = Rm

ttt
ttt

ttt
t

K

vv
vv
vv
vv
vv

k km
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nk(ΛN ) nk(ΛN )K = nk(ΛN )m

C Rm = Km

R = Km ∩ nk(ΛN ) RK

F = K ∩ nk(ΛN ) K

SinceR = Km∩nk(ΛN ), it follows thatKm = Rm. Now,K,R ⊆ RK ⊆
Km = Rm.

Note that, in general, R ̸= F . For instance, if q ≡ 3 mod 4,
√
−1 /∈

Fq
∗, and, if K := k(

√
T ), then n = 1,m = 2, N = T and

F = K ∩ nk(ΛN ) = k(
√
T ) ∩ k(ΛT ) = k,

R = Km ∩ nk(ΛN ) = Fq2(
√
T ) ∩ k(ΛT ) = k(

√
−T ) ̸= k.

Let C := Km ∩ nk(ΛN ). Then, C = R, and, from the Galois cor-
respondence, we have RK = Rm = Km. It follows that the field of
constants of RK is Fqm . The field of constants of RKge is also Fqm .
Now, the field of constants of Kge is Fqt .

On the other hand, we have that RKge/R
H1
ge K = Kge is an extension

of constants of degree d∗ = |H1|. Thus, the field of constants of RKge

is Fqtd∗ . It follows that td
∗ = m.

We have obtained the following.

Theorem 3.1 (Conductor of constants). Let K be a finite abelian
extension of k. Let n,m ∈ N and N ∈ RT be such that K ⊆ nk(ΛN )m
and m is minimum with this property. Then, m is independent of n
and N . Let t = f∞(K/k) = f∞(K/F ) be the degree of the infinite
primes of K.

(a) Let M = Lnkm, E = KM ∩ k(ΛN ), F = K ∩ nk(ΛN ) and
d = f∞(EK/K) = f∞(EgeK/Kge). Then,

nk(ΛN )K = nk(ΛN )m
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and
m = [K : F ] = te∞(K/F ) = tdps = f∞(EK/k)ps

for some s ≥ 0. In particular,

e∞(K/F ) = dps = f∞(Km/K).

(b) Let R = Km ∩ nk(ΛN ) and d∗ = f∞(RK/K). Then,

m = te∞(K/F ) = td∗ = f∞(RK/k).

In particular,
d∗ = f∞(RK/K) = e∞(K/F ).

Remark 3.2. When p - m/t, in particular, when K/k is tamely
ramified at P∞, we have s = 0 and m = td. When K/k is not tamely
ramified, we may have s ≥ 1.

Example 3.3. Let p be any prime, and let q = p. Let X := 1/T . We

have L1 := k(ΛX2)F
∗
p and [L1 : k] = p. We have that L1/k is an Artin-

Schreier extension. It is unnecessary to give the explicit description
of L1; however, for the sake of convenience, we give a generator of
L1. Let λ be a generator of ΛX2 such that λp−1 is a generator of
k(ΛX2)+ = L1. Now, λ is a root of the cyclotomic polynomial ΨX2(u)
(see [26, Chapter 12]). We have that ΨX2(u) = ΨX(uX), where uX

denotes the Carlitz action. Since ΨX(u) = uX/u = up−1+X, it follows
that ΨX2(λ) = (λp + Xλ)p−1 + X. Set µ := λp−1 and ξ := µ + X.
Then, we obtain

ξp −Xξp−1 +X = 0.

Finally, if δ := 1/ξ, then L1 = k(δ) with

δp − δ = −1/X = −T, δ = T/(Tλp−1 + 1).

Let α be a solution of yp − y = 1. Then, Fp(α) = Fpp , kp =
Fp(α)(T ) = Fpp(T ) and L1kp = k(α, δ). The p + 1 extensions K/k of

degree p over k such that k ⊆ K ⊆ L1kp are {k(α + iδ)}p−1
i=0 and L1.

Set K := k(α+ δ). Then, K ̸= kp and K ̸= L1. Hence, K = k(z) with
zp − z = 1− T .

Let N ∈ RT be arbitrary. Then, K ⊆ L1kp ⊆ 1k(ΛN )p and K *
1k(ΛN )1. Therefore, m = p and M = L1kp. We have f∞(K/k) = 1
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and e∞(K/k) = p. We also have E := KM ∩k(ΛN ) = M ∩k(ΛN ) = k.
Therefore, Ege = k and Kge = EgeK = K. It follows that EK = K
and f∞(EK/K) = d = 1. Hence, td = 1 ̸= m = p. In this example,
s = 1.

Remark 3.4. From Theorems 2.2 and 2.4, it follows that, if K ⊆
nk(ΛN )m, then Kge ⊆ nk(ΛN )m. In particular, the conductors of con-
stants of K and Kge are the same.

4. Genus fields of subfields of cyclotomic function fields.
For an abelian extension K/k, the explicit description of Kge, that
is, a description in terms of the generating equation of Kge, depends
upon the explicit description of Ege (Theorem 2.2). In this section,
we present some details in order to find Ege. For results and notation
regarding Dirichlet characters we use, the reader is referred to [26,
Chapter 12]. Here, K denotes a field k ⊆ K ⊆ k(ΛN ) for some N ∈ RT

and k = Fq(T ).

Remark 4.1. Let k ⊆ K ⊆ k(ΛN ), and let X be the group of Dirichlet
characters associated to K. If L is the field associated to

∏
P∈R+

T
XP ,

then
Kge = LD,

where D is the decomposition group of any prime p ∈ S∞(K) in L/K.

Proposition 4.2. With the notation as above, let X be the group of
Dirichlet characters corresponding to K. Fix P ∈ R+

T . Let Y be a group
of Dirichlet characters such that Y = YP , that is, for any χ ∈ Y , the
conductor of χ is a power of P : Fχ = Pαχ for some αχ ∈ N∪{0}. Let
L be the field associated to ⟨X,Y ⟩, that is, if F is the field associated
to Y , then L = KF . If KF/K is unramified at P , then Y ⊆ XP .

Proof. We have

|⟨X,Y ⟩P | = eP (KF/k) = eP (KF/K)eP (K/k) = eP (K/k) = |XP |.

Since XP ⊆ ⟨X,Y ⟩P , it follows that XP = ⟨X,Y ⟩P . In addition, since
YP ⊆ ⟨X,Y ⟩P , the result follows. �

Corollary 4.3. If |Y | = |XP |, then Y = XP .
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Next, we apply Proposition 4.2 to Kummer extensions of k and to
finite abelian p-extensions of k.

4.1. Kummer extensions. From Proposition 4.2 and [21, subsec-
tion 5.2], we obtain the following.

Theorem 4.4. Let X be the group of Dirichlet characters associated
to K = k

(
t
√
γD

)
with t | q − 1, D ∈ RT and is t-power free,

D = Pα1
1 · · ·Pαr

r , r ≥ 1, 1 ≤ αi ≤ t− 1, 1 ≤ i ≤ r,

γ = (−1)degD. Let di = gcd(t, αi), 1 ≤ i ≤ r. Then, the field associated
to ∏

P∈R+
T

XP =
r∏

i=1

XPi

is L = k(ξ1, . . . , ξr), where

ξi =
t/di

√
γiP

αi/di

i and γi = (−1)degP
αi/di
i ,

that is,

L = k
(

t

√
(−1)degP

α1
1 Pα1

1 , . . . , t

√
(−1)degPαr

r Pαr
r

)
,

and the genus field of K is Kge = LD, where D is the decomposition
group of any prime p ∈ S∞(K) in L/K.

4.2. Abelian p-extensions. For any field F , Wv(F ) denotes the ring

of Witt vectors of length v. The Witt operations will be denoted by
•
+

and
•
− . We now consider K = k(y⃗), where

y⃗p
u •
− y⃗ = δ⃗1

•
+ · · ·

•
+ δ⃗r,

with δ⃗i = (δi,1, . . . , δi,v) for some v ∈ N, δi,j = Qi,j/P
ei,j
i , ei,j ≥ 0,

Qi,j ∈ RT . Here, we assume that Fpu ⊆ Fq and K ⊆ k(ΛN ) for some
N ∈ RT . Let X be the group of characters associated to K. According
to Schmid [25], the ramification index of Pi in K/k is determined
by the first index j such that we may write δi,j = Qi,j/P

ei,j
i with

gcd(Qi,j , Pi) = 1, ei,j > 0 and gcd(ei,j , p) = 1, in other words, the

ramification index of Pi at K/k depends only upon δ⃗i and not upon
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δ⃗1, . . . , δ⃗i−1, δ⃗i+1, . . . , δ⃗r. Therefore, if Y is the group of characters asso-
ciated to

Fi = k(y⃗i) with y⃗p
u

i

•
− y⃗i = δ⃗i, 1 ≤ i ≤ r,

we have |XPi | = |Y | = |YPi |. Furthermore, the extension

KFi = k(y⃗, y⃗i) = k(y⃗, y⃗
•
− y⃗i) = K(y⃗

•
− y⃗i)

is unramified at Pi over K. It follows that the field associated to∏
P

XP =
r∏

i=1

XPi

is k(y⃗1, . . . , y⃗r) (Proposition 4.2). Here, the decomposition group D is
trivial. Then, we have (see Remark 4.1) the following.

Theorem 4.5. With the conditions as above, if K = k(y⃗), then the
field associated to

∏
P XP∈R+

T
=

∏r
i=1 XPi is

L = k(y⃗1, . . . , y⃗r),

and the genus field of K is also

Kge = k(y⃗1, . . . , y⃗r).

5. Explicit description of genus fields of abelian p-extensions.
The reader may consult [19, 27] for the theory of Witt vectors. Let
K/k be a finite abelian p-extension. Recall that k = k0(T ) with k0 =
Fq, say q = pl. We will assume that Fpu ⊆ k0, that is, u | l. Then, we
have

Gal(K/k) ∼=
(
Z/pα1Z

)
× · · · ×

(
Z/pαuZ

)
with 1 ≤ α1 ≤ · · · ≤ αu = v. There exist w⃗1, . . . , w⃗u ∈ Wv(k) such

that w⃗p
i

•
− w⃗i = ξ⃗i ∈ Wv(k), with K = k(w⃗1, · · · , w⃗v). We also have

that there exists a y⃗0 ∈ Wv(k) such that K = k(y⃗0) with

y⃗p
u

0

•
− y⃗0 = ξ⃗0 for some ξ⃗0 ∈ Wv(k)

(see [4, Theorem 8.5]). Here, k denotes an algebraic closure of k.
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Let P1, . . . , Pr ∈ R+
T be the finite primes in k ramified in K. From

[4, Theorem 8.10] it follows that we may decompose ξ⃗0 as

(5.1) ξ⃗0 = δ⃗1
•
+ · · ·

•
+ δ⃗r

•
+ γ⃗,

where δi,j = Qi,j/P
ei,j
i , ei,j ≥ 0, Qi,j ∈ RT and, if ei,j > 0, then

ei,j = λi,jp
mi,j , gcd(λi,j , p) = 1, 0 ≤ mi,j < n,

gcd(Qi,j , Pi) = 1 and deg(Qi,j) < deg(P
ei,j
i ), and γj = fj(T ) ∈ RT

with deg fj = νjp
mj and gcd(q, νj) = 1, 0 ≤ mj < n, when fj ̸∈ k0. If

the ramification index of Pi is p
ai < pv, we may write

δ⃗i = (δi,1, . . . , δi,v) = (0, . . . , 0, δi,(v−ai+1), . . . , δi,v),

in particular, P∞ fully decomposes in k(y⃗i)/k, where y⃗
pu

i

•
− y⃗i = δ⃗i (see

[4, Theorem 8.13]).

Let z⃗p
u •
− z⃗ = γ⃗. In k(z⃗)/k, the only possible ramified prime is P∞.

Note that, if

y⃗ = y⃗1
•
+ · · ·

•
+ y⃗r,

then

y⃗p
u •
− y⃗ = ξ⃗0

•
− γ⃗ = δ⃗1

•
+ · · ·

•
+ δ⃗r,

and P∞ fully decomposes in k(y⃗)/k. We have y⃗0 = y⃗
•
+ z⃗, k(z⃗) ⊆ M

and k(y⃗
•
+ z⃗) ⊆ k(y⃗)k(z⃗).

The first main result of this section is the following.

Theorem 5.1. With the above notation, let E = KM ∩k(ΛN ). Then,
E = k(y⃗), Ege = k(y⃗1, . . . , y⃗r), and

Kge = k(y⃗1, . . . , y⃗r, z⃗).

Proof. From the Galois correspondence, EM = KM . To prove
E = k(y⃗) is equivalent to showing k(y⃗)M = KM since k(y⃗) ⊆ k(ΛN ).
Now, k(z⃗) ⊆ M since M = LnFqm(T ) codifies all inertia and ramifi-
cation, which is totally wild, of P∞. We have

k(y⃗)M = k(y⃗)k(z⃗)M ⊇ k(y⃗
•
+ z⃗)M = KM.
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In addition,

KM = Kk(z⃗)M = k(y⃗0)k(z⃗)M ⊇ k(y⃗0
•
− z⃗)M = k(y⃗)M.

Thus,
KM = k(y⃗)M and E = k(y⃗).

From [19] (see also Theorem 4.5), we obtain Ege = k(y⃗1, . . . , y⃗r). Fin-
ally,

Kge = EgeK = k(y⃗1, . . . , y⃗r)k(y⃗0)

= k(y⃗1, . . . , y⃗r)k(y⃗0
•
− y⃗1

•
− · · ·

•
− y⃗r)

= k(y⃗1, . . . , y⃗r)k(z⃗) = k(y⃗1, . . . , y⃗r, z⃗).

This concludes the proof. �

Remark 5.2.

(a) Observe that, with the above conditions,

[k(y⃗i) : k] = ePi(K/k)

and
[k(z⃗) : k] = e∞(K/k) · f∞(K/k).

(b) Note that the proof of Theorem 5.1 works even in the case where

δ⃗i and γ⃗ are not in the reduced form described above. We only need

that, in each extension y⃗p
u

i

•
− y⃗i = δ⃗i, 1 ≤ i ≤ r, and z⃗p

u •
− z⃗ = γ⃗, there

is at most one ramifying prime.

From Theorem 2.3, the cases of Artin-Schreier and Witt extensions
and elementary abelian p-extensions are an immediate consequence of
Theorem 5.1.

Corollary 5.3 ([19, Theorems 5.4, 5.7]). Let E = F (T ), where F is
a finite field.

(a) Let K = E(y) with

yp − y = α =
r∑

i=1

Qi

P ei
i

+ f(T ),
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where Pi ∈ R+
T , Qi ∈ RT , gcd(Pi, Qi) = 1, ei > 0, p - ei, degQi <

degP ei
i , 1 ≤ i ≤ r, f(T ) ∈ RT , with p - deg f when f(T ) ̸∈ F . Then,

Kge = E(y1, . . . , yr, β),

where ypi − yi = Qi/P
ei , 1 ≤ i ≤ r and βp − β = f(T ).

(b) Let K = E(y⃗), where

y⃗p
•
− y⃗ = β⃗ = δ⃗1

•
+ · · ·

•
+ δ⃗r

•
+ µ⃗,

with δi,j = Qi,j/P
ei,j
i , ei,j ≥ 0, Qi,j ∈ RT , gcd(Qi,j , Pi) = 1 and, if

ei,j > 0, then p - ei,j, deg(Qi,j) < deg(P
ei,j
i ), and µj = fj(T ) ∈ RT

with p - deg fj when fj ̸∈ F . Then,

Kge = E(y⃗1, . . . , y⃗r, z⃗),

where y⃗pi
•
− y⃗i = δ⃗i, 1 ≤ i ≤ r and z⃗p

•
− z⃗ = µ⃗.

(c) Assume that Fpu ⊆ F . Let K = E(y), with

yp
u

− y = α =
r∑

i=1

Qi

P ei
i

+ f(T ),

where Pi ∈ R+
T , Qi ∈ RT and f(T ) ∈ F [T ]. Then,

Kge = E(y1, . . . , yr, z),

where yp
u

i − yi = Qi/P
ei
i , 1 ≤ i ≤ r and zp

u − z = f(T ).

6. General finite abelian extensions of k. Up until now, we have
given the explicit description of the genus fields of abelian p-extensions
K of k = k0(T ), where k0 = Fq is such that Fpu ⊆ k0, K = k(y⃗),
and y⃗ is given by an equation of the form y⃗p

u •
− y⃗ = β⃗ ∈ Wm(k). When

Fpu * k0, the field K cannot be given by this type of equation.

In this section, we explicitly give the description of Kge, where K/k
is a finite abelian extension of degree t with gcd(t, q− 1) = 1. The case
t | q − 1 is treated in subsection 4.1.

Remark 6.1. For any abelian extension K/k of degree t with gcd(t,
q − 1) = 1, we have that, if E = KM ∩ k(ΛN ), then [E : k] | t,
see (2.1). If X is the set of Dirichlet characters of E, we have
gcd(|X|, q − 1) = gcd([E : k], q − 1) = 1. Since, for any χ ∈ X and
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P ∈ R+
T , we have that χ

|X|
P = 1, we obtain that gcd([Ege : k], q−1) = 1.

In particular, H = {1}. Therefore, Kge = EgeK.

Remark 6.2. In general, if K1 and K2 are two finite extensions of k,
we have

(K1)ge(K2)ge ⊆ (K1K2)ge;

however, we may have (K1)ge(K2)ge ( (K1K2)ge. In fact, let q > 2 and
P , Q, R, S ∈ RT be four different monic polynomials in RT . Set L1 :=
k(ΛPQ)

+ and L2 := k(ΛRS)
+. Then, (Li)ge = Li, i = 1, 2. Therefore,

(L1)ge(L2)ge = L1L2. On the other hand, (L1L2)ge = k(ΛPQRS)
+ and

[Lge : L] = q − 1 > 1. Thus, (L1L2)ge = Lge ̸= L = (L1)ge(L2)ge.

We will show that, for finite abelian extensions of k of degree
relatively prime to q − 1, we have equality. In particular, if K1 and
K2 are finite abelian p-extensions of k, we have equality.

For a subfield K ⊆ k(ΛN ) for some N ∈ RT , denote by K ′
ge the

maximal abelian extension of K contained in k(ΛN ), unramified at the
finite primes. We have (see Remark 4.1):

(6.1) Kge = (K ′
ge)

D,

where D is the decomposition group at infinity in K ′
ge/K.

Consider Ki ⊆ k(ΛN ), i = 1, 2, and let Xi be the group of Dirichlet
characters associated to Ki. Therefore, Y = X1X2 = ⟨X1, X2⟩ is the
group of Dirichlet characters associated to L = K1K2. Let P ∈ R+

T . It
is easy to see that

⟨X1, X2⟩P = ⟨(X1)P , (X2)P ⟩,

so that we obtain∏
P∈R+

T

YP =
∏

P∈R+
T

⟨X1, X2⟩P =

( ∏
P∈R+

T

(X1)P

)
·
( ∏

P∈R+
T

(X2)P

)
.

It follows that
(K1)

′
ge(K2)

′
ge = (K1K2)

′
ge.

We have proved the following.
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Proposition 6.3. For Ki ⊆ k(ΛN ), i = 1, 2, we have

(K1)
′
ge(K2)

′
ge = (K1K2)

′
ge.

Corollary 6.4. Let Ki ⊆ k(ΛN ), i = 1, 2, be such that K1/k and K2/k
are finite abelian extensions of degrees relatively prime to q− 1. Then,
(K1)ge(K2)ge = (K1K2)ge.

Proof. Since the decomposition groups of P∞ in K1/k, K2/k and
K1K2/k are the unit group, it follows from (6.1) that (Ki)ge =
(Ki)

′
ge, i = 1, 2, and (K1K2)ge = (K1K2)

′
ge. The result follows from

Proposition 6.3. �

Corollary 6.5. Let Ki/k, i = 1, 2, be two finite abelian extensions of
degrees relatively prime to q − 1. Then

(K1)ge(K2)ge = (K1K2)ge.

Proof. Let k0 = Fpl , Ki ⊆ Lnk(ΛN )Fplm(T ), i = 1, 2, and let
M := LnFplm(T ). Set Ei := KiM ∩ k(ΛN ), i = 1, 2, and E :=
K1K2M ∩ k(ΛN ). Using the Galois correspondence, it can be proven
that E = E1E2. From Corollary 6.4, we have Ege = (E1)ge(E2)ge.
Therefore,

(K1)ge(K2)ge = (E1)geK1 · (E2)geK2 = (E1)ge(E2)ge ·K1K2

= Ege ·K1K2 = (K1K2)ge.

Thus, (K1)ge(K2)ge = (K1K2)ge. �

Corollary 6.6. Let Ki/k, i = 1, 2 be two finite abelian p-extensions.
Then,

(K1)ge(K2)ge = (K1K2)ge.

As a consequence, we obtain the description of the genus field of a
finite abelian p-extension of k.

Corollary 6.7. Let K/k be a finite abelian p-extension with Galois
group

Gal(K/k) = G ∼= G1 × · · · ×Gs
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with Gi
∼= Z/pαiZ, 1 ≤ i ≤ s. Let K be the composite K = K1 · · ·Ks

such that Gal(Ki/k) ∼= Gi. Let P1, . . . , Pr be the finite primes ramified
in K/k. Let Ki = k(w⃗i) be given by the equation

w⃗p
i

•
− w⃗i = ξ⃗i, 1 ≤ i ≤ s.

Write each ξ⃗i as in (5.1), that is,

ξ⃗i = δ⃗i,1
•
+ · · ·

•
+ δ⃗i,r

•
+ γ⃗i,

such that all of the components of δ⃗i,j are written so that the degree of
the numerator is less than the degree of the denominator, the support
of the denominator is at most {Pj}, and the components of γ⃗i are
polynomials. Let

w⃗p
i,j

•
− w⃗i,j = δ⃗i,j , 1 ≤ i ≤ s, 1 ≤ j ≤ r

and

z⃗pi
•
− z⃗i = γ⃗i, 1 ≤ i ≤ s.

Then
Kge = k

(
w⃗i,j , z⃗i | 1 ≤ i ≤ s, 1 ≤ j ≤ r

)
.

Proof. From Remark 5.2 (b), we obtain that the genus field Ege given
in Theorem 5.1 can be obtained in the same way, even if the equation
is not given in normal form. Thus, the result follows from Remarks
5.2 (b), Corollary 5.3 (b) and Corollary 6.6. �

Proposition 6.8. Let E ⊆ k(ΛN ) be a cyclic extension of k of degree t
relatively prime to p(q − 1). Let P1, . . . , Pr ∈ R+

T be the primes in k
ramifying in E. Then,

Ege =

r∏
j=1

Fj ,

where k ⊆ Fj ⊆ k(ΛPj
) is the subfield of degree aj over k, aj is the

order of χPj , and χ is the character associated to E.

Proof. We consider a cyclic extension K/k of degree t such that
gcd(t, p(q − 1)) = 1. We have that E = KM ∩ k(ΛN ) satisfies that
[E : k] is relatively prime to q−1. From Remark 4.1, we have E′

ge = Ege

and Kge = EgeK.
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The result follows from the fact thatX = ⟨χ⟩ is the group of Dirichlet
characters associated to E, Ege is the field corresponding to

∏r
j=1 XPj

,

XPj = ⟨χPj ⟩ (see Proposition 4.2) and Fj is the field associated to
χPj . �

Next is our final, main result.

Theorem 6.9. Let K/k be an abelian extension of degree t with
gcd(t, q − 1) = 1. Let P1, . . . , Pr ∈ R+

T be the primes in k ramifying
in K. Let E = KM ∩ k(ΛN ) = E0E1 · · ·Es, where Ei/k is a cyclic
extension of degree ti, gcd(ti, p(q − 1)) = 1, 1 ≤ i ≤ s, and E0/k is an
abelian p-extension. Then

Kge = EgeK, where Ege = (E0)ge(E1)ge · · · (Es)ge,

(E0)ge is given by Corollary 6.7, and (Ei)ge =
∏r

j=1 Fi,j is given by

Proposition 6.8, 1 ≤ i ≤ s. Furthermore, let bi,j := [Fi,j : k]. Then,
Lj :=

∏s
i=1 Fi,j is the subfield of k(ΛPj ) of degree bj := lcm[bi,j , 1 ≤

i ≤ s] over k. We have

Kge = (E0)ge

( r∏
j=1

Lj

)
K.

Proof. The result follows from Theorem 2.2, Corollary 6.6 and
Proposition 6.8. �
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