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GENUS FORMULAS FOR ABELIAN p-EXTENSIONS

FAUSTO JARQUÍN-ZÁRATE, MARTHA RZEDOWSKI-CALDERÓN
AND GABRIEL VILLA-SALVADOR

ABSTRACT. We apply a result of Kani relating genera
and Hasse-Witt invariants of Galois extensions to a family
of abelian p-extensions. Our formulas generalize the case
of elementary abelian p-extensions found by Garcia and
Stichtenoth.

1. Introduction. Kani proved in [2] that, if L/K is a finite Galois
extension of function fields with Galois group G, then any relation
among idempotents of subgroups of G in Q[G] implies the same relation
among the quotient genera. The quotient genus for a subgroup H of G
is the genus of the field KH := LH .

In the same paper, Kani proved that, if the field of constants k of
K is a field of positive characteristic p > 0, then any relation among
the subgroups H of G implies the same relation among the Hasse-Witt
invariants of the fields KH .

In this paper, we consider an arbitrary field k of characteristic p > 0,
a function field K with field of constants k, and a Galois extension L/K
with Galois group isomorphic to (Z/pmZ)n, where m and n are natural
numbers. We find two formulas relating the genus gL of L and the
genera of a family of subextensions. The first is the family of all cyclic
subextensions of K and the second is the family of all subextensions E
with L/E cyclic. The same relations hold for the Hasse-Witt invariants.
Our results generalize the formula found by Garcia and Stichtenoth [1]
for elementary abelian p-extensions.
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2. Results. Let k be any field of positive characteristic p, and let
K be a function field with field of constants k. Let L/K be a Galois
extension with Galois group isomorphic to G = (Z/pmZ)n. Let G be
the set of all subgroups of G. For each H ∈ G, let KH be the subfield
of L fixed by H, that is, KH := LH . Let gH be the genus of KH , and
let τH be the Hasse-Witt invariant of KH . For H ∈ G, let ϵH be the
norm idempotent of H:

ϵH :=
1

|H|
∑
h∈H

h ∈ Q[G].

In [2], Kani proved the following result.

Theorem 2.1 ([2]). Any relation∑
H∈G

rHϵH = 0 with rH ∈ Q,

among the norm idempotents yields the following two relations:∑
H∈G

rHgH = 0 and
∑
H∈G

rHτH = 0,

among the genera and among the Hasse-Witt invariants.

Let Hi be the set of all subgroups of G isomorphic to
(
Z/pmZ

)n−1⊕(
Z/pm−iZ

)
, 0 ≤ i ≤ m. The set of the fields fixed by H ∈ Hi is the

set Ki of all the subfields K ⊆ E ⊆ L such that Gal(E/K) ∼= (Z/piZ),
that is, the collection of all of the cyclic extensions of K of degree pi

contained in L. Our main result is:

Theorem 2.2. We have the following relations

gL = −p

(
pn−1 − 1

p− 1

)
gK − (pn−1 − 1)

m−1∑
i=1

∑
E∈Ki

gE +
∑

E∈Km

gE ,

and

τL = −p

(
pn−1 − 1

p− 1

)
τK − (pn−1 − 1)

m−1∑
i=1

∑
E∈Ki

τE +
∑

E∈Km

τE .
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Corollary 2.3 ([1]). If L/K is an elementary abelian p-extension of
degree pn, we have

gL = −p

(
pn−1 − 1

p− 1

)
gK +

∑
E∈K1

gE .

Now, let Ti be the set of cyclic subgroups of G of order pi, 0 ≤ i ≤ m.
Let Li be the set of subextensions K ⊆ E ⊆ L such that L/E is a cyclic
extension of degree pi. We have Li = {E | E = LH with H ∈ Ti}.
Then,

Theorem 2.4. We have the following relations:

p

(
pn−1 − 1

p− 1

)
gL = −pnmgK − (pn−1 − 1)

m−1∑
i=1

pi
∑
E∈Li

gE + pm
∑

E∈Lm

gE ,

and

p

(
pn−1 − 1

p− 1

)
τL = −pnmτK − (pn−1 − 1)

m−1∑
i=1

pi
∑
E∈Li

τE + pm
∑

E∈Lm

τE .

Remark 2.5. The genera of the subfields considered in Theorem 2.2
can be computed using the results of Schmid [3].

It is not easy to use Theorem 2.4 in applications since the family
of fields considered is in the top of the extension; thus, the genera is
difficult to find.

3. Proofs. First, we consider

(3.1) Mi :=
∑

H∈Hi

ϵH , 0 ≤ i ≤ m.

Note that M0 =
∑

H∈H0
ϵH = ϵG = (1/pnm)

∑
σ∈G σ.

Fix an element σ ∈ G. Let T (i, σ) be the number of distinct
subgroups H ∈ Hi such that σ ∈ H, that is,

T (i, σ) := |{H ∈ Hi | σ ∈ H}|.
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Let s be a natural number 1 ≤ s ≤ m, and let

Gs := {σ ∈ G | o(σ) = ps}.

Note that, given any element σ ∈ Gs, there exists an element τ ∈ G of

order pm such that τp
m−s

= σ. If θ and σ are two elements of Gs, then
there exists an automorphism Φ ∈ Aut(G) such that Φ(θ) = σ. Thus,
T (i, σ) = T (i, θ). Therefore, it makes sense to define

(3.2) T (i, s) := T (i, σ),

where σ is any element of Gs.

Let Cs :=
∑

σ∈Gs
σ ∈ Q[G]. Then,

Mi =
∑

H∈Hi

1

|H|
∑
h∈H

h

=
1

pm(n−1)+(m−i)

m∑
s=0

T (i, s)
∑
σ∈Gs

σ

=
1

pnm−i

m∑
s=0

T (i, s)Cs.

We must compute T (i, s) for all 0 ≤ i, s ≤ m. Towards this end, let
es be the number of elements of G of order ps. We have

es = qs − qs−1, 1 ≤ s ≤ m, and e0 = 1,

where q = pn. In particular, if hi is the number of distinct cyclic
subgroups of G of order pi, it follows that

hi =
qi − qi−1

pi − pi−1
, 1 ≤ i ≤ m, and h0 = 1.

Since, in an abelian group, its lattice of subgroups is symmetric, that
is, if B is a subgroup of a finite abelian group A, then A contains a
subgroup isomorphic to A/B. It follows that

hi = |Hi|.
Let H ∈ Hi, and let L(H, s) = |H ∩Gs|. Since all of the subgroups

in the collection Hi are isomorphic, it makes sense to define

L(i, s) := L(H, s),

where H is any subgroup in Hi.
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Let F ⊆ Hi ×Gs be defined by

F := {(H,σ) | σ ∈ H}.

We can compute |F| either column-by-column or row-by-row, which
gives us:

(3.3) |F| = hiL(i, s) = T (i, s)es,

respectively, that is, to find T (i, s), it suffices to find L(i, s).

Now, fix H ∈ Hi, and let Bs := {x ∈ H | xps

= IdG} = {x ∈ H |
o(x) divides ps}. Then, L(i, s) = |Bs| − |Bs−1| for 1 ≤ s ≤ m and
L(i, 0) = |B0| = 1. Now, to find Bs, note that Bs = kerΨ, where
Ψ : H → H, Ψ(x) = xps

. The image of Ψ is Hps

. Hence,

|Bs| =
|H|
|Hps |

.

Since H ∼=
(
Z/pmZ

)n−1⊕
(
Z/pm−iZ

)
, we have Hps ∼= (Z/pm−sZ)n−1⊕

A, where

A ∼=

{(
Z/pm−i−sZ

)
if 1 ≤ s ≤ m− i

0 if m− i < s ≤ m.

Therefore, we have

(3.4) L(i, s) =


1 if s = 0, 0 ≤ i ≤ m,

pn(s−1)(pn − 1) if 1 ≤ s ≤ m− i
(0 ≤ i ≤ m− 1),

p(n−1)(s−1)+(m−i)(pn−1 − 1) if m− i+ 1 ≤ s ≤ m
(1 ≤ i ≤ m).

From (3.3) and (3.4), we obtain
(3.5)

T (i, s) =



1 if i = 0, 0 ≤ s ≤ m,

hi if s = 0, 0 ≤ i ≤ m,(
pn − 1

p− 1

)
p(n−1)(i−1) if 1 ≤ s ≤ m− i,

(1 ≤ i ≤ m− 1),(
pn−1 − 1

p− 1

)
p(n−2)(i−1)+(m−s) if m− i+ 1 ≤ s ≤ m,

(1 ≤ i ≤ m).
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Thus, from (3.5), we obtain

Mi =
pi

pnm
hi IdG +

pi

pnm

m−i∑
s=1

(
pn − 1

p− 1

)
p(n−1)(i−1)Cs

+
pi

pnm

m∑
s=m−i+1

(
pn−1 − 1

p− 1

)
p(n−2)(i−1)+(m−s)Cs,

for 1 ≤ i ≤ m and M0 = ϵG.

Now, in order to obtain a relation among the norm idempotents,
since M0 = ϵG and IdG = ϵIdG

, what we need is to find x1, . . . , xm ∈ Q
such that

m∑
i=1

xiMi = y0 IdG +
m∑
s=1

ysCs,

with y0 ∈ Q and y1 = y2 = · · · = ym ̸= 0.

Let x1, . . . , xm ∈ Q, and

m∑
i=1

xiMi =

( m∑
i=1

pi

pnm
xihi

)
︸ ︷︷ ︸

y0

IdG +

(
pn − 1

p− 1

)m−1∑
i=1

m−i∑
s=1

xi
p(n−1)(i−1)+i

pnm
Cs

+

(
pn−1 − 1

p− 1

) m∑
i=1

m∑
s=m−i+1

xi
p(n−2)(i−1)+(m−s)+i

pnm
Cs.

Changing the summation order (Fubini’s Theorem), we obtain

m∑
i=1

xiMi = y0 IdG +

(
pn − 1

p− 1

)m−1∑
s=1

m−s∑
i=1

xi
p(n−1)(i−1)+i

pnm
Cs

+

(
pn−1 − 1

p− 1

) m∑
s=1

m∑
i=m−s+1

xi
p(n−2)(i−1)+(m−s)+i

pnm
Cs

=

m∑
s=0

ysCs.

We have, for 1 ≤ s ≤ m− 1,

ys =

(
pn − 1

p− 1

)m−s∑
i=1

xi
p(n−1)(i−1)+i

pnm
(3.6)
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+

(
pn−1 − 1

p− 1

) m∑
i=m−s+1

xi
p(n−2)(i−1)+(m−s)+i

pnm

and

ym =

(
pn−1 − 1

p− 1

) m∑
i=1

xi
p(n−2)(i−1)+i

pnm
.(3.7)

Consider 1 ≤ s ≤ m− 2. Our goal is to show that x1, . . . , xm can be
chosen so that ys = ys+1. From (3.6), we obtain
(3.8)

xm−s = −pns(pn−1 − 1)

pnm

m∑
i=m−s+1

p(n−1)(i−1)+(m−s)xi, 1 ≤ s ≤ m−2.

Similarly, for s = m− 1, we obtain from ym−1 = ym, (3.6) and (3.7),

(3.9) x1 = −(pn−1 − 1)
m∑
i=2

p(n−1)(i−2)xi.

Taking s = 1 in (3.8), we obtain

(3.10) xm−1 = −(pn−1 − 1)xm.

From (3.10), taking s = 2 in (3.8), we obtain xm−2 = −(pn−1 − 1)xm.
By induction, we obtain

(3.11) x2 = · · · = xm−1 = −(pn−1 − 1)xm.

Finally, from (3.11) and (3.9), we get x1 = −(pn−1 − 1)xm.

We let xm = 1 and obtain xi = −(pn−1 − 1) for 1 ≤ i ≤ m − 1.
Then, from (3.6) and (3.7), we have

y1 = · · · = ym =

(
pn−1 − 1

p− 1

)
1

pnm−1
.

Therefore,

−
m−1∑
i=i

∑
H∈Hi

(pn−1 − 1)ϵH +
∑

H∈Hm

ϵH(3.12)

= −(pn−1 − 1)
m−1∑
i=1

Mi +Mm
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= y0 IdG +
1

pnm−1

(
pn−1 − 1

p− 1

) m∑
s=1

Cs

= z0ϵIdG
+

1

pnm−1

(
pn−1 − 1

p− 1

)
pnmϵG

= z0ϵIdG
+ p

(
pn−1 − 1

p− 1

)
ϵG,

where

z0 = y0 −
(
pn−1 − 1

p− 1

)
1

pnm−1
.

Since y0 =
∑m

i=1(p
i/pnm)xihi with xi as in (3.10) and (3.11) with

xm = 1, we obtain z0 = 1. Theorem 2.2 is now a consequence of
Theorem 2.1 and (3.12).

In order to prove Theorem 2.4, we now consider Ti, 0 ≤ i ≤ m. We
have |Ti| = hi. Let

Qi :=
∑
H∈Ti

ϵH .

Consider an element σ ∈ Gs. Let N(i, σ) be the number of cyclic
subgroups of G of order pi containing σ. Since, for any two elements
of Gs, there exists an automorphism of G sending one into the other,
as in (3.2), it makes sense to define

N(i, s) := N(i, σ),

where σ is any element of Gs. Then,

Qi =
1

pi

∑
H∈Ti

∑
σ∈H

σ(3.13)

=
1

pi

m∑
s=0

N(i, s)
∑
σ∈Gs

σ

=
1

pi

m∑
s=0

N(i, s)Cs.

First, we compute N(m, s). Let {τ1, . . . , τn} be a basis of G over
Z/pmZ. More precisely, G = ⟨τ1, . . . , τn⟩ and o(τj) = pm for 1 ≤ j ≤ n.
Let µ ∈ G, say µ = τα1

1 · · · ταn
n . Then, o(µ) = pm if and only if there
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exists a 1 ≤ j ≤ n such that gcd(αj , p) = 1. Fix an element σ ofGs with

s ≥ 1. We can choose the basis {τ1, . . . , τn} of G such that τp
m−s

1 = σ.

We have

hm =
qm − qm−1

pm − pm−1
.

The different hm cyclic subgroups of G of order pm are

⟨τ1τα2
2 · · · ταn

n ⟩, 0≤αj≤pm−1, 2≤j≤n,

⟨τpα1

1 τ2τ
α3
3 · · · ταn

n ⟩, 0≤α1≤pm−1−1 and 0≤αj≤pm−1, 3≤j≤n,

...
...

⟨τpα1

1 τpα2

2 · · · τpαk−1

k−1 τkτ
αk+1

k+1 · · · ταn
n ⟩, 0≤αj≤pm−1−1, 1≤j≤k−1

and 0≤αj≤pm−1, k + 1≤j≤n,

...
...

⟨τpα1

1 τpα2

2 · · · τpαn−1

n−1 τn⟩, 0≤αj≤pm−1−1, 1≤j≤n−1.

Note that σ does not belong to any subgroup of the form

⟨τpα1

1 τpα2

2 · · · τpαk−1

k−1 τkτ
αk+1

k+1 · · · ταn
n ⟩, k ≥ 2,

since s ≥ 1. Otherwise, we would have

σ = τp
m−s

1 =
(
τpα1

1 τpα2

2 · · · τpαk−1

k−1 τkτ
αk+1

k+1 · · · ταn
n

)β
for some 0 ≤ β ≤ pm − 1. Since {τ1, . . . , τn} is a basis of G, we would
have that pm | β, that is, β = 0, which is impossible since σ ̸= IdG.

Similarly, we have σ ∈ ⟨τ1τα2
2 · · · ταn

n ⟩ if and only if αj = pslj with
0 ≤ lj ≤ pm−s − 1, 2 ≤ j ≤ n. For s = 0, we have σ = IdG and
N(m, 0) = hm. Therefore, we have

(3.14) N(m, s) =

{
p(m−s)(n−1) if 1 ≤ s ≤ m,

hm if s = 0.

Now, let 0 ≤ i ≤ m. If i < s, then |H| = pi < ps = o(σ) so that
σ /∈ H. Thus, N(i, s) = 0 if i < s. Now, let s ≤ i. If s = 0, then
N(i, 0) = hi, since σ = IdG.



1914 F. JARQUÍN, M. RZEDOWSKI AND G. VILLA

Next, we consider s ≥ 1. Let 1 ≤ t ≤ m and ϕt : G → G, ϕ(x) = xpt

.

Then, kerϕt = {x ∈ G | xpt

= 1} = {x ∈ G | o(x) divides pt}, and
the image of ϕt is Gpt

. In particular, if t = i, then any H ∈ Ti
satisfies H ⊆ kerϕi. It is easy to see that kerϕi = Gpm−i ∼= (Z/piZ)n.
Therefore, from the case i = m, we have N(i, s) = p(i−s)(n−1) for s ̸= 0
and N(i, 0) = hi. From (3.14), we obtain

(3.15) N(i, s) =


hi if s = 0 and 0 ≤ i ≤ m,

p(i−s)(n−1) if 1 ≤ s ≤ i ≤ m,

0 if 0 ≤ i < s ≤ m.

From (3.13) and (3.15), we obtain

Qi =
1

pi

i∑
s=0

N(i, s)Cs =
1

pi
hi IdG +

i∑
s=1

p(i−s)(n−1)−iCs.

Equivalently, we have

(3.16) piQi = hi IdG +

i∑
s=1

p(i−s)(n−1)Cs, 0 ≤ i ≤ m, Q0 = IdG .

Let x1, . . . , xn ∈ Q be such that
∑m

i=1 xip
iQi = y0 IdG +

∑m
s=1 ysCs

with y0 ∈ Q and y1 = y2 = · · · = ym ̸= 0. Then, from (3.16), we have

m∑
i=1

xip
iQi =

( m∑
i=1

xihi

)
IdG +

m∑
i=1

i∑
s=1

xip
(i−s)(n−1)Cs

= y0 IdG +
m∑
s=1

m∑
i=s

xip
(i−s)(n−1)Cs

= y0 IdG +
m∑
s=1

ysCs,

where y0 =
∑m

i=1 xihi and, for s ≥ 1,

ys =
m∑
i=s

xip
(i−s)(n−1) = xs +

m∑
i=s+1

xip
(i−s)(n−1).

From the condition y1 = · · · = ym, we obtain, by induction on s, that

x1 = x2 = · · · = xm−1 = −(pn−1 − 1)xm.
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We take xm = 1 and get xi = −(pn−1 − 1), 1 ≤ i ≤ m− 1. With these
values, we obtain y1 = y2 = · · · = ym = 1 and y0 = (pn − 1)/(p− 1).

Then, we finally obtain a relation among idempotents of Ti, 0 ≤ i ≤
m:

− (pn−1 − 1)
m−1∑
i=1

∑
H∈Ti

piϵH +
∑

H∈Tm

pmϵH

=

((
pn − 1

p− 1

)
− 1

)
ϵIdG

+ pnmϵG

= p

(
pn−1 − 1

p− 1

)
ϵIdG

+ pnmϵG.

Theorem 2.4 follows from Kani’s theorem (Theorem 2.1).
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Email address: gvillasalvador@gmail.com, gvilla@ctrl.cinvestav.mx


