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EIGENVALUE PROBLEM ASSOCIATED
WITH THE FOURTH ORDER

DIFFERENTIAL-OPERATOR EQUATION

NIGAR M. ASLANOVA, MAMED BAYRAMOGLU
AND KHALIG M. ASLANOV

ABSTRACT. In this paper, we investigate the boundary
value problem for fourth order differential operator equations
with unbounded operator coefficients and one λ-dependent
boundary condition. We obtain an asymptotic formula for
eigenvalues and a trace formula for the corresponding self-
adjoint operator.

1. Introduction. In this paper, we investigate the boundary value
problem for fourth order differential equations with unbounded oper-
ator coefficients and one λ-dependent boundary condition. The main
questions to be studied are the following:

(A) to establish the asymptotics of eigenvalue distribution (asymp-
totics of the distribution function N(λ));

(B) to derive the regularized trace formula.

Eigenvalue distribution, which arises in quantum mechanics, for the
Sturm-Lioville operator equation with an unbounded operator-valued
coefficient having compact inverse and boundary conditions without
the λ-parameter is established in [10].

The asymptotics of N(λ) for the second and nth order differential
operator equations with unbounded operator coefficients are treated,
for example, in [1, 3, 4, 6, 14, 15, 21].

Due to the appearance of the eigenvalue parameter in the boun-
dary condition, the problem considered herein is not self-adjoint. By
introducing the direct sum of Hilbert spaces with a new scalar product
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defined in it, we consider that problem as the eigenvalue problem of a
selfadjoint operator denoted L. Selfadjointness is essentially used for
investigating the nature of the spectrum as well as for deriving the trace
formula. First, we prove positive definiteness of L. Next, an application
of the Rellich theorem proves compactness of the resolvent and, as a
result, discreteness of spectrum. Finally, we find an asymptotic formula
for eigenvalues.

Note that, in the case of the second order differential operator equa-
tion with λ containing boundary conditions, some roots of character-
istic equations may be imaginary and form unbounded sequences, as
in [1, 3, 4, 21], resulting in three different asymptotic behaviors of
eigenvalues. In addition, note that eigenvalues of the problem are sums
of squares of the roots and eigenvalues of the unbounded operator co-
efficient.

However, if, in the boundary condition, a linear function of λ
appears as a coefficient before an unknown function as well as before its
first derivative, some imaginary roots form a bounded sequence, and
consequently, the asymptotic behavior of eigenvalues is given by one
formula. In the scalar case for boundary value problems with eigenvalue
dependent boundary conditions, the reader is referred to [8, 9, 12, 20],
and the references therein.

The regularized trace formula for the scalar Sturm-Lioville operator
is first established in [13]. The case of the differential-operator equa-
tion with unbounded operator coefficient is defined in [18]. Traces of
abstract discrete operators with given eigenvalue distribution are stud-
ied in [11, 22]. Corresponding questions for operators generated by
regular and singular differential expressions with unbounded operator
coefficients are treated in [2, 3, 5, 6, 7].

In the present paper, we consider the space L2((0, 1),H) (H is an
abstract, separable Hilbert space) of the boundary value problem

ly(t) := yIV(t) +Ay(t) + q(t)y(t) = λy(t),(1.1)

y(0) = y′′(0) = y′′′(1) = 0,(1.2)

y′′(1)− λy′(1) = 0,(1.3)

where A = A∗ > I (I is the identity operator) is an operator in H
satisfying A−1 ∈ σ∞, q(t) is an operator-valued function for each t
defined in H and ∥q(t)∥ ≤ const for t ∈ [0, 1].
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Problems with eigenvalue dependent boundary conditions arise in a
variety of physical problems: vibration involving loads, heat conduction
and electric circuit problems involving long cables.

Under the above-stated conditions, A is a discrete operator. We de-
note its eigenvalues by γ1 ≤ γ2 ≤ · · · and eigenvectors by φ1, φ2, . . . .
In addition, we assume here that:

(1) q∗(t) = q(t) for all t[0, 1];

(2)
∫ 1

0
(q(t)φj , φj) dt = 0, j = 1, 2, . . .;

(3) q(l)(t) ∈ σ1, [q
(l)(t)]∗ = q(l)(t), ∥q(l)∥σ1 < const for l = 0, 1, 2.

Recall here that σ1 is a trace class (class of compact operators whose
singular values form convergent series, [11, page 521].

We shall give an operator-theoretic formulation of problem (1.1)–
(1.3), associating with it a self-adjoint operator. The asymptotics of
the eigenvalues of that operator will be investigated. Also, employing
perturbation theory and residue calculus, we shall calculate the regu-
larized trace.

2. A self-adjoint operator. We introduce the spaceH1=L2((0, 1),
H)⊕H of two component vectors and define in it an inner product by

(2.1) (Y, Z)H1 =

∫ 1

0

(y(t), z(t)) dt+ (y1, z1)

for
Y = (y(t), y1), Z = {z(t), z1}

y(t), z(t) ∈ L2((0, 1),H), y1, z1 ∈ H.

It is assumed that (·, ·) is a scalar product and ∥ · ∥ a norm in H.

The operator-theoretic formulation of (1.1)–(1.3) with q(t) ≡ 0 is

L0Y = {y4(t) +Ay(t), y′′(1)},

D(L0) = {Y = {y(t), y1} ∈ L2/y
′′′(t)

is absolutely continuous in norm ∥ · ∥,

ly ∈ L2((0, 1),H),

y(0) = y′′(0) = y′′′(1) = 0
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and
y1 = y′(1).

It follows that L0 is densely defined and symmetric with respect to the
scalar product in (2.1), as well as self-adjoint. Symmetry follows from
the relation

(L0Y, Y )H1 =

∫ 1

0

(yIV(t) +Ay(t), y(t)) dt

+ (y′′(1), y′(1)) = (y′′′(1), y(1))− (y′′′(0), y(0))

− (y′′(1), y′(1)) + (y′′(0), y′(0)) + (y′′(1), y′(1))

− (y′(0), y′′(0))− (y(1), y′′′(1)) + (y(0), y′′′(0))

+ (y′(1), y′′(1)) +

∫ 1

0

(y(t), Ay(t) + yIV(t)) dt

= (Y, L0Y )H1 .

L0 is positive definite:

(L0, Y, Y )H1 =

∫ 1

0

(yIV(t) +Ay(t), y(t)) dt+ (y′′(1), y′(1))

= (y′′′(1), y(1)) + (y′′(1), y′(1))

−
∫ 1

0

(y′′′(t), y′(t)) dt+

∫ 1

0

(Ay(t), y(t)) dt

= (y′′(1), y′(1))− (y′′(t), y′(t))|10

+

∫ 1

0

∥y′′(t)∥2dt+
∫ 1

0

(Ay(t), y(t)) dt

=

∫ 1

0

∥y′′(t)∥2dt+
∫ 1

0

(Ay(t), y(t)) dt

≥
∫ 1

0

∥y′′(t)∥2dt+
∫ 1

0

∥y(t)∥2dt

since W 2
2 ((0, 1),H) ⊂ C([0, 1],H) is continuous, [17, Theorem 3.1] and
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∥y′(1)∥H ≤ C∥y(t)∥W 2
2 ([0,1],H). Therefore,

(L0Y, Y )H1 ≥ C

(∫ 1

0

∥y(t)2dt+ ∥y′(1)∥2
)

≥ C∥Y ∥2H1
.

Under conditions shown by using the Rellich theorem [19] that L−1
0

is compact, the spectrum of L0 is discrete. Take L = L0 + Q and
QY = {q(t)y(t), 0}. Q is bounded in H1 since q(t) is bounded for each
t in H. Due to the boundedness of the Q spectrum of L, it is also
discrete.

We need the fact that the eigenvalues of L and L0 are denoted by
µ1 ≤ µ2 ≤ · · · and λ1 ≤ λ2 ≤ · · · , counting multiplicities, in what
follows.

3. Asymptotics of eigenvalues. By using the eigenfunction ex-
pansion for A, the next problem naturally arises:

yIVk (t) + γkyk(t) = λyk(t),(3.1)

yk(0) = y′′k (0) = 0,(3.2)

y′′′k (1) = 0,(3.3)

y′′k (1)− λy′k(1) = 0;(3.4)

here, yk(t) = (y(t), φk), k = 1,∞.

The solution of equation (3.1) from L2(0, 1) in order to satisfy con-
dition (3.2) is

(3.5) yk(t) = c1 sin
4
√
λ− γkt+ c2 sh

4
√
λ− γkt.

In order for the solution to satisfy boundary conditions (3.3) and (3.4),
we obtain the following equations:

−c1 cos
4
√
λ− γk + c2 ch

4
√

λ− γk = 0,

− c1 sin
4
√
λ− γk + c2 sh

4
√
λ− γk − 4

√
λ− γk

3
c1 cos

4
√

λ− γk

− 4
√

λ− γk
3
c2 ch

4
√

λ− γk = 0.
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Denote 4
√
λ− γk = z so that

(3.6){
−c1 cos z + c2 ch z = 0,

−c1 sin z + c2 sh z − (z4 + γk)c1 cos z − (z4 + γk)c2 ch z = 0.

The system of equations (3.6) has a nontrivial solution if and only if∣∣∣∣ − cos z ch z
−z sin z − (z4 + γk) cos z z sh z − (z4 + γk) ch z

∣∣∣∣ = 0,

or

(3.7) −z cos z sh z + 2 ch z cos(z4 + γk) + z ch z sin z = 0.

By using condition (3.3), we obtain that

c2 =
cos z

ch z
c1,

and therefore,

(3.8) yk(t) = c1

(
sin zt+

cos z

ch z
sh zt

)
.

Thus, the eigenvectors of operator L0 are

Y = c

{[
sin zt+

cos z

ch z
sh zt

]
φk, (2z cos z)φk

}
.

We must find the norms of the vectors. Obviously,

∥Y ∥2H1
= (Y, Y )H1

=c2
∫ 1

0

[
sin2 zt+

2 cos z

ch z
sin zt sh zt+

cos2 z

ch2 z
sh2 zt

]
dt+4z2 cos2 z

= c2
[
1

2
− sin 2z

4z
+

cos z

z ch z
(ch z sin z − sh z cos z)

+
cos2 z

ch2 z

sh2 z

4z
− 1

2

cos2 z

ch2 z
+ 4z2 cos2 z

]

= c2
[
2z ch2 z − sin 2z ch2 z + 8z3 cos2 z ch2 z

4z ch2 z

+
cos2 z sh2 z − 2z cos2 z − 8(γk/z) cos

2 z ch2 z

4z ch2 z

]
.
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Here, we use (3.7). Thus, denoting the roots of (3.7) by αm, we obtain
that the orthonormal eigenvectors are:√

4αm ch2 αm

Hk,m

{(
sinαmt+

cosαm

chαm
shαmt,

)
φk, 2αm cosαmφk

}
.

Denote

Hk,m = 2αm ch2 αm − sin 2αm ch2 αm + 8α3
m cos2 αm ch2 αm

+ cos2 αm sh2 αm − 2αm cos2 αm − 8
γk
αm

cos2 αm ch2 αm.

Now, we shall investigate the behavior of the roots of equation (3.7).
We begin by rewriting it as

(3.9) 2(z4 + γk) + z tg z − z th z = 0.

For real roots, we get that

(3.10) αm = −π

2
+ πm+O

(
1

m

)
when m → ∞.

Then, the eigenvalues corresponding to the roots are α4
m + γk.

In order to verify whether there is any imaginary root, take, in (3.7),
z = iy, y > 0:

tgy =
y − 2(y4 + γk) cth y

y cth y
,

from which the roots of this equation behave like

(3.11) αm = −π

2
+ πm+O

(
1

m

)
.

Thus, imaginary roots are βm = iαm.

Now, we look for roots of the form y + iy (y > 0) since the fourth
degree of that number is real. Hence, taking z = y + iy in (3.7), we
have

− (y + iy) cos(y + iy) sh(y + iy) + 2 cos(y + iy) ch(y + iy)(γk − 4y4)

+ (y + iy) ch(y + iy) sin(y + iy) = 0,

or
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− (y + iy)
eiy−y + e−iy+y

2

ey+iy − e−y−iy

2

+ 2
eiy−y + e−iy+y

2

ey+iy + e−y−iy

2
(γk − 4y4)

+ (y + iy)
ey+iy + e−y−iy

2

eiy−y + e−iy+y

2i
= 0,

which simplifies

− (y + iy)
e2iy − e−2iy + e2y − e−2y

4

+
e2iy + e−2iy + e−2y + e2y

2
(γk − 4y4)

+ (y + iy)
e2iy + e−2iy − e2y + e−2y

4i
= 0.

From the last equation, we obtain

− (y + iy)
1

2
(i sin 2y + sh2 y)(γk − 4y4)(cos 2y + ch2 y)

+ (y + iy)
1

2

(
sin 2y − sh2 y

i

)
= 0.

Thus, by opening the brackets, we finally obtain

(3.12) 2y sin 2y − 2y sh2 y = 2(4y4 − γk)(cos 2y + ch2 y).

Expanding the trigonometric functions in equation (3.12) into a
power series, we have:

y

(
2y − (2y)3

3!
+

(2y)5

5!
− (2y)7

7!
− · · · − 2y − (2y)3

3!
− (2y)5

5!
− · · ·

)
= (4y4 − γk)

(
1− (2y)2

2!
+

(2y)4

4!
− (2y)6

6!
+

(2y)8

8!
− · · ·

+ 1 +
(2y)2

2!
+

(2y)4

4!
+ · · ·

)
or

y

[
(2y)3

3!
+

(2y)7

7!
+

(2y)11

11!
+ · · ·

]
= (γk − 4y4)

[
(2y)4

4!
+

(2y)8

8!
+ · · ·

]
.



FOURTH ORDER DIFFERENTIAL-OPERATOR EQUATION 1771

By using σ, we have

(3.13) y

∞∑
n=1

(2y)4n−1

(4n− 1)!
= (γk − 4y4)

∞∑
n=1

(2y)4n

(4n)!
,

or

(3.13a)
y(4− 2γk)

2 · 4!

+

∞∑
n=1

y4n+4(4n+4−2γk+8(4n+1)(4n+2)(4n+3)(4n+4))

2(4n+ 4)!
= 0.

Clearly, this series has one sign change of coefficients which turn
positive after some n value. Thus, by Descarte’s rule of signs, equation
(3.13)–(3.13a) has exactly one positive root (by Descarte’s rule that the
number of positive roots and sign changes of coefficients is the same).

Find the asymptotics of the roots. Rewrite equation (3.12) as

(3.14)
sin 2y − sh2 y

cos 2y + ch2 y
=

4y4 − γk
y

,

or

(3.15)

∞∑
n=0

(2y)4n+1/(4n+ 1)!

∞∑
n=0

(2y)4n/(4n)!
=

γk − 4y4

y
.

Obviously, the root of (3.15) must satisfy γk − 4y4 > 0, y < 4
√
γk/4,

since the left hand side of the equation is positive. Hence,

2y

∞∑
n=0

(2y)4n/(4n+ 1)!

∞∑
n=0

(2y)4n/(4n)!
=

γk − 4y4

y
.

Denote
∞∑

n=0
(2y)4n+1/(4n+ 1)!

∞∑
n=0

(2y)4n/(4n)!
= α(y),
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2α(y)y2 = γk − 4y4, where α(y) < 1 and α(y) is close to 1. For large k
values

y2 ∼
√
16γk + 4α2(y)− 2α(y)

8
.

Thus, for eigenvalues of L0,

(3.16) λk ∼ α(y)γk.

Taking in (3.7) z = y − iy, after simplifications, we come to equation
(3.14). Thus, the eigenvalues corresponding to the roots y+ iy are the
same as those corresponding to roots of the form y − iy.

Equation (3.7) cannot have other complex roots since, otherwise, the
self-adjoint operator associated with scalar problem (3.1)–(3.4) would
have complex eigenvalues.

Hence, we have proved the next theorem.

Theorem 3.1. The multiplicity of eigenvalues of L0 is two, and

(3.17) λk,m = γk +

(
π

2
+ πm+O

(
1

m

))4

, m → ∞,

(3.18) λk ∼ α(y)
√
γk where α(y) < 1 and close to 1.

Using Theorem 1.1, by the method of [21], the next lemma can be
easily proven.

Lemma 3.2. If the eigenvalues of operator A for large k values satisfy
γk ∼ akα(a > 0, α > 0), then, for the eigenvalues of L0 and L, we
have

λn ∼ µn ∼ an4α/(α+4).

Note that, in [21], imaginary roots of the characteristic equation
form an unbounded sequence resulting in three different asymptotic
behaviors of λn depending upon α.

4. Trace formula. Now, we shall turn to deriving the trace the
formula for the operator L.

In [22], the next theorem is proven.
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Theorem 4.1. Given operators A0 and B so that A−1
0 ∈ σ1, D(A0) ⊂

D(B) and supposing that a number δ ∈ [0, 1) exists such that BA−δ
0 is

bounded and ω ∈ [0, 1), ω+δ < 1, A
−(1−δ−ω)
0 is the trace class operator.

Then, there exists a subsequence {nm}∞m=1 of natural numbers so that

lim
m→∞

nm∑
j=0

(µj − λj − (Bφj , φj)) = 0,

where {µj}∞j=1 and {λj}∞j=1 are eigenvalues of the operators A0+B, and
A0 and {φj}∞j=1 are eigenvectors of A0.

Taking A0 = L0 and A0+B = L, B = Q, the validity of the theorem
for L is easily seen, if

(4.1) α >
4

3
.

(This estimation is found from condition L−1
0 ∈ σ1, which means that

eigenvalues of L−1
0 form a convergent series; thus, 4α/(α+ 4) > 1,

yielding (4.1).)

Now, we prove the next lemma, which plays an important role in
obtaining the trace formula.

Lemma 4.2. Under assumptions (1)–(3) from Section 1, the series
follows:

∞∑
k=1

{ ∞∑
m=0

Hk,m

[ ∫ 1

0

qk(t) sin
2(αkt) dt+

∫ 1

0

2qk(t) sin(αkt) sh(αkt)
cosαk

chαk
dt

+

∫ 1

0

qk(t)
cos2 αk

ch2 αk

sh2(αkt) dt

]

+
∞∑

m=0

H ′
k,m

[ ∫ 1

0

qk(t) sin
2(βkt) dt+

∫ 1

0

2qk(t) sin(βkt) sh(βkt)
cosβk

chβk
dt

+

∫ 1

0

qk(t)
cos2 βk

ch2 βk

sh2(βkt) dt

]}
.

(Here H ′
k,m is the same as Hk,m with βk instead of αk and α0, and β0

are the roots of form y ± iy) converges absolutely.
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Proof. Consider the series with the terms

(4.2) Hk,m

[ ∫ 1

0

qk(t) sin
2(αmt) dt

]
= −Hk,m

∫ 1

0

qk(t)
cos(2αmt)

2
dt.

Here, we use condition (2) on q(t). Since∣∣∣∣ ∫ 1

0

qk(t) cos 2αm(t) dt

∣∣∣∣ ≤ ∫ 1

0

|qk(t)| dt ≤ ∥qk(t)∥σ1 ;

thus,
∑∞

k=1

∫ 1

0
qk(t) dt < const. On the other hand, from the asymp-

totics in (3.10), Hk,m ∼ C1/α
2
m and H ′

k,m ∼ C2/β
2
m Therefore, we

obtain the double sum with terms (4.2) convergent by condition (3)
and asymptotics (3.10) and (3.11). Consider the double series with the
terms

(4.3) 2Hk,m
cosαm

chαm

∫ 1

0

qk(t) sin(αmt) sh(αmt) dt.

For large m values, this is equivalent to

(4.4)
2 cosαm

ch(αm)α2
m

∫ 1

0

qk(t) sin(αmt) sh(αmt) dt.

Since ∣∣∣∣ sh(αmt)

chαm

∣∣∣∣ < 1 for t ∈ [0, 1],

from the condition q(t) ∈ σ1 and the asymptotics of αm follows con-
vergence of the series with the terms in (4.3). Then, for large m values,
(4.5)

Hk,m

∫ 1

0

qk(t)
cos2 αm

ch2 αm

sh2(αmt) dt ∼ 1

4α2
m

∫ 1

0

qk(t)
cos2 αm

ch2 αm

sh2(αmt) dt.

Relation (4.5), asymptotics of αm and condition (1.3) yield convergence
of the series with the terms in (4.5).

Using the asymptotics (3.11), convergence of the series could also be
justified with terms βm instead of αm. �

From Theorem 1.1, Theorem 4.1 and Lemma 4.2 we obtain:

lim
m→∞

nm∑
k=1

(µk − λk)
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=
∞∑
k=1

∞∑
m=0

Hk,m

[∫ 1

0

qk(t) cos(2αmt) dt−
∫ 1

0

qk(t)
2 cosαm

chαm
sin(αmt) dt

−
∫ 1

0

cos2 αm

ch2 αm

qk(t) sh
2(αmt) dt

]

+
∞∑
k=1

∞∑
m=0

H ′
k,m

[∫ 1

0

qk(t) cos(2βmt) dt−
∫ 1

0

qk(t)
2 cosβm

chβm
sin(βmt) dt

−
∫ 1

0

cos2 βm

ch2 βm

qk(t) sh
2(βmt) dt

]
.

For evaluating the sum of the first series, we select the function of the
complex variable G(z) to be:

G(z) =
cos(2zt)

((tg z/z)− ( th z/z) + 2z2 + 2(γk/z2))z cos2 z
.

It is easy to see that it has poles at the roots of equation (3.7). Thus,

res
z=αm

G(z) =
cos(2αmt)

((tg z/z)− ( th z/z) + 2z2 + 2(γk/z2))′|z=αm
αm cos2 αm

= −Hk,m cos(2αmt),

res
z=βm

G(z) =
cos(2βmt)

((tg z/z)− ( th z/z) + 2z2 + 2(γk/z2))′|z=βmβm cos2 βm

= −H ′
k,m cos(2βmt),

Other poles of that function are π/2+ πk, which are zeros of cos z and
zero. Residues at the points π/2 + πk are

res
z=π/2+πk

G(z) = cos((2k + 1)tπ).

Take as the contour of integration the rectangular contour CN , with
vertices at AN ± iBm, where AN = πN , Bm = πm. Let it bypass the
imaginary roots of (3.7), with βms along the semicircle from the right
and −βms and zero (also roots of equation (1.1) since the left hand side
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function is odd) from the left. Consider

lim
r→0

∫
0≤φ≤π/2

z=reiφ

1∫
0

cos 2zt qk(t) dt

sin z cos z − th z cos2 z + 2z3 cos2 z + 2(γk/z) cos2 z
dz

= lim
r→0

∫
0≤φ≤π/2

z=reiφ

1∫
0

2[1−(2zt)2/2!+(2zt)4/4! · · · ]qk(t) dt
sin 2z−th z(1+cos 2z)+2z3(1+cos 2z)+2(γk/z) cos2 z

dz

= lim
r→0

∫
0≤φ≤π/2

z=reiφ

1∫
0

2[1− (2zt)2/2! + (2zt)4/4! · · · ] dt dz
K(z)

=

∫
0≤φ≤π/2

z=reiφ

1∫
0

−(2zt)2/2!qk(t) dt

4γk
;

here,

K(z) = 2z − (2z)3/3! + · · · − [z − 1/3z3 + (2/15)z5 + · · · )

· [2− (2z)2/2! + · · · ] + 2z3(2− (2z)2/2! + · · · ]

+ 2γk/z cos
2 z(2− (2z)2/2! + · · · ),

which vanishes under the condition
∫ 1

0
t2qk(t) dt < ∞. By using the

asymptotics

G(z) ∼ 2 cos 2zt

z3 cos 2z
,

when |z| → ∞, it can be shown that the integral along the selected
contour vanishes.

For evaluating the sums for the second and third terms of the series,
we select the functions

F (z) =
sin tz sh tz

ch z((tg z/z)− ( th z/z) + 2z2 + 2(γk/z2))z cos z
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and

g(z) =
sh2 zt

ch2 z((tg z/z)− ( th z/z) + 2z2 + 2(γk/z2))z
.

By using asymptotics for large |z| values, it can be shown that the
integrals along extended contours vanish. Therefore,

lim
N→∞

∫ 1

0

∫
CN

G(z) dzqk(t) dt = lim
N→∞

∫ 1

0

N∑
n=1

cos(2n+ 1)πtqk(t) dt

=
∞∑
k=1

qk(π)− qk(0)

4
=

tr q(π)− tr q(0)

4
.

Thus, the next theorem is proven.

Theorem 4.3. Under conditions (1)–(3), the trace of operator L is

lim
m→∞

nm∑
k=1

(λk − µk) =
tr q(π)− tr q(0)

4
.
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